Jack Leverett 7714

Computer Science NEA
Jack Leverett

Candidate Number: 7714
Centre Number: 50639

50639

Jack Leverett 7714 50639

Table of Contents

ANBUYSIS .o
Background t0 the PrOJECT.........uvviiiiiiiiiiiiiiieie ettt eeees
WHhat IS BEREAI? ... e e 7
Why do companies need a social media platform?cccccceviiiiiiiiiinns 7
CUIENT SYSTBIM ... e et et e e e e e e e nnnn s
BEREAL. ... i e e e e e e aarane 8
D =101 1] TSR PPPPT 8
The Problem with BEREaAI..........oooviieiiiiiec e 8
@] o110 S SERPPR 8
10 10 0 o .Y o S SERPRR 9
FRATUIES ... ettt 9
S T=Tol U] 11 PP P PP PPPPPPPPPPPPPPP 9
The Problem With Yammerccoooooiiiiiiiiie et 10
System adminNS rESPONSEcvviviiiiiiiiiiiiieiieeieee ettt e e e eeeeeeeeeeees 10
PrOSPECTIVE USEI'S ...ttt ettt ettt ettt e ettt et ettt et e et e e e e e e e e e e eeeeeeees
Organisation MEMDEISoiiiiiiiii et 11
WHO @re theY? ... e 11
How will they use the SyStem? ... 11
Managers/Heads of departmMents ... 11
WHO @re theY 2 ... e 11
How will they use the SyStem?ooovviiiiiii i 11
FaNe |0 111 0 L PP PP PPPPPPPPPPP 12
WHhO @re theY 7 ... 12
How will they use the SyStem?ooovvviiiii i 12
QUESHIONNAINE / INTEIVIEWSceiiiiieeeie et e e e e et e e e et e e e e e et e e s e et e eeenes
[>T | = o USSR
BeReal flow diagramcoooviiiiiiiiii e 14
Yammer flOW diagramccoooeeoiiiiiii e 15
Yammer [€VEl O DFDoouiiiiiiiiiiiiiiiiiiiiiiieeeeeeetee ettt eeeeeeeeeees 16
YammeEr [€VEl 1L DFDooviiiiiiiiiiiiiiiiiiiiiieeieeeeeeteee ettt eeeeeeeeeeees 16
YammMeEr [€VEl 2 DFDooviiiiiiiiiiiiiiiiiiiiiie ettt eeeeeeeeeees 17
USEI REQUITBIMENTS....ceiiiiiiiii e e ee ettt e e e ettt s e e e e e e e e e et s e e e e e e e eeesebaaeaeeeeeeeesnnns
IVIUST. . et e et e nn e e e e nrn s 18
SNOUIT ... 18
COUI ... 19
L1470 e PR TRPPRPT 19
SMART ODJECLVES ...eviiiiiii ettt e e e e e e e et e e e e e e e e e eanaaa s
31 o o S USSRPPPRPP
OVBIVIBW. ..ottt e aaaaaaaaaaaens
FrIBINOS s 21
Teams and OCCUPALIONSccoeiieiiiiiiie e e e e e e e e e e e e e e ra s 21
POSES @N0 COMIMENTSuuiiiiiiiiii e 21
IVIEIMIOTIES .. 22
ClIENE-SEIVEN ..o 22
(@0] o] 0 [=Tox 1o o [P 22

Jack Leverett 7714 50639

YT LY PP UPTPTTRTUPPPIN 22
(@0] 01110 BT = 11T0] o H PP PP PPPPPPPPPPPPPP 22
Events, logging and development 25
S 2= 1 TSP 26
NN 1 To= T 1 27
Distribution and Hardware SUPPOITeeueriiiiieiiiieiiieieeiees 28
@4 [T o | S PPPUPRP 28
2 1o o] o PSR 28
DESKIOP ... 28
LS . 28
YT Y= PRI 29
Bare-metal deployment ... 29
Docker deploymeNntcooiiiiiiiiiiiie e 29
DePlOYMENT TEST ... 30
S CUIIEY ettt 31
=] 31
L= T T [T= T [T 31
Credential StOMNGoooeeee e 32
e TS 110 o £ O 32
Database ENCIYPLIONuuuiiiiiiiiiii e 32
(LT =T g =] = U= USSR 35
DIBSIGN e 41
YA (=T e 1= | =T 0 1 S 42
FIOW CRAITS ... s 42
Login/registration diagram...........ccovviveriuiiiie e ee e e e 42
0] 11T U 43
D= U= B (0T LV A I 1= o | = o 43
011 11T 43
T] (T P 45
IPSO Chart CHENE SIAEoiiiiiiiiiiiiiieeii ettt e e eeeeeees 47
IPSO Chart SEIVEI SIUE.......oiiiiiiiiiiiiiiiie ettt e e e e eeeeees 48
D= 1= 0 1= L PP PP 49
Relationship diagram...........oooviiiiiiii e e 51
NOIMAISALION ... s 51
DL s 51
AULh_CredentialS..........uvueiiii i 51
AULN_TOKENS... .. e e e e e aaaaan 52
] (0] 111 SRR 52
L= 10 £ 52
(o oT ot U] 7= 11 T0] o 1SRN 53
OCCUPALION _FEOUESES ...uvuiiieeeeeeeeeeetiiie e e e e e e e e e et e s e e e e e e e e e earaa s e e e eeeeennnnens 53
(T2 10 1 PP PP PUP PP 54
tEAM _CAUEIS ... 54
010 1S PSPPI 55
(070 011 01T 01 TP PUPPPPTR 55
POSE_IMPIESSIONS ...ttt e et e e e e e e e e e e e et e e e e e e e e eananan 56
COMMENT_IMPFESSIONS ...uuiiieieieeeeeiee eeeanans 56
1L S (0] £ UPPPT 57

Jack Leverett 7714 50639

L] 1] 0F= 110 o PRSP 57
NOTIfICALIONS _SENT ... e 57
S e 58
S = I = 58
INSE RT ... 60
UPDATE ... 60
DELETE ..o 61
Class StruCture and QIAGIAMSuuuueiiiiiiiiiii e 62
TaDIE CIASSES... oo 62
(@4 F= ST o = o | 1= PP 63
AULN ClASSES ... e e e e e e 64
Database ClaSSESuuuiiiiieiiiiieiii ittt e e e e 65
LOQQING CIASSES. ... e 66
D2 1] (] o F= TS 67
BN CIYPTION e 68
AlGOTTTNMIS. ...ttt ettt e e e e eeeeees 69
LT 0 =0 o PR 69
Pseudo code equIValENt............coovviiiiiiiiii 69
Generating post list per month ... 71
T8 o [0 T oo 1o [T 71
UUID GENEIALION. ...ttt 71
T8 o [0 T oo 1o [0 71
USEINAME NASK ... e 73
PSEUAO COUR ... 74
Friend recommendation (Graph traversal)...........cccccovveeiiiiiiiiec e, 74
IMportant attribDULEScooiiiee e 75
Breath first search vs depth first search..........cccccviiiiii e 75
PSEUAO COUE ... 76
Shamir SECret SNANNQGoovvviiii e e e e e e eaaann 78
Mathematical PrinCIPIES..........ccoiiiiiiiiieee e 78
GeNErating SNAIES.........uuuuiii i e e e e e 79
ReCcoNnStructing the SECIEL.......ccoii i e i 80
The language ChOICE.........ccoiiiiiiie e 81
PSEUAO COUE ... 81
(@0] a1 oI [0V PP 86
LIMIEALIONS ..o 86
Post scheduling and time SIOtScccooiiiiiiiiii e 87
FIOWCQAIT. ... 87
DAtA SITUCKUIES ... ettt e ettt e e et et e e e e et e e e e ean e e e eenn e e e ennnn e eeas 89
Recommendation graphoouuuiiiiii e 89
Recommendation QUEUEuuuueiiii e e e e et e e e 90
Recommendation hash Map.........ccoooooeiiiiiiiici e 90
NOLIFICALION QUEBUE.......eeii e e e e e e e e 90
=0 T3PPSR 91
DALADASE ... 92
VT AETICES . s 92
LSS 1T PSSP 93
YT Y g (=TS] £ TP TP PRPPPPTRRRPPRTN 93

[T (o =l o I (2] £ SURPPPRRRRT
Organisation Tab ... 97
LOGIN @NA REGISTET ... 102
0 1SS 125
e 1T T £SO 143
I\ 1 To= T 1 P 170
OCCUPALION FEOUESLESoeiiiiiiiiiiieiieieeee ettt ettt et e e e e e e eeeeeeeeees 185
HOMEPAJE AN POSES ...t 209
P OSTING - 232
(70 1 0] 0 41T 0115 245
SBTINGS it 257
Database ENCIYPLONuiiiiii s 260

Final product VIAEO tESTING........uuuiiiiiiiiiiiiiiiiiiiiiiiie ettt eeeeees

7= 1= Vo o PSSR

Potential user trials (Pre-improvemMENtS)uuuiiiiiiiiiiiiiiiiieiieeeieeeeeee e eeeeeeeees
Il e 273

1 = L P 273
74 8o T 273
1 = L P 273
1 = LU 274

g 10X =T 4 L= g TP
FIrSt iMe [OgiN PAOEuuiiiiiiii s 274
PaSSWOIA fIEIUS ... 274
OWN POSt IN NOMETEEA.eeiii i e e eaaeees 274
[(0 11T o ox (1 =S 275
4] =T = [£ S 275

0 [0 ==V -V o R
ClENt Ul .o 275
Y = LU I3 VST (=] 1 PP 276
USEI SEIVICE ...t 277

(@0 o [P PPPPPPPPPPPPP

File SIrUCLUIE dIAgIamu e e e e e e e e et s e e e e e e e e eaaaa e e eeeeeeeennnnns
YT Y] TP 278
ClIBNT e 279

TECNNIQUES ...ttt e e ettt e e e e e e e e e e e e et e e e e e e e e e e aesaa e e e eaaaees
Y o o 111 0 1. 1P 280

1L 0 [T o3 0 0] o P PRPPPPRSPPP
YT Y] TP 284

T V] 100) SR 284
handler/handler.Py ... 284
handler/oUutgoiNGg.PY.......ooevuiuiiiie e 285
NANAIEITASKS.PY ..eeeeeeeeeee e 285
(U ET=T 7A 0 0T o)V 285
(Y=t g oTo] a1 (= g1 1 o) V28OS 286
USEI/JENEIALE.PY ...ttt e et e e e e e e et e e e e e e e e et eaeeaaes 286
SEAM/STANT. PY ..o e e e e e 286

{oTo o [1g e A oTe o 11 e N o)V PSPPSR 286

Jack Leverett 7714 50639

Jack Leverett 7714 50639
AtA/CONTIG.PY -ttt 287
data/database. Pyuuuuuiuiiiiiiiii 287
ata/dAtElIME.PY ...ttt 287
OALA/SSS.CP -tvvvvrrrrtrrtitttttttitbbtee bbb 287
AULN/AUTN.PY Lo 287
algorithmsS/TECOMENT.PY ...uvvriiiiiiiiiiiiiiiii e 287
algorithms/NASN.CPP ...vvvviiiiiiiiiiii e 287
AlgOrtNMS/UUIA.PY ..t 287

@4 1T o | U USRPRTPP 288
AT 1T o)V PP PPPPPPPPPPI 288
0174 oT=ToT o1=T o TN QY PP PPPPPPPPPP 288
SESSION/SESSION.PY ..ttt 288
SESSION/IIME.PY vttt 289
handler/iNfO.PY.......coooiii 289
handler/reqUESL.PYoooviiiiiii e 289

0o [PSS 290

Y] Y= SRR 290
AT 1T T o) VPP PPPPPPPTPP 290
modules/algorithms/hash.Cpp.........cooiiieeeee, 301
modules/algorithmMS/UNIV.PYoovvviiiiiiiiiieeeeeeeeeeeeeee 302
modules/algorithms/UUid.PY..........ccoovviiiiiiiiiiiiieeeeeeeeeee 303
modules/algorithms/recommeNnd.pycoovvviiiiiiiiiiiiiiiiiieiiiiieeeeeeeeeeeeee 305
Modules/auth/auth.PYuueeiiii e 309
MOodules/data/CoNfig.PY «.eeeeereriii e 316
modules/data/database.Pycooeeeeiieeeiiiiie e 318
modules/data/datetime.PYccovieeeiieeeieie e e 333
MOAUIES/AAtA/SSS.CPP «eveevrrrrniiieeeeeeeeeii e e e e e e e et e e e e e e e e e e eaaes 336
modules/handler/handler.py ..o 344
modules/handler/OUtgoOiNg.PYccevveeeiiiiii e 368
modules/handler/taskS.PYo 369
MOAUIES/STArt/STArt.PY ..ceeeeveieee e 371
paToTe [U11=XSY i 2= Tod 104 [oTe o 1o TN o) V20 372
MOAUIES/USEI/CONIENT.PY ..vvveiiii e 374
MOAUIES/USEI/GENEIALE.PY ..uvueiieeeeeeeeeeitee e e et e e e e e e e 400
MOAUIES/USEIINFO.PY ..o e 402
(0 [oT03 (] 1= 419
Docs/’Guide to encrypting the database.md’................ocooovririiiiiinnneen, 419

Gl BN e 421
T V] 100) SR 421
modules/handler/iNfO.PYcoiii i 474
modules/handler/reqUESTL.PYcceiiieeeiiiie e 475
MOdUIES/SESSION/SESSION.PY. ... eeiiiieeiiiie et e e e e e e a77
MOAUIES/SESSION/IIME.PY .evvvriieie et 480
MOdUIES/UIIDEOPEN.KV ... 482
data/assetS/NeIP.IXEuei i 515

Y o] o L= 2 o [PSSR 525

(€017 T OO URSPPPPRPRPP 526

Jack Leverett 7714 50639

Analysis

Background to the project

What is BeReal?

BeReal is a new social media platform based around the idea of taking a single picture a
day. You can be prompted to take the picture at any random point. It is supposed to give a
real insight into what someone is doing day-to-day. This presents a very different kind of
social media that gives people an un-altered view into their friends’ lives.

It's considered to be a healthier kind of social media; it doesn’t allow fabrication and stops
users from so called “doom scrolling”. Doom scrolling is where users endlessly scroll
without purpose through seemingly endless content. BeReal doesn’t allow this since there
is only 1 post per person. This has also made it a fairly distraction free social media, most
people will only look at it once a day for a brief amount of time at most.

Why do companies need a social media platform?

In the modern-day companies are constantly striving for a more engaged workforce. With
the rise of technology and in recent times Al many jobs are being made obsolete. The
workforce now has to be more connected and creative than ever; good communication
and positive workplace relationships enable this.

Having a platform that acts similarly to BeReal, would promote friendly communication in
the modern workplace, which intern allows for better collaboration and overall better work
from all employees. Big players have noticed this too, Microsoft now include a social
media platform in their office 365 suite. This productivity suite is the most popular in the
world and its adoption of a sovereign social media platform shows there is a market for a
better way to engage employees.

Modern companies also face the challenge of maintaining a workplace culture while many
employees work from home. For these employees all their interactions will happen entirely
over video platforms such as teams, and since these meetings are often set-up with a
purpose in mind, have almost no time to connect with their co-workers. A system similar to
BeReal could inspire conversation and communication between these work from home
employees and their co-workers. This can vastly improve communication and so lead to
better teamwork.

The BeReal model is ideal for companies since it can inspire this conversation and
connection while keeping distractions to a minimum. An employee can't get distracted for
hours when there is only a handful of posts to see.

Jack Leverett 7714 50639

Current System

BeReal

As explained above BeReal involves everyone getting a randomised notification once per
day to take a picture. You are given a 2-minute interval to take this picture in, however, if
missed, you don’t lose out on the post instead your post is simply marked as being late.

After a post has been created users can comment and react on their friends’ posts, as they
appear in the users’ feed. A user’s post will remain public until the next day when a new
one is created. Old posts are put into a different section and only viewable to the user
themselves, here they can see the date each photo was taken as well as a preview.

Friend requests must be sent by one person and then accepted by the other. This means
the only posts that appear on your feed will be posts from friends rather than people you
“follow” or from “recommended posts”.

Yammer

This is currently one of the few (if not only) intra-organisational social media solution. It
acts like other forum or “community” based social media (reddit etc). Users from within the
organisation can create “communities” and invite or allow other users from the
organisation to join. From within the community, they can create posts, polls and
announcements.

Whoever created the community has complete control over it as the community
“administrator”. They can also promote and remove members from the community. A user
can join as many communities as they want and add friends from across their
organisation.

The Problem with BeReal

For a company to have its own BeReal-like social platform, typically, they would have to
rely on 3" party-hosting, support, and moderation in the form of BeReal. Relying on a 3"
party for a service such as this has several implications.

Control

A company using the BeReal platform would likely be worried about the possibility of
confidential data accidentally being posted by a user. Or one of their employees posting
something that violated the companies code of conduct. This could result in the company
wanting to take actions to remove said post to stop further damages both monetary and to
the company’s reputation.

However, all moderation and rules are created and enforced by BeReal themselves. If the
company needs to remove a post from one of its employees, they would have to raise an

Jack Leverett 7714 50639

appeal with BeReal, but there is good chance that a certain post could breach the
companies code of conduct but not BeReal’s and in this situation the company has no
power and the post will remain up.

Shut Down

In the case BeReal shuts down, the organisation using their social media loses all access
to the service. So due to forces outside of their control they lose access to a platform that
could become essential to their workplace culture. BeReal shutting down seems like an
unlikely scenario but as BeReal currently has no monetisation, and there has been large
recession within the technology market since the peak of COVID-19 it's not entirely
outlandish to see BeReal having a short lifespan.

Features

BeReal also lacks a few features and settings that would be essential for a platform like
this to work within a company. For instance, a company would likely want to make sure the
daily post goes off within certain times of the day to not disturb employees during
weekends or the evening. Larger organisations will also have a number of large teams,
departments and even sites. In cases like this, employees likely don’t want to see posts
from someone who they never have or ever will meet. BeReal only has a simplistic friend
system meaning employees can’t be organised into their teams without each user
manually friending and un-friending people as departments grow/shrink. This also doesn’t
allow users to switch their feed to be from a specific team, some employees may play a
role in a number of departments and so not being able to organise their feed into separate
teams could make their feeds completely irrelevant to them.

Security

Additionally due to organisations having no way to remove posts quickly and effectively,
members who unwittingly capture confidential or sensitive information in the background of
one of their posts could put company and individual security at risk. This has already been
occurring as stated in this article:

https://www.worklife.news/technology/bereal-workplace/

To summarise, security experts have warned of the privacy implications that BeReal brings
to the employee and customers of a business. If an image is shared that contains
confidential information it could lead to potential data breaches and security incidents.
Beyond security it could put the innocent employees at risk if they don’t want themselves
posted on social media without proper consent.

Once something has been put out on a platform it is out of the control of the people who
use it, content becomes almost impossible to remove.

https://www.worklife.news/technology/bereal-workplace/

Jack Leverett 7714 50639

The Problem with Yammer

Currently an organisation looking for a social media platform is only left with the choice of
yammer (viva engage). However, many system administrators have reported several
moderation problems. For instance members have been “treating the platform like their
personal Facebook”. Many organisations (including our school) have had to disable it
entirely due to these moderation issues.

Bored employees given access to a mandated social media are likely to make multiple
posts a day, wasting huge amounts of time and energy. Yammer being connected with
Microsoft 365 also means communities generate huge amounts of notifications for every
user. This can fill someone’s inbox and get in the way of actual work.

System admins response
One system admin commenting on this Reddit post:

https://www.reddit.com/r/sysadmin/comments/7ymxwg/anyone_using_yammer/

“within two days was people sharing memes, posting gifs, and basically shitposting all over
the place... One month in, people are still using it like Facebook. We have a bit of a joke in
IT, a bet if you will, on how long Yammer will last in our organization. I'm guessing 8
months before they pull the plug.”

This highlights how Yammer’s no limit approach to content creation from each user has
sent IT personal to the frontlines of content moderation. Unable to fully tackle the tide of
content that just a few users can post. Another admin said their small organisation had to
designate:

“two or three admins (usually site HR being one) that are keepers of the page”
Another said:
“And no one wants to hire someone just to be the full time Yammer police”

All this shows how the no limit approach is overwhelming for small organisations.
Additionally, only having Admin staff able moderate and remove content puts great load on
a small subset of people. If the responsibility was shared among mangers to handle their
own teams, then the content would be moderated more diligently.

Many organisations have subsequently had to turn off the feature of office 365 and settle
for nothing. The small social organisation market has no practical platform to both engage
employees and provides the tools to properly moderate the content. This has left a huge
hole in the market, which has yet to be addressed.

10

https://www.reddit.com/r/sysadmin/comments/7ymxwg/anyone_using_yammer/

Jack Leverett 7714 50639

Prospective Users

Organisation members

Who are they?

This is the main user base of the platform. These people expect the platform to run
smoothly without a hitch. They also expect the system to be configured and moderated
correctly by managers and admins.

How will they use the system?

Creating posts: Upon receiving their once-a-day notification these users will be
encouraged to capture whatever they are doing in the moment.

Viewing and interacting with their team’s posts: Once they have made (or missed)
their post, team members will be able to like and interact with posts within their team. The
number of likes will be viewable while comments give members the chance to engage with
each other.

Editing their profile: Users will be able to choose what information they have displayed
on their profile. This can be email, name, phone number, job role etc. This information may
need to be changed and altered as time goes on and so its essential users are given the
ability to change all of this.

Managers/Heads of departments

Who are they?

These are the heads of departments and managers of groups of employees. These people
are liable for the actions of their team, this means they will be responsible for their team’s
content and use of the platform.

How will they use the system?

Moderating user content: They will need to be able to remove posts, comments and
other content. They will also need to enforce their workplaces codes of conduct and
resolve disputes. The key part here is they should only be able to enforce these powers
within their team.

Managing different “departments”: These users will also want to be able to manage
who is in their team removing and adding employees as departments change size.

11

Jack Leverett 7714 50639

Admins
Who are they?

These are the people who set-up the software. They will be in charge of keeping the
system working as well as modifying the different settings to suit the organisation needs. In
most organisation this role will be taken on by an IT specialist or system administrator.

How wiill they use the system?

User “roles” and team creation: Admins will oversee assigning the powers and initial
creation of teams. They will assign a team leader role to each one and from their allow the
person fulfilling this role to take over.

Instance settings: Every organisation will have different needs and wants of BeOpen.
Admins will have control over a number of server settings such as the time of day that
notifications will be sent out.

Security settings: Certain organisations require higher levels of security; these admins
will also be in charge of configuring that. For instance, how long until users will have to re-
login? How secure should passwords be? Should users require a special code to register?

Questionnaire / Interviews

1) What is your organizations current way of communicating/maintaining relationships
with work from home employees?

Prospective user 1:

“Currently, Teams - How ever it is seldom used and is incredibly one sided as organisers
have majority of the control and i have even been in teams were messages from lower
ranked people were only able to reply to the higher-ups”

Prospective user 2:

“Bright HR, whatsapp”

2) What benefits and problems are there with your organizations current system?

Prospective user 1:

“The file sharing elements of Teams is really inconsistent and often breaks/doesn't save.
Benefit, a (slightly) more casual comms method than email and is easier to include
multiple people”

Prospective user 2:

12

Jack Leverett 7714 50639

“Benefits: Its an app that almost everyone has anyway, | can use it for more than just work,
Its simple. Problems: Lots of bugs, Boring”

3) What functions would a social media for organizations need to make it
sustainable/usable?

Prospective user 1:

“Open 2 way comms Easy direct comms if needed Casual atmosphere - important things
are harder to bring up if everyone is tense”

Prospective user 2:

“It would need to function as a benefit to the workplace environment, and hopefully
increase workplace productivity.”

4) What problems could arise out of a work place social media and how could they be
addressed?

Prospective user 1:

“Social media becomes a distraction if it lets people use it to often so a way of limiting that
would benefit productivity”

Prospective user 2:

“HR Problems with inappropriate workplace posts. Would need a moderator/team of
moderators.”

5) What do you feel could be the best way of limiting distractions from a social media
platform like this?

Prospective user 1:

“You could make it so there is a limited amount of comments or screentime. Another way
would be limiting people to only being able to follow people in their department”

Prospective user 2:

“Screentime”

13

Jack Leverett 7714 50639

Diagrams
BeReal flow diagram

The users post is made

User gets a
ofification to make
a post

ome fext is added above their
post stating how late

he user can view)|

ey like/comment on their friends posts
friends posts

Users post
appears on their

friends feed

Stop

14

Jack Leverett 7714 50639

Yammer flow diagram

Take/upload
image

Yes

,_'1ﬁ
Mo— Create post l

Include imags?

Other users User interactions

content {likes, comments etc) Saved to server

Sorted by
relevance and
added o
webinterface

View homepage

viewed post Final

viewed/created
post?

Mo

15

Stop

Jack Leverett

Yammer level 0 DFD

Users
—

User

Matification about
how they hawve beel
punished

Restrictions,
bans placed
on user

Yammer level 1 DFD

Restrictions! penalties

7714

Posts and other content——,

Other uses content and
web interface

Create

'y

A—[Delete content

50639

Admin -:la,shbcuards__‘
and tools

Admins

homefeed

Submit post

Post content

Maotifications about
inappropriate content

Posts, comments,
reactions etc

Database

Delete/edit user content

Admin

Shows simplistic insight into the yammer system itself how posts are submitted and added
to the database as well as how home feeds are created and presented to the user

16

Jack Leverett 7714

Mew content in relevant groups.

50639

Image URL

Generate
homefeed

Storage l——Image

Webpage
Save post
content

into its
relevant
. Receive user group Image URL
User —Uploads image/content content
Database

Content

Filtered content

Automatic
content filters

Content filters

Content filters

Alters about
problematic content

¥

Admins

Yammer level 2 DFD

More detail into the “submit post” process and how images are saved and fetched for

home-feed generation. Shows how images attached to text posts are actually saved and
assigned a URL and that URL is then kept in a database along with other data about the
post. It also shows a more in-depth look at how Admins can create filters and limit users.

17

Jack Leverett 7714 50639

User Requirements

Must

Limit the number of posts a user can create within a day for instance limit it to one
post a day.

Send out a single notification at a random point in a day, to prompt all users to
create a post.

Place a time constraint on the users post, if a post is not created within 5 minutes of
the notification remove that user’s ability to post for the day.

Allows users to log into existing accounts and register new accounts as needed.

The assigning of different user levels based on the users position in the
organisation. These different levels can give users access to functions and
moderation tools.

The creation of different teams and appointing of team leaders who will have
superior management tools, to moderate their team’s posts.

Implement a friend system, where people can send friend requests and the
recipient can either accept or reject said friend request.

Each user has a profile with a number of different fields that can be edited by them,
like bio, name, contact information, team role, etc

Provide an easy to use and accessible mobile GUI for android as well as allowing
user to take pictures via the app for their post.

Should

18

Utilise a custom hash and UUID algorithm to reduce risk of malicious code being
side loaded from 3 party dependencies.

Have a settings page with a number of options that should be saved to a local
database.

Have a team and organisation page where managers and administrators can create
new occupations and view other teams.

Create an algorithm for friend recommendations to users, these recommendations
could use a form of searching algorithm and point system to try and gather relevant
people on a number of factors and recommend friend requests to such users.

Jack Leverett 7714 50639

e Implement a notification service like Unified push (ntfy) or other API to allow real
time notifications.

Could

e Create an algorithm to allow sorting home-feeds by relevance to the user. This
could be dictated by matching up factors such as common friends, likes, comments
and average number of post interactions

e Allow the organisation to customize a number of security features and rules.

e Allow database encryption for extra security including a Shamir secret sharing
backup method for the encryption key

e Provide a section of the app dedicated to different stats about the users’ teams.
Providing leader boards and graphs of consistency.

e Limit screen time for users and make the amount of time customizable by Admins.
Won’t

e Create an app for IOS devices or MacOS devices.

e Integrate multiple different notification APIs or services.

e Allows users to attach posts from an external source (like their camera roll)

e Allow users to create or add a profile picture.

19

Jack Leverett 7714 50639

Objectives

20

1)

2)

3)

4)

5)

6)

7

8)

9)

Each of a user’s posts will contain an image taken using the BeOpen app which
they took within the time frame provided by the service, along with an optional
caption.

The system will prompt users to create a new post within a given time frame once
per day. They will be prompted with a notification through the app, notifying them
when they can first create a post and when they missed the time window.

Allow administrators to change several different security settings, such as the how
long authentication tokens are valid for.

Creation of teams and the sorting of members into teams relevant to the member.
This sorting is done by associating all people with the same occupation into a single
team.

Teams should have an appointed “team leader” this person will have the access to
tools to allowing them to moderate content and users (delete posts, comments or
remove users) within their team.

Users should be able to accept and send friend requests to allow them to see posts
from individual users who can be both internal or external to the users team.

Users should be able to like and comment on other user’s posts. These other posts
can originate from their team or from a friend. Comments should also be able to be
liked, by other users. There should be a total likes counter displayed on posts and
comments.

The BeOpen server should maintain well detailed logs of both user activity and
server functionality. These logs should be accessible via any deployment method
including container systems like docker.

Users should be able to customize certain features of their profile, for instance their
legal name and role in the company. This information will be visible to anyone who
clicks on their username.

10) Each user should have a username and password combination that they can use

to login to their organization BeOpen instance. The client should also have the
ability to store login tokens which can be used for automatic authentication.

Jack Leverett 7714 50639

Design

Overview

Friends

The system has 2 main ways for a user to make social connections, through their team
and their friends. A friend connection is formed when a user sends a “friend request” to
one user and it is accepted. Friends will be able to see each other’s posts on their home
feed.

Teams and Occupations

A user joins a team by setting their occupation. A users occupation connects them to a
team which is managed by assigned “team leaders” who have special permissions to
delete content made by the members of that team. Users can change their occupation by
creating an “occupation change request” via their profile page. Then management or an
admin can accept or reject a change request.

For example, a school might setup a few occupations 2 of which are “maths teacher” and
“computing teacher” each of these occupations will have an associated team named
“maths teacher’s” and “computing teacher’s” by default (the name of a team can be
changed and therefor different to the name of the occupation associated with it). If Mrs
Nolan was currently a maths teacher but is changing profession and becoming a
computing teacher, she can make an occupation change request to “computing teacher”.
Once approved by management, for instance the headteacher, Mrs Nolan will change
occupation and her new team would be “computing teacher’s” and so would start receiving
posts from said team, as well as Mrs Nolan’s posts being received by all others in said
team.

Posts and comments

A user can post once per day within the timeslot. The time slot for any given day is
generated at the start of the day, it will pick a (by default) 5-minute slot at a random point in
the day to allow users to post. Users are sent a notification of when this is using the “ntfy”
implementation of “unified push” a push notification protocol that works across all devices.
It also uses an internal notification system for when you’re on the app itself.

Posts contain 2 pieces of content an image taken within the given 5 minutes, and a caption
also written in these 5 minutes. The user on the client will be prompted to take a picture
using their devices camera, they are allowed to retake the photo if it is within the time limit.
Then they can add a caption and click the “post” button. Once the post is on the server it
cannot be edited, however it can be deleted by the user.

Once posted the users friends and team will be able to see their post in their own home
feeds. From there each user can like and comment on the post.

Comments can be submitted to a post at any time. Each comment can also be liked itself.

The rules for who is privileged to delete a piece of content:

21

Jack Leverett 7714 50639

¢ If the content was made by the user themselves

e The user attempting to delete the content is the team leader of the user who
created the content.

e The user attempting to delete the content is management or an admin.

Memories

A user can view all their previous posts from the “memories” page. Here they can select a
year, month and a day, which will then show them the post made on that day. If a post
wasn’t made on a particular day the date won'’t appear in the list.

When viewing an old post, you are still able to delete, and view comments from said post.
You are also able to still like both the post and comments underneath.

Client-Server

The system uses a client-server model, the idea is, each organisation would run their own
server for maximum sovereignty. The server will be designed to do most of the heavy
processing and all data storage, for the clients who will act as thin clients only really
managing how the data fetched from the server is displayed on the UI.

Connection

The server and client use the web-socket protocol to exchange information, this can utilise
HTTP or HTTPS and can run on all modern devices. This protocol was chosen since it
allows for the server to issue real time updates to the client without the client having to
setup background tasks to update its UI.

Server

Configuration

The server auto-generates a configuration file that is stored in the server’s “data” directory.
It utilises an INI format for ease of use even by inexperienced admins. This configuration
file allows organisation admins to adjust security features, post time constrains and
database adjustments (a full list of configurations is below). Overall, the configuration file
makes adjusting settings on the server easy for any semi-competent admin.

~onfi . . l
Authorisation
Name Default Description
value
AdminKey Randomly |The secret used to allow admin registration (generally
generated |only used to add the first admin to the server)
string

RegistrationKey Randomly |The secret used to restrict registration to people within
generated |the organisation, if publicly known anyone (even outside
string the organisation) could make an account

22

Jack Leverett

UsernameMaxLeng |20

th

7714

The maximum string length of a username

50639

UsernameMinLengt |5
h

The minimum string length of a username

PasswordMaxLeng |30

th

The maximum string length of a password

PasswordMinLengt |5
h

The minimum string length of a password

TokenExpiryTime

2592000
(30 days)

The time to expire on a authorisation token in seconds

Database

Name

Default value

Description

Path

data/database.db

The file path to the database from the
main.py file

Encrypt

false

Whether to encrypt the database or
not. Can be enabled even after initial
creation of the database.

ShamirSecretSharing

false

Can only be enabled if the encrpt is
enabled. This enables the creation of
shamir secret shares, their use is
explained the in configuration and
administration documentation and in
the security section of this write up.

NumberOfShares

This is the number of shares that will
be generated if ShamirSecretSharing is
enabled.

MinimumShares

This is the minimum number of shares
needed to decrypt the database and
deconstruct the master key if Shamir
secret sharing is enabled.

KeyPath

data/key.txt

This is the path of the file holding the
actual encryption key used to encrypt
the database, if encrypt is enabled.

EncryptedPath

data/.cryptdatabase.db

The path of the encrypted database, if
database encryption is enabled.

23

Jack Leverett

7714

50639

EncryptionConfigPath

data/encrpytconfig.txt | The path for the encryption

is enabled.

configuration file used when database
encryption is first set up. Currently this
file only contains the master password
to be used. Only relevant if encryption

SaltPath

data/.salt.txt

password when generating the

enabled.

The salt which is added to the master

encryption key for encryption of the
key.txt file. Only relevant if encryption is

SharesPath

data/shares/

are placed after they have been
generated. This path must be

reading and editing. This is only

enabled.

accessible to the administrator for

The directory where the share text files

relevant if Shamir secret sharing is

User

Name

Default value

Description

DefaultLevel

Member

The default authorisation level of a newly

registered user, So either: Member, Manager or

Admin

DefaultOccupationID

Null

The default occupation of a newly registered
user, you assign it using the occupation_id of the

occupation

Posts

Name Default value

Description

PostTimeLimit | 5

The time limit after the post slot starts for users to be
able to post in minutes.

24

Jack Leverett 7714 50639

Notifications

Name Default value Description

DefaultExpireTime | 604800 (7 days) The default time that a notification
expires after if not set manually when the
notification is created. The unit is
seconds

ntfyUrl https://ntfy.example.com | The URL leading to the organisations ntfy
instance. See the notifications section of
the write up to learn about how ntfy

works.
Miscellaneous
Name Default value Description
ServerCode | Randomly A prefix used for certain commands the client can

Generated String | issue and notifications that the client may receive.
Generally is used in special cases such as for
system notifications that shouldn’t be displayed to
the user.

Events, logging and development

The client communicates with the server and activates certain functions by calling
“events”. These all have a standard naming scheme and have a standard way of both
receiving data and outputting information.

All data in is sent as one dictionary. The key of the dictionary should correspond to input
data such as “username” or “post_id". The client can also define what data it wishes to
receive back more specificity by specifying an “items” list. Your typical input dictionary may
look like this:

data = {'username’: “James”, ‘date’: “19-12-22", ‘items’: [‘post_id", “date”]}

The inputs are managed carefully through use of class properties on the server side.
These act as an interface for user input but validating data is in a non-malicious form then
testing to see if data (such as a username) exists in the database.

The inputs will also assume a few default values even if nothing is provided. For instance,
when getting a post, a client can send no inputs, the server will assume they are referring
to themselves (no need to specify your own username) and that you want today's post (no
need to specify date) it also assumes you want all the available information about said
post (no need to specify what information you want).

25

https://ntfy.example.com/

Jack Leverett 7714 50639

The inputs are setup this way to make for an easy and intuitive developer experience and
make the server resistant to malicious inputs. This means a programmer going to develop
a custom client (perhaps to make it more accessible to those with visual impairments)
don’t have to spend lots of time reading documentation for what inputs they need to
provide to the server to get the needed data.

Another example of this intuitive design is in the team’s information. To get information
(say the name) of a team the server needs a team_id to make the SQL query. So, the
client can either provide the specific team_id, the occupation_id, the username of a user in
said team or no information at all (if the logged in user is in the team wanted). The idea is,
if the data can be correlated to the specific ID needed it will be and so can be used by a
client developer.

The events also follow a standard naming scheme. An event will generally start with what
data you are targeting for instance profile, post, or team. Followed by get, set, or delete.
Often there are additional nuances such as friend_delete_request, to delete a friend
request. Overall, the base get, set and delete can be used with almost all data types and
again make for an easier developer experience, although granted some more nuanced
functions may need to be looked up in the documentation.

The server also uses a system of “status messages” which indicate the success, failure or
potential problem with any event called. Each status message is received by an event on
the client side and contains 3 pieces of information.

e Time — Adate and (human readable) timestamp of when the status message was
created.

e Level — Either INFO, WARN or FAIL. Indicates the general idea of the status.

e Message — A more specific message about exactly what went on for instance
“Post(s) successfully fetched” or “Post couldn't be created invalid, or no data
provided”.

Each status message is also recorded in a sever side actionslog.txt file this log records
both the status, event being called and the user_id of the user calling the event. This can
be very helpful at debugging a complex issue caused by scale of users. Status messages
can also be used as messages to the user themselves to assure an action had an effect in
times where the Ul can’t provide a clear answer. Status messages will also be used by
client developers to enable them to debug without opening the server log.

Status

To keep active communication with the client as easy as possible, creating status
messages is also easy. The clients access all events through the “handler” classes, these
classes all inherit from a root class and call their private methods through the “root
handler”. This root handler also creates the status message interface object.

The status system is made up of 3 classes, a “log” class which enables the basic

functionality of log messages and formatting and so is the parent class of the other 2. The
next class is called “status_interface”, this acts as an interface which holds some technical

26

Jack Leverett 7714 50639

data about routing the status message and attaching some metadata, it also stores status
messages on a secondary server log called the “actions log”. The 3" part of the system is
the “status” class, this is the class which status messages are made from. It takes 3
initialisation arguments: The status level, the status message, and the status interface.
This status interface is passed as an object of the status_interface class.

Why | mentioned the structure of the handlers earlier is because the root handler method
defines a status interface and subsequently adds it as an attribute called “statface”. This is
assigned as an attribute of the table class being used as well as an attribute of the handler.
This means at any point in either the table class or the handler’s, creating and sending a
new status message is as simple as:

status(“INFO”, “This is a standard status message”, self.staface)

Everything else is left to be automated by the status class and status interface. Originally
the status class was coded without an interface, and it required 6 init arguments and 2
method calls just to send a status message. This newer system allows for simple status
message creation throughout the entire user facing code.

Notifications

As briefly mentioned before, for client notifications | have used “ntfy” which is an
implementation of Unified push. This is a set of open standards used for push notifications
and is compatible with all devices, see appendix for link. “ntfy” is a server application that |
would recommend running on the same server as the BeOpen instance. Its very easy to
setup through the docker container and can be up and running within a couple minutes.
This keeps to the base objectives of BeOpen the first of them being that its sovereign.

Ntfy was chosen over any other system because of its sovereignty to the organization. If
the organization is already willing to host their own social media platform a lightweight
notification system isn’'t much more of a stretch. Its also platform agnostic, it can work
across both desktop and mobile. This has the advantage of not having to collect telemetry
from clients just to send them a notification.

The only downside to using ntfy is the users must (if on mobile) download the ntfy app
alongside BeOpen. The first-time login page instructs a user to do this and displays to
them their “topic” name. A ntfy “topic” is essentially a notification stream, is someone
knows the exact resource location of a topic they can also receive all the natifications. This
is not a security flaw though since obscuring the topic names is easy, in my system topics
are simply called “<username>-<first 8 characters of user_id>". For example, if your
username is “john” your notification topic is called: “john-a52b2jk8”. The chances of this
topic being guessed and the fact that no sensitive information is enclosed in notifications
means that this security is considered plenty. Element (an open source end-to-end
encrypted messaging app) also uses ntfy for their notifications in this very fashion and
consider it more than secure.

27

Jack Leverett 7714 50639

On desktop these notifications will be received after logging into and allowing notifications
from the organisations respective ntfy site.

So overall for ease of development, security and sovereignty ntfy and the Unified Push
protocol as a whole was an ideal solution for client native notifications. However the “in
app” notifications are still available and use BeOpen’s web sockets for sending and
receiving.

Distribution and Hardware support

Client
Android

On android apps can only be run if coded in Java or Kotlin and are packaged into APKs.
However, it is possible to “translate” python code into an executable APK that can be run
on an android phone. This was the main reason for picking Kivy as the Ul library since it
supported all platforms and is a sister project to “Buildozer” and “Pyjanus”. Buildozer is
used to package python into APKs. Pyjanus is a python library for interacting with the
Android API for things like the camera. Luckily, | personally don’t need to interact with
Pyjanus since Kivy handles that. The only thing in the app that does need me to consider
what platform I'm on is accessing the filesystem. This is as simple as importing the app
path from the python android library, and making sure to use this “root path” anytime |
interact with the filesystem.

Desktop

As said before Kivy is cross platform and so the only difference between the desktop and
android client is how they interact with the filesystem. In terms of the Ul, they are identical.
This makes for an easier user experience since they won't have to re-learn the Ul. The
desktop version can be packaged into a .exe for windows using “auto-py-to-exe”, and into
a flatpack using the “flatpack-builder” for use on (most) modern Linux distributions.

| did successfully package my application using both tools for Windows and Linux. | did not
package a program for MacOS, (despite the python and Ul libraries being fully
compatible), since | have no way of testing the package once done. Additionally packaging
for MacOS or IOS is near impossible on a non-apple platform.

10S

IOS apps can only be compiled using a MacOS system. | do not have access to a MacOS
system and so was unable to compile an application for IOS. Additionally, 10S lacks
sideloading and requires a payment to apple to publish apps on the app store.

Theoretically though the client can be compiled and used for I0S, however | have no way
of testing its performance and | haven't attempted to implement platform specifics (such as
camera access, image saving, or database storage).

28

Jack Leverett 7714 50639

Server

In both cases the cases below, there should be plenty of storage space available to the
server. Since the server stores images, the server’s data can start to take up a large
amount of room depending on the scale of the organisation it is deployed to.

Bare-metal deployment

The python main file and the modules directory containing the imports can be run on bare
metal. This should work on windows (untested) and works on Linux. Additionally on a
Linux platform you can turn the running of the python scripts into a background systemd
process. It should also be noted that a bare metal deployment could be unstable since it
will have to utilise the host OS python install which (if modified) could cause the server to
break or crash. A requirements.txt is included with the server files but an auto-installer is
not. This means for an admin to set up a bare metal deployment they would have to
manually download all files and folders into a suitable section of the filesystem with the
correct write permissions. They would also have to manually install the correct python
packages and versions. For these reasons a bare metal deployment is not recommended
as its harder to setup, harder to maintain and less secure.

Docker deployment

A docker container is also available for distribution which makes running the server on any
platform relatively simple. This docker container may be Linux exclusive however since the
Windows version of docker is still limited in its capabilities. This was done using a
DockerFile and so can be run using docker-compose, it is supposed to be run with a
shared “./data” volume to allow administrators to configure the config file and have access
to the logs. However, docker also supports the output of the log using

docker container <container-name> log

The docker-compose (or docker run command) should expose the port 9999, or if using a
reverse proxy exposing 9999 as a virtual port. The port to be exposed can be configured
however using the config file.

Docker also provides some security advantages as well, since the server is running in a
containerised section on a slimmed down OS (alpine) there is limited attack surface when
compared to a bare metal server potentially running multiple applications. In these ways
the BeOpen server is at less risk of being compromised but additionally containerising
BeOpen can prevent a server being compromised via BeOpen. Since the attacker first
must compromise BeOpen, then the docker OS and then somehow escape the container
to compromise the host OS.

Overall docker deployment is recommended over bare metal for improved security, ease of
use, stability and re-producibility.

29

Jack Leverett 7714 50639

Deployment test

| tested both a bare-metal deployment and docker deployment on my raspberry-pi 4. Both
times the system was being routed through a nginx reverse proxy that also enabled
HTTPS, receiving certificates via LetsEncrypt. BeOpen was utilising port 9999 in both
cases. | utilised my own domain, in this document ill refer to my domain as
“mydomain.com” for security reasons, so the service was being hosted at
“https://beopen.mydomain.com”. To test the functionality of the server | used a client
running on my laptop.

Below are some screenshots of an SSH session (into a raspberry-pi) showing the logs of
the docker container and a BeOpen client, which is connected.

C @ OO0 OO0 7Jan 20:21
.}

DEBUG: starting socketio client...

DEBUG: Connecting with url http://localhost:9999

DEBUG: connection error

DEGUB: socketio client failed to connect!

DEBUG: starting socketio client...

DEBUG: Connecting with url https://beopen.glowiescloud.com

DEBUG: Connected! BeOpen
DEBUG: socketio client online!
2024-81-07720:21:11Z | FAIL | invalid token
2024-01-07720:21:112Z FAIL invalid token
2024-01-07720:21:117 FAIL invalid token
2024-01-07720:21:11Z | FAIL | invalid token
2024-01-07720:21:11Z FAIL invalid token
2024-01-07720:21:117 FAIL invalid token
2024-01-07720:21:11Z | FAIL | invalid token
2024-01-07720:21:11Z INFO valid token
2024-81-07720:21:11Z | FAIL | invalid token

Attaching to beopen_beopen_1
2024-01-07720:20:16Z

| INFO | Ensuring server directories
2024-01-07720:20:16Z | INFO | Ensuring database
2024-01-07720:20:16Z | INFO | Ensuring config file
2024-01-07720:20:16Z | INFO | Config already exists
2024-01-07720:20:16Z | INFO Generating time slot for 2024-01-08
(1) wsgi starting up on http://0.9.0.0:9999
2024-01-07720:20:17Z | INFO | Starting server background service
day start: 1704585600.0
day end: 1704671999.0
(1) accepted ('172.18.0.7', 51704)
77.102.15.88,172.18.8.7 - - [@7/Jan/2024 20:21:11] "GET /socket. io/?transport=polling&EIO0=4&t=170465887@.8699257 HTTP/1.1" 280 273 @.

(1) accepted ('172.18.0.7', 51712)
2024-01-07T20:21:11Z | INFO | client gsHWTAhCOITSntl 1AAAR connected

2024-01-07720:21:11Z | INFO | Startin ~ . 16pale3a
0@ EBO® v

L/ = 1 [tmux] - @ 2 python3 2024-01-07 { 20:21

30

Jack Leverett 7714 50639

Security

Levels

The systems security is mainly managed using “levels”. The 3 levels are listed in the table
below (all levels below presume you are not a team leader):

Name Description

Member The basic level, users are assigned this level by default and most never
change. Permissions allow you to delete your own content and your own
content only. You can view friends posts and team members posts but
not allowed to view any posts from outside your team or friend group.
Additionally, occupation changes must be approved by a manager or
admin. Members can also not view, accept or reject occupation change
requests (they can view and cancel their own however).

Management | This level is designed for the upper management of an organisation.
Management has additional privileges for instance they are allowed to
delete any user’s content and can manage occupation change requests.
Consequently, managers do not need to create occupation change
requests but rather can just set their occupation (taking effect
immediately). Management can also edit/delete teams (names,
descriptions, and leaders)

Admin Admins have all the same permissions as management but with a few
additions:

The server supports admin’s ability to edit user profiles, posts and
comments however the client only supports admin’s ability to edit user
profiles.

Any client is allowed to connect to the server and on initial connection a client is given the
level None. Clients with this level only have access to a handful of miscellaneous events
and register. This allows for client-side registration and then once a client is logged in they
are assigned their respective level and from then on have access to all other events.

Team leaders

Any users of any level can be made into a team leader by an admin or management. The
user must be in the team they are being promoted to lead. Team leaders have additional
privileges over the posts and comments created by their team. Team leaders can delete
team members posts, comments, and impressions (however deleting impressions is not
supported on the client side).

31

Jack Leverett 7714 50639

Credential storing
A user is made up of 4 key bits of information:

e User ID — Arandomly generated Universally Unique Identifier (UUID) not fully
shared outside of the server.

e Username — A unique identifier (within the server instance) used by clients to
identify users.

e Password — Secret phrase or word kept by the user to keep their account secure.

As mentioned before user IDs are not shared outside of the server this is done to act
as a layer of obfuscation in case of a database leak, since the user ID is used
throughout the server to identify the user. When a client passes a username to the
server the server immediately converts it to a user ID using the “user_id” class.
Additionally, as will be explained next, the user ID is utilized to secure the passwords,
without the addition of corresponding user IDs a leak of all the database password
entries would be useless.

Passwords

A password is setup on account registration, once the registration data has been received
by the server and the data verification checks have taken place the password is first salted
using the freshly and secret (outside the server) user ID, which is appended to the end of
the string. Then using a custom hash algorithm (for additional obfuscation) the string is
hashed for storage and the variable is re-assigned to an empty string (to minimise the
damage of a ram dump attack).

Database encryption

The database itself can be encrypted at rest; this can be configured in the configuration
file. There are many options in the configuration file for changing the paths of certain files
etc, but the main options are “EncryptDatabase” (with can be true of false) and
“ShamirSecretSharing” (also true or false). The “Guide to encrypting the database”
(included as a markdown file) goes into detail about how to set up encryption of the
database, but I'll give a brief explanation here as well. The administrator provides a master
password in the encryptionconfig.txt (path of file can be changed). This password is then
used to encrypt a key.txt that stores the actual key that the database is encrypted with.
This master password is then deleted automatically from the server’s filesystem. If Shamir
Secret Sharing is also enabled, then using the values specified in the configuration for the
number of shares and minimum shares required the server will create several shares as
individual text files. If the correct number of shares are provided, the server can derive the
master password and decrypt the databases encryption key.

Essentially the administrator can have both a master password which can be used to
decrypt the database, or they can use a combination of the shares to decrypt the
database. Once the database is decrypted all the other events open up for use. But if a

32

Jack Leverett 7714 50639

server has encryption enabled the server will launch in “decrypt” mode where the only
event available is the “decrypt” event. All other event calls will return a status message
saying they are currently not available. Any active client can call the decrypt event even if
not logged in, but they still need to provide the correct credentials to unlock the database.
Additionally, once decrypted the client will still have to log in and by no means has no
further access to the database directly unless they have a terminal session on the server.

The Shamir secret shares can be used to distribute the master password, this system was
implemented as a “backup” method. Say the previous administrator with the master
password left the company or suddenly passed away the organisation would have no
access to the database and lose their social platform. The immediate solution to this many
might give is to simply tell lots of people the secret so that multiple people can use the
master password for decryption, but this simply widens the attack surface for social
engineering. This is the problem PayPal faced back in the early 2000s, | highly
recommend reading the blog post below:

https://max.levch.in/post/724289457144070144/shamir-secret-sharing-its-3am-paul-the-
head-of

Shamir secret sharing solves this problem in a very mathematical way (which I go over in
the algorithms section), here | will just go over how it works for the users. As said before if
enabled the server will generate a series of text files, each text file is a “share”, it is the
admins job to distribute these shares however they please and delete them from the
server. When these shares are generated, the admin can set the minimum amount
required to decrypt the database and the number of shares to be generated. What this
means is that say the minimum amount required to decrypt is set to 3 the administrator
can then generate 10 shares and hand them out to 10 people within the organization. If
any 3 of these people come together and enter their shares into the decrypt event, they
can decrypt the database. The essential idea is that an administrator can have the master
password but if for any reason they lose this password the trusted people who they gave
shares to can come together to decrypt the database and re-construct the master
password.

The database encryption scheme itself uses python’s cryptography library to generate a
“fement” key. Then the database’s raw bytes are read, encrypted and stored in another file
called “.cryptdatabase.db” (by default). This reading of raw bytes and using python’s
cryptography library manually was the preferred method for a few reasons. Firstly,
decreasing dependency on pip packages is a good idea since recently the python package
library has seen a rise in malicious code taking over repositories and being used to
distribute malware. Additionally, there are no good python libraries that support the
encryption of a SQLite database, every library which did exist has been deprecated or not
updated in 5+ years and so is not recommended for use. Thirdly it kept the code overhead
minimal, reading and writing raw bytes keeps the code simple and safe.

33

https://max.levch.in/post/724289457144070144/shamir-secret-sharing-its-3am-paul-the-head-of
https://max.levch.in/post/724289457144070144/shamir-secret-sharing-its-3am-paul-the-head-of

Jack Leverett 7714 50639

The one downside to my method is that 2 versions of the database are kept at any one
time, the encrypted version and (when the server is running) the unencrypted version. This
means that the server must have enough storage to store 2 versions of the database. The
other reason this method is slightly flawed is we are reading raw bytes every time the
database is encrypted. So, it has to re-read and re-encrypt the entire file, even if just one
thing has changed. This means once a deployment becomes large enough the server
could take a couple seconds to shutdown (depending on the hardware). However, neither
of these factors are huge problem simply due to the size of the database. Even for large
deployments, the database remains small. Even serving thousands of clients the database
shouldn’t grow larger than at most a couple GBs and if only serving a few hundred no
larger than a few 100MBs. Additionally reading and writing raw bytes is extremely fast
even low-end hardware can read and write GBs in just a couple seconds.

Overall, it was decided that this encryption method was more than suitable for this
application. The security benefits provided by encrypting the database at rest means even
if an attacker compromises the system all the administrator has to do is shutdown the
BeOpen server (which they can do from a logged in admin client) and then all the attacker
is left with is an encrypted database. Decryption of the database (if set with a correct
password) should be computationally secure especially for this type of data. At the end of
the day this is simply a social media platform and the computation power required to
decrypt the database (by brute force) wouldn’t be worth it even to a state actor.

34

Jack Leverett

User Interface

Server connection

7714

50639

Account infomation

page S Login page
J, v
Home page
Reqisteration page

v ¥ ¥ ¥ ¥
Account page Memories tab Post Feed Organisation tab Settings page

v ¥ ¥ v
Friends page Post Team page Occupation page

.

(Friends) account
page

Friend requests page

35

v

)’

(Posters) account
page

Comments page

v

h 4

[commenters)
account page

page

[Comment text expand

¥

Occupation request
change page

36

Jack Leverett

ceoren

Cr-aiaﬁer{ga

[

Like

Cormment

JBF‘F‘ Bm‘row

Home

Memories

Ch"gdﬂi-;aﬁon

 S—

7714

50639

No more comments {

Jack Leverett 7714 50639

s

/
O —3

Friends Profie > (SEH'I'Iﬂ'i

Example f;e-Hinﬂ ED

input
i May 200 fie]
— corge e mi
P
Ancther example D:]
-
Role Edit
Occupation Edit
Blography

Jack Leverett 7714 50639

Ve
e T e— N R —
< Occupations < Team
Charige requests [Teachers
Create an occupaﬁon AL ALt L AL peelteL
AP LLAAT AL LA LA L L S
] Name l B e e i T R e
Description FAATLAAT AL AT 1t T SR
BB AR A DA
Add leader
- Leaders

Mr Manaﬂer

Occupations Miss Leader

Managers / b4]

Acdmin stakF / X

m / X L

Teacher / X Members

Students /o x Mr Jones

Coretobers / y Mrs Generic
Mr teach

Site team ;

7 : J Miss Teacher
Miss another one
———— —3

38

Jack Leverett

These buttons
take you to the
teams and
occupations page
respectively, If a
user is notan
admin only the
teams button wil
appear

7714

BeOpen

SeHhﬂs

39

Dc.c.upaﬁm';

’ Teoms

Statistics
 Lckel | N | abel 2
N Lokel 3 B Lobel &
e Lepel 5

ay
ey W ooy M

[Category 3
Lr:beﬂl=
I

N

50639

Only an idea
likely wont be in
the final
implementation.
Only done if lots
of spare time

Home Memories

or g anisation

Jack Leverett

These all have date numbers in
them, each is clickable to go
and see the post made that day

40

A

7714

November
v
etc
Home ‘ Or‘gaﬂisa-ﬂon

——

50639

Jack Leverett 7714 50639

Design

The Design of the interface is meant to feel familiar to other social medias. The homepage
displays the user a post feed, each post displays the username, a clickable profile
button/picture as well as like and comment buttons at the bottom. It's very similar to other
social medias. Its utilising the more modern design of “floating” action buttons with the
picture taking up the entire area of the post with the action buttons (like, profile etc) are
displayed as white icons above the photo. This is opposed to having each post have a chin
and a header where such information is displayed. This makes the feed a mix between
Instagram style free scrolling (not locked to seeing one post filling the frame at a time) and
a TikTok style post card. | did want to have a locked scrolling, but | felt this may feel
uncomfortable for the slightly older user base, the system is supposed to be used in
workplaces, people of working age are generally more familiar with platforms like
Facebook. Facebook utilizes a free scrolling method and so | kept this same free scrolling
method, so that these users would easily start using the app.

Its designed this way to feel familiar to any user hopefully allowing anyone to pick up the
app and immediately be able to start engaging with its basic functions.

Buttons (apart from top and bottom navigation buttons) take up the breadth of the screen.
This was done as to keep the layout of the page as linear as possible. This minimises
confusion and makes the app more accessible for one handed use, if you're either left-
handed person or a right-handed person. The homepage itself consists of 3 main tabs; this
is where the user spends most of their time. If it weren’t for the common design of social
media to have your own profile in the top left it would have been made a main tab along
the bottom. However again like said before | wanted the app to feel familiar so left the
profile page accessible from the top left only.

However other people’s profiles are always accessible by clicking on their username
anywhere in the app. Whether their a fellow team member, team leader, sending you a
friend request, making a comment etc, if you see another user’s username you can click it
and see their profile. This again is very familiar to other social media and makes
interacting and learning about other people in your organisation easier than ever.

Overall, the Ul is supposed to be initiative and familiar to anyone who has used any form
of social media before. Preferably the final Ul will be using a material design theme to
keep a consistent modern Ul. Material design will also easily integrate BeOpen (in terms of
looks) into any android device. Since most android default apps use this theme BeOpen
won't look out of place compared to the messaging app etc.

41

Jack Leverett

System diagrams

Flow charts
Login/registration diagram

Reqgistered? N

Yes

Any authorisatiol
tokens in date and
available?

7714

key

Yes

Username,
password

Token

Admin
registration

Register as
admin?

50639

Register redentials: Senver

Client database Login

Client

Server

|5 the
current
time in the
post
slot?

Add caption
es
No=<, Add caption?

Submit post

Take picture

Yes

Retake photo?

No,

datafimages
Ipostpng

42

Format data

for requested
event?

Generate error
message

Server
database

Post slot

datafimage

Ipost_{user_id}_{date}.png Save image

I image in
png format?

Convertto PNG

Jack Leverett

Posting

Data Flow Diagrams
Posting
Level 0

Users —Post

BeQpen Server

Level 1

43

7714

tincluded in feeds—

Team
members
and
friends

50639

Jack Leverett

7714

User IDs-

Users

Image path & caption & post ID

erify image
format and
aption lengtl

data/images!
(folder)

Semver database

Image path

Convert
image into
ytes

Image path & caption & Post ID

Get posts
from today

user

Capfion & user & Post ID

50639

Friends&
team
members

Post feed get request

to friends/
team

age in bytes

Get

k4

Level 2

44

impressions
on post

List of Impressions (likes)
Impression ID and Username for each

Jack Leverett 7714 50639

Convert Use:

ID into
i User ID Username
Web socket
connection session Config file Time slot length
Useiam
A
Senver database Lﬁm slot start and end
User 1 J
Time slot '“-‘ i:nage path, Post ID, User ID, Caplion
t 1D
| Caption & image path
Post:
Image (bytes) & caption
Verify time Verify image Ulﬁgnfirratis t onver Image
posted format D p into bytes
Authorise
User2
Image in JPG or PNG format fr:_:sg:rtilgg
| image posts
Image (] }, Post ID, Caption 4
datafimages on'.re_rt Use
(folder) Userna ID into
username
User2 (team
mate of ————Get feed request
Usert)
Register
Level 0
User
(Unauthorised)
Server Database

Username,
Username, Password, (hashed and salted) password
Re-entered password,
Registration key

Verify &
process
credentials

Length infomation Configuration file

Level 1

45

Jack Leverett 7714

Check
password
matches the re-
entered

Generate
status

message

Timestamp, Level, Message

Passwaord, Re-entered password

50639

Process
password

Processed passwaord

| Sener databse

User ID

Generate

1]

k
User Username, password,
i —re-entered password, credential
(Unauthorised) registration key lengths
Username length (min and max),
Pas=sword length (min and max)
Configuration file
Level 2
Username— Server database
Y
username is
unique
Werify
username
length
Password,
Username, password, Re-enter password
re-entered password
User Username, password, Verify
" Ire-entered password, registration
(Unauthorised) regisiration key key

Username length (min and max),
Registrationkey

Verify

password

length

Password length (min and max)

Hashes + salted Password

Salted Hash
password passwaord password
Passwaord
Veri
Paszword, fy

passwords

tered rd
re-entered passwo match

Default Occupation

Configuration file

46

Jack Leverett 7714 50639
IPSO Chart Client Side
Input Process Storage Output
Creating post by - Validate that | Posts table - Status
clicking “post post was sent Time_slots table message
button: in correct
i database
_ Photo from time frame. | ()
camera - Validate
. caption
- Caption
P length.
- Save picture
to server
Opening personal - Get name, Profile table - Display the
profile page username, (database) yser |
role, information
occupation Dictionary
and (client side, post
biography. fetch)
- Check the
user’s
permissions
for editing
each
category
Clicking the edit - Validate input | Profile table - Status
button on a profile _ Reload (database) message
category (for .
. profile page - Changed
instance name)
value
And taking input for
the new value
Entering the - Fetch post Array of image - The post
homepage data paths, and image
- Save the post dictionary - Like, profile
images and comment
buttons

- The (posters)
username

47

Jack Leverett 7714 50639
IPSO Chart Server Side
Inputs Processes Storage Output
Registration details: - Validate username auth_credentia - Successful
and password lengths | Is table registratio
- Username
(database) n
- Check passwords
- Password message
match
- Re-written
- Check for username
password)
unigueness
- Registration _ . :
key - Validate registration
key
- Generate user id
- Hash and salt
password
Login details: - Hash password auth_credentia - Authentica
- Username - Fetch correct 's table tion token
password hash and - Successful
- Password loain
- Compare password auth_tokens tgt
hash with correct table status
assword hash message
P (database)
. Generate - Booleanto
L Tokens indicate if
authentication token :
(client_databa logged in
se) or not
- Username of - Verify user exists Friends table - Status
friend - Check for existing Auth_credenti message
: for
friend request to and | als table
from successful
(database) ly creating
- Notify the requested request
user
- Postid - Verify data refers to Post table - Post
or real post, user and Auth_credenti informatio
date n (from
als table
- Date . one of the
- Convert post image to
(database) users own
byte data
posts)

48

Jack Leverett 7714 50639
- Postid Validate the user is Post table Post
or Admin, management Auth_credenti informatio
or leader of requested n about
als table
- Date users post requested
database
- Username Convert post image to () post
byte data
- Teamid Verify that the user is | Post table List of
an admin or Auth po;ts and
management , their
credentials . _
informatio
table
n
Teams table
(database)
- Post picture Validate that post was | Posts table Status
- Caption ?ent in correct time Time_slots message
rame table
Validate caption (database)
length
Save picture to server
- Occupation Validate name and Occupation Success
name description length table status
- Description Validate user is Auth message
management or credentials Updated
admin (database) Qccupatlon
list
Database

Tables and attributes (including primary and foreign keys), refer to key below

49

Jack Leverett 7714 50639

friends
PKFK2 | user id
. PKFK2 | friend id
auth_credentials Profile
j R approved
PKFK2 | user_id + t PK user_id
username FK1 occupation_id B
password name
level picture
biography posts post_impressions
role PK post_id i PK impression_id
auth_tokens |_€ . ”
user_i ;
num_friends - FKa | post_id
PK token
content FK2 | user_id
FK2 user_id caption
occupations " type
token_expire
. date
—H PK occupation_id h—
name time_slots
occupation_requests
pafion_req description comments PK date
PKFK2 | user_id +)
PK comment_id L start
FK1 occupation_id
FK4 post_id = end
approved
PP teams FK2 user_id
H PK team_id content
team_leaders name
—H PKFK2 | user_id —+H FK1 occupation_id R R
comment_impressions
PKFK3 | team_id FK2 user_id +] L
PK impression_id
FKS comment_id p—
notifications_sent notifications. l—I— FK2 user_id
PKFK6 | motification_id H PK notification_id type
l—é PKFK2 | user_id targel_id
time_sent title
sent content
time_created
expire_after

50

Jack Leverett

Relationship diagram

Cccupation_Requests

K

7714

Occupations

Motifications_Sent p=

b

i

Profile

Motifications

Auth_Credentials

50639

i

Auth_Tokens

I

Team leaders

Friends

Posts

\

Time_Slots

Normalisation

All tables are normalised to 3NF except for “Teams” which has 2 attributes that depend on
the primary key but both columns are never filled in together. The 3 attributes are: team_id,
occupation_id and user_id. Team_id is the primary key, but when creating a team it will use
an occupation_id but a group of friends for each user will be counted as a “friends” team
and is associated with that user through the user_id column.

DDL

auth credentials

CREATE TABLE IF NOT EXISTS auth_credentials (

i Y

Comments

M

Post_Impressions

£

user_id TEXT NOT NULL PRIMARY KEY,
username TEXT NOT NULL,
password TEXT NOT NULL,

level TEXT NOT NULL,

FOREIGN KEY (user_id)
REFERENCES profile (user_id)

51

A

Comment_lmpressions

Jack Leverett 7714 50639

ON UPDATE CASCADE
ON DELETE CASCADE
)

auth_tokens
CREATE TABLE IF NOT EXISTS auth_tokens(

user_id TEXT NOT NULL,
token TEXT NOT NULL PRIMARY KEY,
token_expire REAL NOT NULL,
FOREIGN KEY (user_id)
REFERENCES auth_credentials (user_id)
ON UPDATE CASCADE
ON DELETE CASCADE

profile
CREATE TABLE IF NOT EXISTS profile (

user_id TEXT NOT NULL PRIMARY KEY,
occupation_id TEXT,
name TEXT,
picture TEXT,
biography TEXT,
role TEXT,
num_friends INTEGER DEFAULT 0,
FOREIGN KEY (occupation_id)
REFERENCES occupations (occupation_id)
ON UPDATE CASCADE
ON DELETE SET NULL

friends
CREATE TABLE IF NOT EXISTS friends (

user_id TEXT NOT NULL,

52

Jack Leverett 7714

friend_id TEXT NOT NULL,
approved BOOLEAN,
FOREIGN KEY (user_id)
REFERENCES profile (user_id)
ON UPDATE CASCADE
ON DELETE CASCADE
FOREIGN KEY (friend_id)
REFERENCES profile (user_id)
ON UPDATE CASCADE
ON DELETE CASCADE
PRIMARY KEY (user_id, friend_id)
)

occupations
CREATE TABLE IF NOT EXISTS occupations (

occupation_id TEXT NOT NULL PRIMARY KEY,
name TEXT NOT NULL,

description TEXT

)

occupation_requests
CREATE TABLE IF NOT EXISTS occupation_requests (

user_id TEXT NOT NULL PRIMARY KEY,
occupation_id TEXT NOT NULL,
approved BOOLEAN DEFAULT False NOT NULL,
FOREIGN KEY (user_id)
REFERENCES profile (user_id)
ON UPDATE CASCADE
ON DELETE CASCADE
FOREIGN KEY (occupation_id)
REFERENCES occupations (occupation_id)

53

50639

Jack Leverett 7714

ON UPDATE CASCADE
ON DELETE CASCADE

teams
CREATE TABLE IF NOT EXISTS teams (

team_id TEXT NOT NULL PRIMARY KEY,
name TEXT NOT NULL,
occupation_id TEXT,
user_id TEXT,
FOREIGN KEY (occupation_id)
REFERENCES occupations (occupation_id)
ON UPDATE CASCADE
ON DELETE CASCADE
FOREIGN KEY (user_id)
REFERENCES profile (user_id)
ON UPDATE CASCADE
ON DELETE CASCADE
)

team leaders
CREATE TABLE IF NOT EXISTS team_leaders (

user_id TEXT NOT NULL,
team_id TEXT NOT NULL,
FOREIGN KEY (user_id)
REFERENCES profile (user_id)
ON UPDATE CASCADE
ON DELETE CASCADE
FOREIGN KEY (team_id)
REFERENCES teams (team_id)
ON UPDATE CASCADE

54

50639

Jack Leverett 7714 50639

ON DELETE CASCADE
PRIMARY KEY (user_id, team_id)

)

posts
CREATE TABLE IF NOT EXISTS posts (

post_id TEXT NOT NULL PRIMARY KEY,
user_id TEXT NOT NULL,
content TEXT NOT NULL,
caption TEXT,
date TEXT NOT NULL,
FOREIGN KEY (user_id)
REFERENCES profile (user_id)

ON UPDATE CASCADE

ON DELETE CASCADE
)

comments
CREATE TABLE IF NOT EXISTS comments (

comment_id TEXT NOT NULL PRIMARY KEY,
post_id TEXT NOT NULL,
user_id TEXT NOT NULL,
content TEXT NOT NULL,
FOREIGN KEY (post_id)
REFERENCES posts (post_id)
ON UPDATE CASCADE
ON DELETE CASCADE
FOREIGN KEY (user_id)
REFERENCES profile (user_id)
ON UPDATE CASCADE
ON DELETE CASCADE

55

Jack Leverett 7714

)
post_impressions
CREATE TABLE IF NOT EXISTS post_impressions (

impression_id TEXT NOT NULL PRIMARY KEY,
post_id NOT NULL,
user_id NOT NULL,
type NOT NULL,
FOREIGN KEY (post_id)
REFERENCES posts (post_id)
ON UPDATE CASCADE
ON DELETE CASCADE
FOREIGN KEY (user_id)
REFERENCES profile (user_id)
ON UPDATE CASCADE
ON DELETE CASCADE
)

comment_impressions
CREATE TABLE IF NOT EXISTS comment_impressions (

impression_id TEXT NOT NULL PRIMARY KEY,
comment_id NOT NULL,
user_id NOT NULL,
type NOT NULL,
FOREIGN KEY (comment_id)
REFERENCES comments (comment _id)
ON UPDATE CASCADE
ON DELETE CASCADE
FOREIGN KEY (user_id)
REFERENCES profile (user_id)
ON UPDATE CASCADE

56

50639

Jack Leverett 7714

ON DELETE CASCADE

time_slots
CREATE TABLE IF NOT EXISTS time_slots (

date TEXT NOT NULL PRIMARY KEY,
start FLOAT NOT NULL,

end FLOAT NOT NULL

)

notifications
CREATE TABLE IF NOT EXISTS natifications (

notification_id TEXT NOT NULL PRIMARY KEY,
target_id TEXT NOT NULL,

title TEXT NOT NULL,

content TEXT,

time_created FLOAT NOT NULL,

expire_after FLOAT NOT NULL

)

notifications_sent
CREATE TABLE IF NOT EXISTS notifications_sent (

notification_id TEXT NOT NULL,
user_id TEXT NOT NULL,
time_sent FLOAT,
sent BOOLEAN DEFAULT False NOT NULL,
PRIMARY KEY (notification_id, user_id)
FOREIGN KEY (notification_id)
REFERENCES notifications (notification_id)
ON UPDATE CASCADE
ON DELETE CASCADE
FOREIGN KEY (user_id)
REFERENCES profile (user_id)

57

50639

Jack Leverett 7714 50639

ON UPDATE CASCADE
ON DELETE CASCADE

SQL
SELECT

def count(self, data=None):
infe = {'impression_count': o}

if dict_key_verify(data, keys: "impression_type®) and not self.impression_type:
self.impression_type = datal'impression_type']

if self.impression_type:
self.cur.execute(f"SELECT COUNT(*) FROM {self.table_name} WHERE type = ? AND {self.attr_name} = ?", (self.impression_type, self.attr_id))
rez = self.cur.fetchall()

if rez:
info['impression_count'] = rez[o][e]

else:
info = None

return info

The above SQL and processing around the statement, takes place in the impressions
class. This class is used as a base class for both post_impression and
comment_impression classes. Hence the attr_name (post_id or comment_id) varies as
well as the table name (post_impressions or comment_impressions) changes.

The Statement itself is simply totalling the number of records that meet the requirements.
This is typically used to count the number of likes on a comment or post for instance.

def get_content(self):
info = {'impressions’: None}

if self.attr_name:
self.cur.execute(f"SELECT impression_id FROM {self.table_name} WHERE user_id=? AND {self.attr_name}=?", (self.id, self.attr_id))
rez = self.cur.fetchall()
if rez:
infol'impressions'] = [{column: None for column in self.columns} for impression_id in rez]
for i, impression_id in enumerate(rez):
impression_info = self.class_type()
impression_info.impression_id = impression_id[e]
impression_info.columns = self.columns
impression_info = impression_info.get()['impressions'][e]
info['impressions'][i] = impression_info

if not self.attr_id:
info = None

return info

The above SQL command again dynamically uses different tables and column names due
to it being a method of a base class. It gets the impression_id of any impression that
matches the parameters and then uses this impression id to generate a new object of the
same class and perform a get() method to get exact details about the impression.

58

Jack Leverett 7714 50639

def get(self):
info = {column: None for column in self.columnsk
if not self.occupation_id
self.cur.execute("SELECT occupations.occupation_id, occupations.name, description FROM profile INNER JOIN occupations USING(occupation_id) WHERE user_id = ?*, (self.id,)
else:
self.cur.execute("SELECT occupation_id, name, description FROM occupations WHERE occupation_id = 2", (self.occupation_id,)

rez = self.cur.fetchone()

if rez:
occupation = {'occupation_id':rez[0], 'name':rez[1], 'description’:rez[2]}

for column in self.columns:
info[column] = occupation[column]

if not rez and not self.id:
info = None

return info

The above method contains 2 SQL statements both executed in different circumstances.
This method is intended to fetch details about an occupation, In the event a user has not
provided an occupation ID the method assumes the user is referring to their own
occupation. So using the occupation_id in their profile and an inner join of the occupations
table we get the occupation details.

def get_members(self):
info = {'members': None}

self.cur.execute("""SELECT auvth_credentials.username FROM auvth_credentials
INNER JOIN profile USING(user_id)
CROSS JOIN teams ON profile.occupation_id = teams.occupation_id
WHERE teams.team_id=?""", (self.team_id,))
rez = self.cur.fetchall()
if rez:
info['members'] = [{'username’': member[8]} for member in rez]

if not self.team_id:
info = Mone

The above method is from the teams class. It is to be used to get all the usernames of
members in a specific team, when a team ID, occupation ID or user ID is specified by the
user. The class properties convert occupation IDs and user IDs into their corresponding
team ID. The SQL statement first matches up the username with a user ID using an inner
join between profile and auth_credentials. Then using the occupation IDs from the profile
table, we perform a cross join with the teams table. Then filtering the results by matching
the team ID to the user input in the WHERE clause we get all the members usernames of
a specified team. After this statement has been executed a list comprehension is used to
format the output information.

59

Jack Leverett 7714 50639

def create(self, data={'name': None, 'description’: Nonel}l):
occupation_vuid = vuid_generate()
team_vvid = vuid_generate()
name = data['name’]
description = datal'description’]

self.cur.execute("INSERT INTO occupations(occupation_id, name, description) VALUES (?, ?, ?)", (occupation_uuid, name, description))
self.cur.execute("INSERT INTO teams (team_id, name, occupation_id) VALUES (?, ?, ?)", (team_vuid, name, occupation_uvid))
self.db.commit()

INSERT

The above statements are used for creating a new occupation and its corresponding team.
Simply creating a record of each in their corresponding tables after generating 2 UUIDs for
each record.

Here 3 SQL statements are executed, the first is used to remove any previous occupation
change requests made, since the new one is replacing it. The 2" is used to check if the
occupation 1D being targeted exists, then the final statement is used to create a new
record, for the occupation_request.

def set_reguest(self, data):
occupation_id = datal'occupation_id']

self.cur.execute("SELECT approved FROM occupation_requests WHERE user_id = ?°, (self.id,))
if self.cur.fetchone():
self.delete_request()

self.cur.execute("SELECT name FROM occupations WHERE occupation_id = ?°, (occupation_id,))
if self.cur.fetchone():

self.cur.execute("INSERT INTO occupation_requests (user_id, occupation_id, approved) VALUES (?, ?, ?)", (self.id, occupation_id, False))
else:
pass

self.db.commit()
UPDATE

def set(self, data):
occupation_id = datal"occupation_id"]

self.cur.execute("SELECT name FROM occupations WHERE occupation_id = ?", (occupation_id,))
if self.cur.fetchone():

self.cur.execute("UPDATE profile SET occupation_id = ? WHERE user_id = ?", (occupation_id, self.id))
else:
pass

self.db.commit()

This function is used for updating information about a certain users occupation. There are
2 SQL statements here. The first is used to verify the occupation being referred to exists.
The second is used to updated the users profile to the occupation ID provided.

60

Jack Leverett 7714 50639

def edit(self, data):
if 'occupation_id" in data and not self.occupation_id:
self.occupation_id = datal'occupation_id']
for column in self.columns:
if column == "occupation_id":
continue
value = datalcolumn]
self.cur.execute (F"UPDATE occupations SET {column} = ? WHERE occupation_id = ?", (value, self.occupation_id))
self.db.commit()

The method above is used for editing certain information about an occupation. The user
can decide what is to be edited and does so through an abstracted method of modifying
the self.columns list. This list is looped through in for loop and the SQL statement is
executed separately per column. This allows us to change certain columns without going
through several unreadable if statements. Instead, columns are static and baked into the
statement. The columns list is heauvily filtered there’s only a handful of allowed columns
and anything outside of this is excluded from the input. The SQL statement itself is very
simple though just update the selected column with the corresponding value passed by the
user where the occupation_id matches the user input.

DELETE

def delete(self):
if self.id and self.date:
self.cur.execute("SELECT post_id FROM posts WHERE user_id=? AND date=?
rez = self.cur.fetchone()
if rez and not self.post_id:
self.post_id = rezl[g]

(self.id, self.date))

if self.post_id:
self.cur.execute("DELETE FROM posts WHERE post_id=?", (self.post_id,))
self.db.commit()

Here 2 scenarios play out depending on the user input. If the user provided a post ID then
the input that post ID is respected and the required post is delete. If the user doesn’t
however the method will use their user ID and the current date to get their post and their
post ID and use that to delete the post.

61

Jack Leverett

7714

Class structure and diagrams

Table classes

friend

- _friend_usemame
- _friend_id

- _mode

+ get_friend_username
+ set_friend_username
+get_friend_id
+set_friend_id
+get_mode
+sel_mode

-__init__

+get

+ get_request
+add_request

+ approve_request

+ delete_request
+remove

+reject_request

table

notification

- _notification_id
- _target_id

- _title

- _content

- _expire_after

#db

occupation_id

allowed_columns
senver_code
#cur

#con

#_id

#_username

_team_id

_columns

_date

-_init__

+get

-get_user

- get_group

- get_notification

+ create

- load_notification
+ delete

- delete_user

- delete_group

- delete_notification
+remove
+get_unsent

- get_targets

- get_target group

+get_id

+set_id
+get_username
+ sel_usermname
+ get_team_id

+ set_team_id
+get_columns

+ set_columns

+get_date

+ set_dale

#_init__
user_id

- usemame

-db

-cur

-con

-_init__

+get

team
+ field: ype
+get_id
+set_id

+get_occupation_id
+ set_occupation_id
-__init__

+get

+get_all
+get_members
+get_leaders

+set

+ delete_leaders

62

50639

auth level
None None
#_init__ - _init__
+get
+set
impression
#1types
user_content

#_impression_id
#_id

_impression_lype
_post_id

_commeni_id
_occupation_id

_content

#_table_name
#_attr_name

_attr_id

post_impression

- class_type

+get_post_id

+ set_post_id
- _init__

+get_post

+get_id

+set_id

+ get_post_id

+ set_post_id

+ get_comment_id
+set_comment_id
+ get_occupation_id
+set_occupation_id
+get_content

+ set_content

#_init__
profile

MNone

-_init__

+target_usermname
+get
+get_permissions
+set

+ delete

+get_impression_id
~+ get_impression_id
+ gel_impression_iype

+ set_impression_type

+get_table_name

+set_table_name
+get_atir_name
+get_atir_name
+get_atir_id
+set_attr_id
#__init__

+get

get_content

+ count

+set

+ delete

comment_impressions

-class_ype

+get_comment_id
+ set_comment_id
- _init__

+get_comment

post

- _caption

occupation

None

-_init__

+get

+get_all

+ get_request

+ get_all_requests
+ create

+edit

+set
+set_request

+ approve _request
+reject_request

+ delete

+ delete_occupation

+ delete_request

+ get_caption
+ set_caption
+ get_content
+ set_content
-__init__
+get

+ gei_feed
+get_user
+get_friends
+get_team
+get_permissions
+ delete

+ delete

comment

None

- _init__
+get

+get_post
+get_permissions
+set

+ delete

Jack Leverett

Class handlers

profile_handler

- obj

- _init__

+gel

- _get

+ get_permissions
- _gel_permissions
+set

- _set

+ delete

- _delete

occupation_handler

- obj

- _init__
+get

- _get

+gel_all

- _get_all

+ get_request

- _get_request
+get_all_request
- _get_all_request
+set

- _set

+ sel_request

- _set_request

+ create

- _create

+ edit

- _edit

+ delete_request

- _delete_request
+ approve_request
- _approve_request
+ reject_request

- _reject_request

7714

auth_handler

team_handier

- obj

- obj

- init__
+get
-_get
+get_all

-_get_all

[| + get_leaders

- _get_leaders
+get_members
- _get_members
+set

-_set
+delete_leaders

- _delete_leaders

- __imit__
+get
- _get
+set

+_sel

friend_hander

-ob

root_handler

+info

+ status

- sio

-sid

- event_name
- min_level

user_id

user_level

member

management

admin

- __imit__

+get

- _get
+get_request

- _get_request

+ add_request

- _add_request

+ approve_request
- _approve_request
+reject_request

+ remove_request
+remove

- _remove

post_handler

-id

|

#_init__
+handle

authorised

- leader_check

+is_leader

notification_handler

63

- __imit__

+get

- _get
+get_feed

- _get_feed

+ gel_memories

- _get_memories

+get_user

- _get_user
+get_team

- _get_team
+get_permissions
- _get_permissions
+set

- _set

+ delete

- _delete

impression_handler

comment_handler - obj
o - init_
- __init__ +get
+get -_get
- _get + create
+get_post - _create
- _get_post + delete
+ get_permissions - _delete
- _get_permissions +remove
+set -_remove
- _set
aelete post_slot_handler
- _delete ~obj
- init__
+get

None
post_impi ion_handler
#_init__ ~ot]
#get
-__init__
- _get
+ get_post

|| #_get_content

count
- _count
#set
- _set
delete

- _delete

L=

pmment_impression_handld

- obj

- _init__

+get_comment

50639

Jack Leverett

Auth classes

reg_cred

level

username
password
repassword
#db

con

cur

+ status

_init__

+ BXeC

username_verify
username_bans

password_verify
key verify

[

7714

reg_admin

None

- key_verify
- first_time

50639

login_token

login_cred

username_clash_check

64

- username
- password
- 5i0

- sid

#db

con
#cur

+ status

- token
#db

con

cur

+ status

_init__
+ BXec
create token

send token

init__
+ exec
- process_password

Jack Leverett 7714
Database Classes
connect create

+con - path

+ Cur - cur

- path -con

- init__ - inmit__

+ create + tables

+ commit - auth_credentials

+ close -auth_tokens

+execute - profile

- occupations

65

- occupation_requests
- teams

- team_leaders

- posts

- comments

- post_impressions

- comment_impressions
- notifications

- notifications_sent

50639

Jack Leverett

Logging classes

log

7714

time

path

+ level

+ message
- line

status interface

_init__

- log_file_exists
+ create

+ read

create

+ output

slo

sid

user_id
obj

path

_init__
+ send_status

66

Status

+ interface
+ status

+ message_type

#_init__

+ status_update
send_status

+ process

- __obj_update

- __format

50639

Jack Leverett

Datetime classes

timestamp

+ time_limit

-db

- con

- cur

- _start

- _end

- _post_slot_start
- _post_slot_end
- _date

- _now

+ get_start

+ set_start

+ get_end

+set end

+ get_now

+ set_now

+ get_post_slot_start
+set_post slot_start
+ get_post_slot_end
+ set_post_slot_end
+ get_date

+ set_date

- it

+ get_date_timestamp
+ get_timestamp

- generate_slot

+ get_slot

+is_valid_time

67

7714

50639

Jack Leverett

Encryption

7714

Encryption

- key
- session
+555_enabled

- en_config_path
- db_path

-en_db_path

Key

50639

- key_path

- db_path
-en_db_path
- salt_path

Shares

+num_shares
+ min_shares

- shares_path

#_init__

+ mode
+encrypt

+ decrypt

- _generate

- _read_config

- _config_check

- _database read

#_init__

- _save_salt

- _read_salt

- _pass_to_scheme
+read_db_scheme

+ generate_key_file

+ delete

+is_db_encrypted

#__init__
- _dict_to_c_array
+ generate_shares

+get_key

+ verify

Encrpytion_handler

Handler and Table classes

- obyj
- 5es5i0n

- statface

#_imit__
+ decrypt
- _decrypt

This is a diagram that shows the same classes shown in handler and table diagrams, but
shows there relationship to each other. That is profile handler has a profile table etc.

68

50639

Jack Leverett 7714
- Table -
Profile Profile handler Past slot handler Post
;
Auth Auth handler * Root handler - Post handler Comment
))) Comment handler Impression
Occupation Occupation handler Impressions handler
[]
Post impression
Team Team handler Comment Post impressions
impressions handler handler
T Comment
impression
Friend Friend handler
User content -
Naotification Notification handler ‘
Merge sort

A merge sort is used to sort user posts by the number of likes they have, a merge sort is
chosen due to its time complexity (O(n log n)) when sorting large sets of data, depending
on the size of the organisation sorting posts as such could save massively on server-

response times when getting posts.

It uses 2 class methods however in the pseudo code they will be represented as 2

functions.

Pseudo code equivalent
FUNCTION merge(left, right)

IF LENGTH(left) = 0 THEN

RETURN right

ENDIF

IF LENGTH(right) = 0 THEN

RETURN left

ENDIF

69

Jack Leverett 7714 50639

result =[]
index_left <- 0
index_right <- 0
WHILE LENGTH(result) < LENGTH(left) + LENGTH(right) THEN
left_item <- left[index_left]['impression_count’]
right_item <- right[index_right]['impression_count’]
IF left_item <= right_item THEN
result. APPEND(left[index_left])
index_left <- index_left + 1
ELSE THEN
result. APPEND(right[index_right])

index_right <- index_right + 1

ENDIF
IF index_right = LENGTH(left) THEN
result <- result + left[index_left:]
BREAK
ENDIF
IF index_left == LENGTH(right) THEN
result <- result + right[index_right:]
BREAK
ENDIF
ENDWHILE

FUNCTION sort (posts)
FOREACH post IN posts
num_likes <- post_impressions(post_id=post[‘post_id’]).count()
post[impression_count’] = num_likes
NEXT
IF LENGTH(post) < 2 THEN
RETURN posts
ENDIF

70

Jack Leverett 7714 50639

mid = LENGTH(posts) // 2
sorted_posts <- merge(left=sort(posts[:mid]), right=sort(posts[mid:]))
RETURN sorted_posts

Generating post list per month

This occurs when generating the memories page on the client. The client will receive
several posts all with different dates. The client seeks to generate a number a list of
months, then a list of days attached to each month along with their posts.

Pseudo code
post_months = {} #empty dictionary

FOREACH post in posts THEN
date = post[‘date’]
date_list = date.SPLIT("-*) #splits the date into a 3 item list
IF date IN post_months.KEYS() THEN
post_months[date]. APPEND(post)
ELSE THEN
post_months[date] = [post]
ENDIF
NEXT
UUID generation

This UUID generation scheme is used for generating all unique IDs. A custom algorithm
adds to obscuration of the password salts. Its made up of 2 functions, one for generating
the bytes and adding to the hex string. The other for converting binary to hexadecimal
digits.

Pseudo code
FUNCTION bin_to_hex(byte)

byte_hex <-*”
total <- 0
FOR i=1 to LENGTH(byte)

total <- total + INT(byte[l]) * 2/

71

Jack Leverett 7714

NEXT
first_place <- total INTDIV 16

second_place <- total — first_place * 16

places = [first_place, second_place]
FOREACH place IN places
IF place < 10 THEN

byte hex <- byte_hex + STRING(place)

ELSE THEN

byte _hex = byte_hex + CHAR(65 + place — 10)

ENDIF
NEXT
RETURN byte_hex

FUNCTION den_to_bin(number)

Byte_string <-
FORi=7TOO
bit <- number DIV 27

number <- number — bit * 2/

byte_string <- byte_string + STRING(bit)

NEXT
RETURN byte_string

FUNCTION generate()

72

Byte list =[]
FOR i=1TO 16

number <- STR(RANDOMINT(0, 255))

byte <- den_to_bin(number)

byte list APPEND(byte)

50639

Jack Leverett 7714 50639

byte_list[6] <- byte_list[6][:4] + "0010"
byte list[8] <- byte_list[8][:6] + "01"
NEXT
hex_string =*
FOR i=1 TO LENGTH(byte_list)
byte hex <- bin_to_hex(byte_list[i])
IFiIN[4, 6, 8, 10] THEN
hex_string <- hex_string + “-*
ENDIF
hex_string <- hex_string + byte_hex
NEXT
RETURN hex_string

Username hash

This function is mainly used in the friend recommendation algorithm (depicted later in the
write up). This function simply takes a username in and converts it into a unique number.
This hash is not full proof, but the chance of a colliding hash is practically impossible.
Especially for deployments on the singular organisation level. The hashes are evenly
distributed throughout the range due to the use of the value “p” (described later),
essentially using this value means that strings will be distributed across the whole 10"7 + 7
hash space. A custom hash function is used to minimise the size of the resulting hash. If
the standard python in built hash was used it would require things like linked lists to be
huge. Large lists can soak up lots of memory and force systems to utilise high swap
space. This can then bring programs running to a screeching halt. So minimising the size
of lists like this is very important for performance.

Originally the hash function was written in python, through some testing | found python
could complete a hash of a string (of 25 characters) in ~0.127 seconds. The same
program written in C took just ~0.001 seconds, (to 3 significant figures). This means for
this huge time saving the hash algorithm was implemented in C and imported as a library
into python.

This hash utilises 2 key numbers:

“m” is are large prime number, its size is considered sufficient here since m essentially
defines are range of hash results. With an m this size we reduce the chances of a colliding
hash. Technically we could make m larger, but m will also define the size of any linked list
and hash map used with these hashes. So | decided that 107 + 7 was sufficient to
optimise memory usage.

73

Jack Leverett 7714 50639

“p” is another prime that is as close to the number of string characters that are available for
the string input. 97 allows for most ASCII symbols, all numbers and all characters both
upper and lower case. In reality though usernames can’t include all ASCII characters |
simply included these in the number in case symbol limits were removed in later versions.

Pseudo code
FUNCTION hash(String)

M<-10"N7 +7
P<-97
Total <- 0
FOR i=1 TO LENGTH(String)
Total <- Total + (INT(String([i]) - 32) * p”i
NEXT
Result <- Total MOD M
RETURN Result

Friend recommendation (Graph traversal)

The friend recommendation algorithm is made up of 2 classes:

User — Holds information about a user, the number of times they appear and their lowest
depth in the graph. It also has methods for finding and organising its friends into other
User objects.

Graph — This is where the graph is held, constructed, and traversed. It has methods for
generating and traversing the graph as well as adding edges and is geared specifically
towards being a friend graph.

There is also a function which is used as an interface for other parts of the system to
interact with the Graph. This is not included in the below code since it is fairly un-
interesting, just verifying certain parameters.

The code below also does not include the User class since again it is un-interesting and
just made up of the components for getting friends from the database and converting them
into objects which are added to a list attribute. The only thing to note about the User class
is when “hash” is called on one of the objects it utilises a special method that uses the
previously described hash function on the object’s “username” attribute.

74

Jack Leverett 7714 50639

What is included below is the Graph class, so this is made up of the interesting parts of the
algorithm. Below | describe some of the attributes and data structures used in the
algorithm:

Important attributes

graph — A 2D linked list that contains all nodes and there corresponding edges. Each node
is stored as its position as depicted by its hash. At a nodes position there is another array
that contains the hashes of each of its edges. These hashes can then be used to find their
respective nodes in the graph and so on. The graph itself is a directed, unweighted graph.
Technically it could have been represented as an undirected graph since it’s a friend
system, not a follow system. But it's converted into a directed graph because when a node
is spawned from a previous node that previous node is removed from the adjacency list of
the new nodes.

friend_directory - A hash map used to store User objects. The key for each object is the
hash of the username. So, using a hash from the graph you can find the corresponding
object in the friend_directory. This is used to manipulate attributes like depth while
traversing the graph.

edge_queue — As said by its name this is a queue of the edges to be visited. Since it's a
gueue this means items can only be added on to the bottom and only removed from the
top. So, when a node is visited its corresponding edges (retrieved from graph) are added
onto the bottom of the edge_queue. The node itself is then removed from the top of the
edge_queue and added to visted.

visited — An array of hashes, this is simply used to store the nodes that have already been
visited by the algorithm.

Breath first search vs depth first search

Breadth first search (BFS) starts at an origin point in a graph and then visits each of its
edges, as it visits each edge it adds that nodes edges to the bottom of the queue. This
means it will then search all the edges of these visited nodes.

Depth first search (DFS) starts at the origin point in a graph and chooses its first edge to
visit, this edge then chooses its first edge to visit and so on. Essentially the algorithm will
traverse to the bottom of the graph and then backtrack to previously unvisited nodes. It
does this by utilising a stack instead of a queue. So, when a node is visited its edges are
added to the top of the stack, since you can only remove items from the top of a stack the
next edge to be visited will be one of the edges that had just been added by the visited
node.

75

Jack Leverett 7714 50639

| originally used DFS but on encountering the difficulty of calculating the current depth of
the node being visited | switched to a BFS. Since using BFS | could assign the depth of an
edge as it gets added to the bottom of a queue. | would simply take the origins depth
minus one and assign this to the corresponding edge’s depth attribute. Additionally using
BFS allows for greater optimisations if needed later, for instance it's easier to cut of the
graph once a certain depth has been reached. This could be done say if 5 friend
recommendations have already been generated.

Converting the DFS to the BFS was incredibly easy though all | had to do was add the
depth assignment as edges were added to the queue and swap out the stack data
structure for a queue.

Pseudo code
CLASS Graph

FUNCTION __init__ (self, username)
self.origin_user <- User(username, True)
self.graph <- [[]] * 10"7+7
self.friend_directory <- [NULL] * 10"7+7
self.friend_directory[hash(self.origin_user)] <- self.origin_user

self.exclude <- []

FUNCTION PUBLIC generate(self, depth):
self.origin_user.depth <- depth - 1

self.add_user_friends(self, origin, source, depth)

FUNCTION add_user_friends(self, origin, source, depth)
origin.find_friends(self.exlude. APPEND(source.username))
IF hash(self.origin_user) = hash(origin) THEN
self.exlude = self.exclude + origin.exlude
ENDIF
FOREACH friend IN origin.friend_list
friend_hash = hash(friend)
self.add_edge(hash(origin), friend_hash)

76

Jack Leverett 7714 50639

friend_dir = self.friend_directory[friend_hash]
IF friend_dir '= NULL THEN
self.friend_directory[friend_hash].count <- friend_dir.count + 1
ELSE THEN
Self.friend_directory[friend_hash] <- friend
ENDIF
IF depth-1 > 0 THEN
self.add_user_friends(friend, origin, depth-1)
ENDIF
NEXT

FUNCTION add_edge(self, node, edge)
self.graph[node] = self.graph[node]. APPEND(edge)

FUNCTION PUBLIC bft(self)
self.visited <- []
self.edge_queue = [hash(self.origin_user)]

self.visit(self.edge_queue[0])

FUNCTION visit(self, origin)
start_pos <- self.graph[origin]
self.on_visit(origin)
self.edge_queue.REMOVE(LENGTH(self.edge_queue) - 1)
self.visited. APPEND(origin)

FOREACH neigbour IN start_pos
neigbour_obj <- self.friend_directory[neigbour]
origin_obj <- self.friend_directory[origin]

in_visited <- neigbour IN self.visited

77

Jack Leverett 7714 50639

In_queue <- neigbour IN self.edge_queue
IF NOT in_visited AND NOT in_queue THEN
neigbour_obj.depth <- origin_obj.depth - 1
self.edge_queue.PREPEND(neigbour)
ENDIF
NEXT
IF LENGTH(self.edge_queue) >0 THEN
next <- self.edge_queue[LENGTH(self.edge _queue)-1]
self.visit(next)

ENDIF

FUNCTION on_visit(self, origin):
origin_obj <- self.friend_directory[origin]
origin_obj.score = origin_obj.depth * origin_obj.count
Shamir Secret Sharing

Shamir Secret Sharing is a method for sharing a secret in such a way that if any
combination of those shares were put together you can derive the original secret. So,
when the shares are first created you provide the program with 3 parameters:

- The secret — This must be turned into a number somehow, (for instance you can
use an ASCII table to convert a string into a number)

- Minimum number of shares — This is the minimum number of shares needed to be
combined for reconstruction of the secret.

- Number of shares to be generated — The number of shares to be generated this
number must be bigger than the minimum number of shares needed for
reconstruction.

This scheme in our system is used for distribution of the secret database encryption key.
Shamir Secret Sharing has been used by several notable organizations for similar
purposes for instance PayPal used Shamir Secret Sharing to secure their databases in the
early 2000s.

Mathematical principles

This scheme works on a simple mathematical principle: A polynomial of power n can be
found if provided with n+1 points that lie on that polynomial. For instance 2 points on a
cartesian (2D coordinate system) set of axes perfectly define a line, there is no other

78

Jack Leverett 7714 50639

straight line that will go through the points (1, 3) and (-8, 8), there exists just one line. A
straight line can be represented with the polynomial: y =ax + b

You can keep going with this given 3 points on a polynomial with a power of 2 you can find
the values of a, b and c in which construct this polynomial:

y=ax"2+bx+c

So, if we encoded our secret (which remember has to be converted into a number) as the
y intercept of a polynomial we could use points on this polynomial as our “shares”. Since
say we encoded our secret in a polynomial of power 3 this means that 4 points (aka
shares) could be used to reconstruct that polynomial. Let’'s say we generated 10 shares
any 4 of these 10 shares can be used to perfectly reconstruct the polynomial f(x) and then
the secret is equal to f(0).

Generating shares

To generate the shares as said before we need 3 inputs, the secret (we will call s) the
minimum number of shares for reconstruction (we will call m) and the number of shares to
be generated (we will call p). There is no theoretical limit to the size of maslongasm > 1
in the perfect system. However due to the limits of floating-point integers etc the maximum
size of m in my system is 7. The size of p however only has the limit of p > m, since if it
was not, we would never be able to reconstruct the secret. So to generate shares all we do
is create a polynomial of size m-1, so if our m was 3, we generate:

y=ax"2+bx+c

Since our secret is encoded in the y intercept ¢ will equal our secret for instance lets say
our secret is 520. So now ¢ = 520. a and b have no limitations as to what they can be,
however this system picks a and b randomly between the limits of 2*(n-1) + 1 and 2”(n) —
1. The system sets n to 50 by default but this can be altered in future versions as 50 is
entirely arbitrary. We also generate a random prime number, we then perform prime MOD
random number on each random number generated. This limits the size of the
polynomial’'s a and b.

So now we have values for a and b, this means we have a complete polynomial we will
call f(x) and can start generating shares by using different x values. Our system simply

counts linearly (increasing by 1 each time) starting from x = 1 all the way to x = p. The x
values are considered public so using these simplistic x values is no issue.

Once the shares are generated the system outputs them to a set of text files (1 per share)
each share text file contains 3 pieces of information. The “number share” (aka the x value
of the point), the “share secret” (the y value of the point) and the minimum shares needed
to reconstruct the secret. The “number share” and the minimum shares required are
considered public however the share secret is the important part that should be kept secret

79

Jack Leverett 7714 50639

and safe. So someone keeping a share simply needs to keep 2 pieces of information: what
number share they have and what their share secret is.

The math | have walked through is the actual math that the system uses. This part of the
system isn’t particularly interesting as it simply consists of some simple math operations
and substitution of x values into a polynomial. So will not provide any pseudo code.

Reconstructing the secret

This is the interesting part. | will provide a worded step by step here as well as pseudo
code for large segments of this algorithm.

To reconstruct the secret the system needs the number of the minimum number of shares
required to reconstruct the secret (we will call this m) and shares (consisting of their secret
and share number) the number of shares provided should be equal to m.

The first thing we do is construct a set of linear equations, essentially using m we can
determine the power of our resulting polynomial (m — 1) this means we know how many
unknown coefficients we have. For instance if m = 3 we know our polynomial is of power 2
and so has 3 unknown coefficients. y = ax"2 + bx + ¢ where a, b and ¢ are or unknowns.
Since we have an x and y we can substitute these values in for all our points. Continuing
with our m = 3 example lets say our 3 points are (1, 1872), (2, 4266) and (3, 7837). This
means we can construct the following 3 linear simultaneous equations:

1872=a+b+c
4266 =4a+2b +c
7837=9a+3b+c

So, we have 3 simultaneous equations and 3 unknowns (note that c is our secret). Any
GCSE level child could do this (especially this simple example) easy with a bit of time. But
for a computer to reliably find a, b and ¢ with even the most complex values we have to
use matrices.

You can use matrices to solve systems of linear equations of any size and complexity, this
makes them perfect for this application as the program needs a strict set of calculations it
can perform to derive the answer consistently. So we can turn these linear equations into

the following matrix system:

1 1 1 a 1872
4 2 1} x|b}]| =|4266
9 3 1 c 7837

Essentially you take your integer coefficients put them into their own matrix and multiply
this by a matrix of unknows setting this equal to the matrix of known y values (our share
secrets). In this case are m = 3, so our first matrix is of size 3x3 the second of size 3x1 and

80

Jack Leverett 7714 50639

our resulting product of these two matrices is a 3x1. But in general terms (depending on
the size of m you have a m x m matrix multiplied by an m x 1 which equals an m x 1
matrix. This is why matrices are ideal for this application they can scale no matter the size
of the linear equations.

To find a, b and ¢ we simply must multiply our right-hand matrix (the matrix of y values) by
the inverse of our matrix of x results (the m x m) matrix. | will not explain here how the
inverse of a matrix is found but I do show how this is done in the pseudo code below. Once
you find the inverse and multiply it you will get 2 matrices of the same size are equal to
each other. This is the procedure the system goes through to find these unknows. From
there it reconstructs the polynomial equation called f(x) and then finds the result of f(0).
This result is the secret.

The language choice

| chose to use C++ to tackle this algorithm, there are a few reasons it was chosen over
python or any other language. The rest of the system is in python (other than the hash
function) so whatever language | used had to be easily interfaceable with python. Since
python is built on C the native library “ctypes” can be used to interact with C and C++
code. The question now is why C++ over python, simply this was down to speed and
control. This was an intensive math heavy algorithm with numbers that varied widely in
size. If done in python the program would run particularly slow when it started to deal with
large numbers since it must dynamically allocate the memory for the numbers (since its an
interpreted language), meanwhile C++ is a compiled language meaning all the memory
required for the numbers is already assigned and overall, the program can run much
faster. Additionally, the code has to do lots of division and large recursive computations so
to not bog down the server | decide a C based; compiled language was best. C++ was
chosen over C though despite not classes being used in this algorithm due to C++ having
greater quality of life features which objective C still lacks.

Pseudo code

Here | will go over some of the key functions that are used in the processes outlined
above, mainly focusing on how we manipulate the matrices once formed while
reconstructing the secret. The below functions mainly focus on the process for inverting a
matrix | will quickly outline this process to get the inverse of a matrix you:

1) Find the determinant of the matrix

2) Form a matrix of minors

3) Form the matrix of cofactors from the matrix of minors

4) Then multiply this matrix of cofactors by the reciprocal of the determinant

5) This gives you the inverse matrix

81

Jack Leverett 7714 50639

The below function is used to find the determinant of a matrix, it's a recursive function
since these matrices can be as large as dimension 7. The final ELSE statement uses the
calculations for getting the determinant of a matrix with a dimension above 2. If not done
recursively this function would be huge and would have to contain lots of confusing math
operations for every case of every dimension. This would harm the codes expandability
and maintainability. Additionally in maths matrix determinants are found recursively even
when doing it by hand. This makes the code easy to understand for anyone who
understands the basics of matrices.

FUNCTION findDet(matrix, dimension):
IF dimension == 0 THEN
det<-1
ELSE IF dimension == 1 THEN
det <- matrix[0][O]
ELSE IF dimension == 2 THEN
det <- matrix[0][0] * matrix[1][1] — matrix[0][1] * matrix[1][O]
ELSE THEN
FOR 0 TO dimension-1
sub_matrix = findMinor(matrix, dimension, i, 0)
sub_matrix_det = findDet(sub_matrix, dimension-1)
term <- matrix|[O][i] * sub_matrix_det
IF (i+1) MOD 2 == 0 THEN
term <- 0 — term
ENDIF
det <- det + term
NEXT
ENDIF
RETURN det

The function below is used for finding the minor of a matrix, this is also used when finding
the determinant of any matrix larger than dimension 2. This function simply works by
taking in the row and column that is not to be included in the matrix of minors. So by
simply looping through the matrix and comparing x and y positions with the row and
column that is not to be included in the minor we easily generate the minor of a matrix.

82

Jack Leverett 7714 50639

FUNCTION findMinor(matrix, dimension, pos_x, pos_Yy)
creates an array of size (dimension — 1)
minor <- [] * (dimension — 1)
minor_x <-0

minor_y <- 0

FOR i FROM 0 TO (dimension — 1)
creates an array of size (dimension — 1)

Line <- [] * (dimension — 1)

FOR j FROM 0 TO (dimension — 1)
IFi!=pos_yandj!=pos_x THEN
Line[minor_x] <- matrix[i][j]
minor_y <- minor_y + 1
ENDIF
NEXT
IF minor_x !'=0 THEN
minor[minor_y] = line
minor_y <- minor_y + 1
ENDIF
minor_x <- 0
NEXT
RETURN minor

The function below takes in the original matrix as an input and coverts it into the matrix of
cofactors. It uses 2 previous functions to find the minor and the determinant of said minor
in any given section of the given matrix. Using this it constructs a new matrix (a 2D array).
Note that since this is written in C++ originally, the 2D array is in actual fact an array of
pointers. Each pointer leading to a 1D array. This is the same for all matricies throughout
the code and is talked about further in the data structures section of this write up.

FUNCTION formMatrixCofactors(matrix, dimension)

83

Jack Leverett 7714 50639

creates an array of size dimension
cofactors <- [J*dimension
FOR i FROM 0 TO dimension-1
creates an array of size dimension
line <- [] dimension
sign<-1
IF (i+1) MOD 2 == 0 THEN
sign <- -1
ENDIF
FOR j FROM 0 TO dimension
minor <- findMinor(matrix, dimension, j, i)
cofactor <- findDet(minor, dimension-1) * sign
sign <- - sign
lint[j] <- cofactor
NEXT
cofactors]i] <- line
NEXT
RETURN cofactors

This next function “transposes” the matrix this is the process of turning each row into a
column.

FUNCTION transposeMatrix(matrix, dimension)
creates an array of size dimension
transposed_matrix <- [J*dimension
FOR i FROM 0 TO dimension-1

creates an array of size dimension

line <- [J*dimension

FOR j FROM 0 TO dimension-1
line[j] <- matrix[j][i]

NEXT

84

Jack Leverett 7714 50639

transposed_matrix[i] <- line

NEXT

RETURN transposed_matrix

The next function is used in the last stage of the process taking in the determinant and the
transposed matrix. It then multiplies this matrix by the reciprocal of the determinant.

FUNCTION forminverse(matrix, dimension, det)
forms an array of size dimesion
inverse <- [| * dimension
FOR | FROM 0 TO dimension-1
forms an array of size dimesion
line <- [] * dimension
FOR j FROM 0 TO dimension
Line[j] <- (1.0/det) * matrix[i][j]

NEXT
inverse(i] <- line

NEXT

RETURN inverse

So at this point in the program, we have our inverse now all we do is multiply this inverse
by the matrix of y values (the matrix of the share secret values). The inverse is passed as
matrixA and the matrix of y values as matrixB since they are multiplied in the order inverse
x matrix of y values. Another thing to note is: in the C++ program matrices are passed as
structs containing their x and y dimensions along with their actual matrix. Here though |
have just represented the x and y dimension of matrixA as arguments.

FUNCTION multiplyMatrices(matrixA, matrixB, matrixA_X, matrixA_y)
forms an array of size matrixA_y
result_matrix <- [] * matrixA_y
FOR i FROM 0 TO matrixA_y

creates an array of length 1

85

Jack Leverett 7714 50639

line <-]
result <- 0
FOR j FROM 0 TO matrixA_x
result <- result + matrixA[i][j] * matrixB[j][O]
NEXT
Line[0] <- result
result_matrix[i] <-line
NEXT
RETURN result_matrix

Control flow

These functions are all used by a function called solve which simply gets the result of one
function and passes it to the next along with extra data like the dimension of the matrix etc.
This function is very basic and boring all it really does is call this set of functions above. As
for getting the final secret this solve function simply returns the last element of the resulting
matrix as this is equivalent to the y intercept. | will go into detail about the structures and
data types used throughout the C++ program as here the C style arrays, pointers and
structures are turned into a pseudo code style “list” to keep the algorithm easy to
understand.

Limitations

As said before there are limitations on the number of shares that can be generated (must
be less than 20) and the number of shares required for reconstruction (must be less than
7). The reason there is a maximum on the number of shares needed for reconstruction is
because as you increase this number, you increase the size of the matrix and the size of
the determinant. Computers are bad at division and even with C++ largest floating point
number after 7 shares for reconstruction the division becomes to minute and the program
starts to lose accuracy. This loss in accuracy is only by a few decimal points but
reconstruction of a encryption key needs extreme accuracy.

If this module was to be re-written and it needed to support reconstruction with greater
than 7 shares it would need to use a 3" party library (not included in the standard C++
distribution) to support more accurate numbers with larger bits. The downside to doing
something like this is when the number of bits a number uses becomes larger than the
page size of a CPU programs can start to slow down significantly. So doing this would
likely make the algorithm slower. | consider 6 shares for reconstruction to be plenty for
most use cases, any more than this is an edge case, and the organization can likely spare

86

Jack Leverett 7714 50639

the resources to re-code this one module. Additionally, it's a very minor change if you
wanted to do this all you have to do is install the header file and change the type definition
of “Lint” (currently long long int) and “Ldouble” (currently long double).

Post scheduling and time slots

A key part of this system is the scheduling of when users can create posts. Users are only
supposed to be able to post within a certain time frame within the day. This is enforced
server side, not client side to prevent the creation of a malicious 3" party client, however
clients can (and are encouraged to) request the start and end times of the post slot for the
current day. This is done so that clients can schedule a notification on the user’s device.
However, when it is time to post an active client will receive an internal notification from the
server.

On the server the creation and management of posts slots is given to a background
process that runs separate from the main thread. The unit used throughout the process is
seconds since epoch (Unix time). This is used to avoid constant conversion of time and for
exact and globally agreed time across all systems. Its also the easiest to perform math
operations on.

Time slots are stored in the database in the “time_slots” table, this is the only table with no
foreign keys in the entire database. It contains 3 fields, the date in the yyyy-mm-dd format
(this is the primary key) and is stored as a string. Time slot start is stored as a float number
in Unix time, and time slot end stored the same way as time slot start. Another approach to
this would have been storing the start of the time slot and the length of the time slot but
that would require extra compute whenever a process needs the time of the slot end.

Flowchart

The flowchart does not have a stop point since this is an overview of the background
process that runs from server launch until the server itself shuts down. The flowchart
doesn’t include the other functions this background service performs like cleaning expired
notifications, since this is not relevant to the post scheduling.

87

50639

7714

Jack Leverett

sjusl
0] SUOIEMNoU an
s sod puss

SPUOIRS QL NEM

fep
au sl s|

asEqEEP BY)
U1 jo]s B 8y}
10 pua 8y} Se SIY)

ABS pUE IBgLUIN
51U} 0} Lbua|
o]s =wn ppy

‘N
PUE LUNWIXEW
UsaMIag JaquuInu
LIOpUE B %214

duwESaLU Wnwimw
pUE WnWIXepy

%1015 150d 10
puUa puE Ue)s
uaamag
dwejsaluy
N3 g

oN

SPUOJSS OF NEM

£MOLIOW o)
pue fepo) 10} 151%8
51015 1504 0(

dwe)salun
UBLNI 195

3ER SMOLIOWO)
puE 2]ep

—
ETE

Byye spuolas
0l fq fep
3] USYPoYs pue
fiep ayplo pus
woy ybus) 1015
Sl femeaye

fep 2y 10 pus
pUE LE]S aU] 0}
sdwe)s swi|

SPUDIAS oJul
LU LY I2AUOD

aju GUUOD Woxy
bS] 1015 aWIL

PR-Lu-AAAR

QpasEqEIED sfepo] 10} 51015

2L 2IqE} PESY

0JUI BIEP JELWLIOS

aep siepol

88

Jack Leverett 7714 50639

Data structures

Recommendation graph

A graph is used in the friend recommendation algorithm. This graph is used to define the
relationships between users (friends, friends-of-friends, etc) and traversed from an origin
node to generate friend recommendations. The graph is generated on-the-fly, this is done
instead of pre-generating the graph on boot to save on memory usage and enforce certain
user exclusions. Users such as those already with friend requests from the origin user are
excluded from the graph. The graph itself is a directed but unweighted graph, while it
technically could be an undirected graph it is “converted” into a directed graph by removing
the previous nodes from the adjacency list of the node it spawns. This is done to make
traversal easier and prevent double counting of a node.

The graph is made up of “nodes” but essentially boils down to a large 2D array. A nodes
hash (defined by a hash of the user’s username) is also its position in the array. Then at its
position a second list containing the hash of all “edges” (friends of that user) is stored. This
means you visit a node via its hash and from that position you can pull a list of other user
hashes.

Some nodes have no users in their list this is because when generating the graph a certain
depth is defined. A depth of 1 only allows for the users friends to be visited, depth of 2
allows for friends of friends to be visited and so on. This depth parameter is stated to limit
the compute cost of the algorithm.

A graph was chosen for this task since recommending a friend was done based on a
simple calculation:

Number of times a user appears in other friend lists x The “distance” from the origin user

So, the graph is used for calculating the distance from the origin user and calculating the
score as each node is visited. The count for the number of times a single node appears is
assigned to the node’s user object as the graph is generated.

Overall, a graph makes the algorithm way more efficient as there’s no need to hold several
arrays of different users friends in memory instead it can all be handled in a single array or
the “graph”. It also allows for functionality to be added later, since as each node is visited
utilizing the friend directory and their hash you can make any alterations or calculations
about that user’s relationship with other users that's needed. A slightly modified version of
the algorithm could be used to recommend posts to other users and sort a user’s feed by
relevance.

This graph is found in the “Graph” class in “modules/algorithms/recommend.py

89

Jack Leverett 7714 50639

Recommendation queue

A queue is used in the friend recommendation algorithm. It's used to organise which nodes
in the graph should be visited next. Nodes are placed at the tail of the queue (index 0) and
the next node to be visited is taken from the head of the queue.

A queue was chosen for this task because | wanted to traverse the graph breadth first, a
gueue allowed me to add neighbours of the currently visited node to the end of the queue
meaning once all of the ahead nodes (a layer above the neighbours) had been traversed
these neighbours would be visited next and so on. A stack could have been an alternative
data structure used but this would of forced the use of a depth first search which was
slower and caused greater complexity when working out the distance of each node from
the origin node (a central part of the friend recommendation).

The queue itself simply holds hashes which can be used as references to the hash table
where the user objects are stored and used as positions in the graph. This means that the
hash of each object can be used to point towards 2 different sets of values, in other data
structures.

This queue is found in the “Graph” class in “modules/algorithms/recommend.py

Recommendation hash map

A hash map is used again in the friend recommendation algorithm in the Graph class. The
hash map is used to allow the algorithm to look up a user’s object via the user’s hash
(which is used in the graph, visited and edge queue). So, the key is the hash of the user,
and the stored value is an object of the User class which contains information about the
user like their username as well as methods for generating a list of their friends.

A hash map is used so that we don’t have to convert the hash to a string for lookup in a
python dictionary and so we can pull the raw integer of the key. It allows for more efficient
use of compute however comes at a slight cost of memory usage. The memory usage cost
though is minimal since most of the list is empty it's just that the list is the size of our
largest hash: 107 + 7. But overall, a few kb of memory is worth it for the more readable
and compute efficient code.

It also allows for other languages like C to integrate into the algorithm to manage some
intensive parts. If it was left in a python dictionary C would be almost completely unable to
interact, but as an array C can easily index as it normally would with C style vectors.

Notification queue

A user background service utilises the notifications table object to fetch unsent
notifications. Notifications are only counted as “sent” once the server has sent them via the
clients “notification event”. Each notification is timestamped, and | decided that the older
notifications should get priority in a queue.

90

Jack Leverett 7714 50639

So before hitting the user’s personal notification service the “get_unsent” method queues
the notifications with the oldest being at the front of the queue. Then once passed to the
service it takes the notification of the top of the queue gathers some additional data before
sending it off to the user. Then it loops back around onto the next notification.

A queue was chosen so that in real time new notifications created since the notification
service started could be added to the back of the queue. Say while the notification service
was sending lots of notifications to a user at once another was created, this notification
can be dynamically added to the back of the shared notification queue to be sent while the
service is running.

Images

Pictures and images are integral to the system, the whole idea of the platform stems
around taking these pictures and providing them as posts to other users. As a result, the
way in which images are received, stored, and sent is very important.

Images can be provided by the client in 2 formats, either png or jpg. | chose these formats
since they are the most common formats for bitmap images additionally the libraries used
to interact with the camera for both desktop and android defaulted to outputting png. If the
clients provide any other type of image the post creation process will fail and provide back
a status message saying as such.

Images are not compressed server side or client side; this could be a problem say if a
client provides a particularly large image. However, the size of data is limited by socketlO
which will limit the size of a single data transfer. This limit is high enough to not get in the
way of any normal image, but an image file specifically designed to be maliciously large
would be limited.

On the server side all images are stored in the “data/images/” path. Each image’s hame is
stored simply as {post ID}.{format}. So, an example of this would be “2cd80607-5f29-490f-
b666-81b94b6f8378.png”. Using the post ID to identify images works perfectly since the
post ID is unique per post and since there can only be one image per post it works for our
current implementation. The path to the image isn’t just derived from the post ID though
since we could decide in the future to adopt a new naming scheme for images. So, for
future proofing and simplicity of code the “posts” table in the database has a string field
called “content”, this is where the path for the image is stored.

Like | said before we could technically find a post by just using the post ID but a likely
change to the system would be dividing the “data/images/” directory per user. So, the
images directory would have a directory per user. So, in future versions the path to a
user’s post on the 5™ of April might look like: “data/images/johnathon/05-04-24.png”.
Currently this sort of change to the pathing logic is unnecessary, modern filesystems can
handle thousands of files per directory and the additional logical overhead of
implementation is not worth the theoretical performance benefit on older systems.

91

Jack Leverett 7714 50639

However, if this change was to be made it could be quickly implemented, due to the
dedicated field in the posts database.

Database

The database on the server side uses several techniques to keep data linked and
organised according to the 3" normal form standards. Since at large this is a database
heavy application the database must be well maintained and well linked to keep the data
inside it consistent.

For instance, the occupationID of an occupation is the primary key in the occupations
table, it is also a field and foreign key in both the Teams table and Profile table. These
foreign keys then have different properties. Following this same example for the teams and
profile table, on the occupationID being updated in the occupations table the updates
cascade. However, on deletion of occupationID (and its occupation since it's the primary
key) the teams table will delete any entries with that occupationID (aka, cascade delete).
The profile table however will simply turn that field of the record to NULL. Since we don’t
want to delete the user but just de-associate them with the now deleted occupation.

These kinds of structures are all over the database to keep the data as consistent as
possible. The server already does enough work so the database should do its job and not
leave any “cleanup” tasks to the scripting. Every instance of the same type of values uses
a foreign key pair to maintain this methodology.

Matrices

In the Shamir secret sharing algorithm matrices are heavily used to solve a system of
simultaneous equations. The entire algorithm is written using C style arrays and pointers,
meaning static arrays and memory address pointers had to be used. Especially since
many of these matrices were being returned from functions.

Matrices themselves were represented as a pointer to an array of pointers. This was the
method for representing and passing a 2D array around the program. Since in C you
cannot simply return an array, you must return a pointer to an array created inside a
function. To make a 2D array you must create an array of pointers. Matrices also have
some other important information that is crucial to their use, namely their dimension.
Without explicitly passing the dimensions a function would have no way of knowing the
size of a matrix. Since it's simply being passed as a pointer there is no operation that can
be performed to get the size of an array.

To tackle this a Matrix structure was used so that the 2D array of the matrix values could
be passed along side its x and y dimensions in one neat package. This meant that all you
had to do was pass matrixA and the function could get all the information needed about
matrixA.

92

Jack Leverett 7714 50639

Testing

Here | describe the testing methodology. The server’s functions are divided up into
classes. Each class has its relevant methods and a client facing handler function. For
example, of these classes could be “posts” we will call this the “post module”. Then “posts”
will have a client facing handler class called “posts_handler”. So, the testing methodology
follows this same structure, first a module is written with all the relevant data then each
method in that class is tested internally by calling it relevant file directly and utilizing a
defined “test” function, with some base case values. Once these tests have passed, | write
the handler and the client-side code to interact with the server events. This code is then
tested together and where we test the edge cases for the original module, since the
handler is built to clean inputs and handle erroneous data. So, there are 2 stages to
testing:

Stage 1: Individual internal test on module (for instance “posts”), simple correct usage of
the methods is tested here (mainly looking for syntax errors and very basic logic errors
here)

Stage 2: “end-to-end” testing using the GUI client, which then goes through the event,
handler, and module itself. Edge cases and wrong inputs are tested here to make sure the
server and client can handle these cases.

Stage 2 testing is the main thing documented in this write up since the Stage 1 testing is
largely uninteresting and the only bugs, | encountered there were small syntax errors or
minor logic bugs, nothing that took more than a minute to solve. Stage 2 testing though is
far more interesting since it still deals with some of these minor bugs but also larger logical
flaws and led to more interesting code dealing with edge cases etc. Stage 2 testing
additionally led me to digging around source code from my python GUI library.

There were some exceptions to this stage 1, stage 2 methodology for instance when
testing more complicated and staged algorithms as well as any C++ code written was
tested more consistently as it was being written (as | am less experienced in this
language). But stage 1 and 2 testing always followed this was also just some pre-liminary
testing that we can call stage O testing.

Server tests

Test Number | Test Description Expected Observed Action

PST.1A.l Using the The server The server This is because
“post_set” event | should accept complains | should be
from the client the post write about there using
including valid the relevant being no such | self.obj.content
content and information to content is the

93

Jack Leverett

7714

50639

caption. The the database as | thing as the referance to the
client is creating 1 | well as save the | attribute image | image to make
post. Its also post image. the code more
being done in the flexible for the
valid time slot future if it was
altered to be a
text post
instead for
instance.
PST.1A.l Using the The server As expected
“post_set” event | should accept
from the client the post write
including valid the relevant
content and information to
caption. The the database as
client is creating 1 | well as save the
post. Its also post image.
being done in the
valid time slot
Test Image | Image
Number | Numbe
r
PST.1A.l |1 File "/héme/ltbeacH/Nextcloud/code/projects/current/beopen/code/server
/modules/handler/handler.py", line 562, in _set
if self.obj.image:
AANAANANANANNAANAN
AttributeError: 'post' object has no attribute 'image'
PST.1All |1

Filter

ac74b0...

94

Filter

39e8bd... data/...

Filter

Filter

testing ...

202...

Fi...

Jack Leverett 7714 50639
Test Number Test Description | Expected Observed Action
N.1A.l When the The notification | As expected

currenttime is | to be generated
within the and an entry
allocated time added to the
slot defined by | notifications
the table table of the
time_slots database
entry, the containing a
notification unique
service should | notification_id,
generate the a title that uses
post time the post-
notification. servercode
format, content
stating the time
until post as
configured as
well as its
expiration and
time created.

N.2A.l After the This function The method When a
notification has | should then that identifies notification
been created in | identify the the needs to be
the notifications | targets of the target_group sent to the

table
load_notificatio
n should be
called just after
creation.

notification and
add their
user_id, the
notification_id
and a status on
whether it has
been sentin the
sent_notificatio
ns table.

was returning
None. This
should only
happen if the
notification id or
target id was
not valid.

entire server
the target_id is
set to None.
But

get target _grou
p checks if a
target_id exists.
Since the id is
None it believes
target id is
doesn't exist.

Addressing the
entire server is
now done by a
special code

95

Jack Leverett 7714 50639
“all-{server
code}’ this
string is also
made an illegal
username, so
the target_id is
not mistaken.

N.2A.II get_target_grou | The culprit line
p continuesto | was remove
return None. and replaced
Dueto a with an if/else
misuse of the statement.
“is” built in
function
returning False.

N.2A.1l As expected

N.3A.l Testing wether | The As expected

the user_notificatio
user_notificatio | n_service
n_service can background
send a queued | task sends a
notification to a | emits the
logged in client | notifiation to a
connected
client and sets
the time_sent to
the current time
and setting the
column set to
True.
N.4A.l Removal of The As expected
notifications notifications
that are over from

their expiration
time. By the
server
background
service

notifications_se
nt are removed
as to stop the
user_notificatio
n_service
picking them up
and sending

96

Jack Leverett 7714 50639
expired
notifications.

End to End tests

Organisation Tab

Test Number Test Description |Expected Observed Action

organisation tab
at the bottom of
the screen

All users from
here on will be
management or

screen to the
“organisation”
screen

ORG.1A.l Checking if the |Since the useris
organisation tab |just a member
appears for a and not a team
non- leader the tab
management should not
(and above) and |appear
non-team leader.
In this case the
user will be of
level member
and not a team
leader
ORG.1B.I Clicking the Change the The tab for the |The function that
organisation tab |screen to the organisation adds the tab to
at the bottom of |“organisation” page did not the bottom of the
the screen screen appear screen (after
All users from checking the
here on will be users level) was
not called in the
management or .
homepage init
team leader
method
ORG.1BL.II Clicking the Change the As expected

97

Jack Leverett

team leader

7714

50639

ORG.1C.I

Checking the Ul
and the look of
the page

There should be
a top bar
displaying the
app name, a
settings icon, a
profile icon and
an additional
menu for sorting
the homefeed.
The content of
the page itself
should contain 2
buttons teams
and

The 2 buttons
are squished
down in the
bottom corner of
the page

Added some
padding to the
page itself and
gave both
buttons a
position hint to
be centred in the
x direction.

Also added
scrolling
functionality to
the page to keep
the pages
consistent

ORG.1C.lI

Checking the Ul
and the look of
the page

There should be
a top bar
displaying the
app name, a
settings icon, a
profile icon and
an additional
menu for sorting
the homefeed.
The content of
the page itself
should contain 2
buttons teams
and

As expected

ORG.2A.l

Pressing the
“occupations”
button

This should
change your
page to the
occupations
management

page

As expected

ORG.2B.I

Pressing the
“teams” button

This should
change your
page to the

98

Jack Leverett

7714

occupations
management

page

50639

Test Image Image
Number |Number
ORG-lA-I 1
o O 0
<D L il
© O QA
e 1
oD L i,

99

Jack Leverett

ORG.1B.I |1
I

7714

BeOpen

50639

ORG.1C.1|1

100

Jack Leverett

ORG.1C.1|1
|

7714

50639

ORG.2Al|1

No occupations

101

Jack Leverett 7714 50639

Login and Register

102

Jack Leverett

7714

50639

Test Number

Test Description

Expected

Observed

Action

U.1A.l The login from | After pressing As expected Added a popup
the client ui, login the client message at the
entering a will receive a bottom of the
correct status message screen on
username and | (not displayed successful login
password on ui) and the

screen will
switch to the
homepage

U.1B.I The login from | After pressing As expected Need to display
the client ui, the login button what the
entering a the text field problem is to
Incorrecct should go red the user
username and | indicating an (incorrect
password error details or

connection
error)

U.1B.II Implemented a | The textfields As expected
popup that should go red
displays the and an error
error message | message
from the server | should popup at
to the user. the bottom

U.1C.I The login from | The textfields As expected
the client ui, should go red
entering a and an error
Incorrecct message
username and | should popup at
a correct the bottom
password

U.1D.l The login from | The textfields As expected
the client ui, should go red
entering a and an error
correcct message
username and | should popup at
a incorrect the bottom
password

U.1E.I The login from | The textfields As expected

103

Jack Leverett

the client ui,
entering a
correct
username and
no password

7714

should go red
and an error
message
should popup at
the bottom

50639

registration with
valid
credentials

register the
page should
change back to
the login and a

U.1F.I The login from | The textfields As expected
the client ui, should go red
entering a no and an error
username and | message
a correct should popup at
password the bottom
U.1G.I The login from | The textfields As expected
the client ui, should go red
entering a no and an error
username and | message
a no password | should popup at
the bottom
U.2A.l Clicking the Changes the As expected
register button | screeen to the
registration
screen with all
the correct
fields
U.2B.I Clicking the Changes the As expected
Admin Register | text in the
button Registration
key field to
display Admin
Registration
key and
changes the
button text to
Member
register
U.2C.I Member After clicking As expected

104

Jack Leverett 7714 50639
popup message
indicating a
successful
registration.
U.2D.I For these After clicking As expected
following tests | register the
the server is page should
configured to change back to
accept the login and a
usernames popup message
between 3 and | indicating a
25 characters successful
long (inclusive). | registration.
Member
registration with
a username
thats 3
characters long
U.2E.I Member After clicking As expected
registration with | register a
a username popup message
that is less than | with a error
3 characters stating an
long problem with
the length of
the username
U.2F.I Member After clicking As expected
registration with | register the
a username page should
that is 25 change back to
characters long | the login and a
popup message
indicating a
successful
registration.
U.2G.1 Member After clicking As expected
registration with | register a
a username popup message
that is more with a error
than 25 stating an

105

Jack Leverett

characters long

7714

problem with
the length of
the username

50639

U.3A.l

Admin
registration with
valid
credentials

On register
click their
should be a
popup for
successful
registration and
the screen
should switch
back to the
login screen.
The server
should also add
corresponding
entries in the
tables

Didnt register
with the correct
label. Reason is
the client is not
emitting the
reg_admin
event

Added a class
attribute to
define the
registration
mode (member
or admin) on
registration
submit, it sets
the event call
based on the
mode

U.3A.lI

Admin
registration with
valid
credentials

On register
click their
should be a
popup for
successful
registration and
the screen
should switch
back to the
login screen.
The server
should also add
corresponding
entries in the
tables

As expected

U.3B.I

Admin
registration with
no credentials

On register
click their
should be a
popup for an
unsuccessful
registration.
The server

As expected

106

Jack Leverett

7714

should not
create any table
entries

50639

url of the server
(hosted locally)
and clicking

should display
an appropriate
popup message

U.4A.l Entering a valid | The page The url was Added atry a
url of the server | should display | counted as return
(hosted locally) | an appropriate | invalid. This statement to
and clicking popup message | was because start client so it
connect at the bottom of | there was no returns True
the screen and | way currently when
change the for the successfully
page to the start_client connected and
login page function to False when
communicate unsuccessful
whether it was
successful or
not.
U.4A.ll Entering a valid | The page The url This package
url of the server | should display | continues to was remove
(hosted locally) | an appropriate | count as and replaced
and clicking popup message | invalid. Thisis | with a try and
connect at the bottom of | caused by the | except in the
the screen and | urllib error sio connection
change the checking
page to the process which
login page denys any urls
that point to
localhost.
U.4A.1lI Entering a valid | The page There was no Add a popup
url of the server | should display | popup message | message for
(hosted locally) | an appropriate | at the bottom of | when both
and clicking popup message | the page. successful
connect at the bottom of connection and
the screen and unsuccessful
change the connections
page to the
login page
U.4A.11I Entering a valid | The page As expected

107

Jack Leverett

connect

7714

at the bottom of
the screen and
change the
page to the
login page

50639

U.4B.I

Entering an
invalid url and
clicking connect

The page
should display
an
unsuccessful
connection
message. It
should also
make the
textbox go red
and remind the
user to include
http:// or https://

As expected

Test Image
Number

Number

Image

U.1A.l 1

Username

user

BeOpen

108

Jack Leverett

U.1A.l

2

7714 50639

U.1B.I

Username

uniqueusernma

Password

supersecurepassword

109

Jack Leverett

7714 50639

U].Bl 2 BeOpen
Username
Password

U.1BL.II 1 BeOpen

Username

unigueusername

Password

supersecurepassword

FAILED: invalid login credentials

110

Jack Leverett

7714 50639

U.1C.I 1
Username
unigueuser
Password
pass
U.1D.1 1

Username

user

Password

supersecurepass

FAILED: invalid login credentials

111

Jack Leverett

7714 50639

U.1E.l 1
Username
user
Password
FAILED: inv
U.1F.I 1

Username

Password

pass

FAILED: invalid login credentials

112

Jack Leverett

7714 50639

U.1G.1 1
Username
Password
FAILED: inval
U.2A.l 1

Username

Password

Re-enter password

Registration key

= —
L
4

113

Jack Leverett 7714 50639

U.2B.I 1

Username

Password

Re-enter password

Admin Registration Code

u.2C.l 1

Username

user/

Password

pass

Re-enter password

pass

Registration key

secret

114

Jack Leverett 7714 50639

u.2C.1 2
Filter Filter Filter Filter
64296942-0821-479¢-83d1-0630666d538c user 58¢18h8f5a19f3e5858a676b1bef3c6ab15... member
15288762-784d-4539-b291-54e6e484c529 user? 2394be384be86f8f59dd98720c4e918a190... member
b02889ch-30b7-48f5-8af5-f70c4eBc32e2 user3 7b548891945737h4e9562c625903299¢6... member
636cce26-039¢-4b89-aB2f-h95d218d1784 userd 683084130510555830374bh2hc86128884... member
2324789f-249a-4870-9bbf-9319e4cf237e user5 fd91b02c74fb64397853aeef50efd2907f7b... member
214fd34b-31d7-4d7¢-bf80-d1d33d29bdec userb 804a7bd29e53b31da77ff254ebf7bead54c... member
22ec0d99-b137-40c5-ae49-3e1d37a62820 user? 7250fbcc34fc7f286422c023a0432d9cbicba... member
u.2D.1 1
= Register
Register
Admin Register
y

115

Jack Leverett 7714 50639

u.2D.I 2
Filter Filter Filter Filter
64296942-d821-479¢-83d1-0630666d538c user 58c18h8f5a19f3e5858a676b1bef3cbabl5... member
d5288762-784d-4539-b291-54e6484c529 user2 2394be384be86f8f59dd98720c4918a190... member
b02889cb-30b7-48f5-8af5-f70c4eBc32e2 user3 7b54889e1945737h4e9562¢6a59b3299¢6... member
636cce26-039c-4b89-a82f-h95d218d1784 userd 683084130510555830374bb2bc86128884... member
2324789f-2492-4870-9bbf-9319e4cf237e userd fd91h02c74fb64397853aeef50efd29077b... member
214fd34b-31d7-4d7c-bf80-d1d33d29bdec userb 804a7bd29e53b31da77ff254ebf7bead54c... member
22ec0d99-b137-40c5-ae49-3e1d37a62820 user? 7250fbcc34fc7f286422c023a0432d9cheba... member
8edcce75-6c8a-475b-badd-f28hc8d268el ken 0418bf3d859c0be5412a32edc73a36aa’fh... member
U.2E.I 1
= Register
Register
Admin Register
y

116

Jack Leverett

U.2E.I

2

7714 50639

< Register

Username

ke

Password

pass

Re-enter password

pass

Registration key

secret

Register

Admin Register

FAILED: username cant be shorter than 3 characters or longer than 25 characters

U.2F.I

< Register

Password

pass

Re-enter password

pass

Registration key

secret

Register

Admin Register

117

Jack Leverett

7714

50639

U.2F.I 2
Filter Filter Filter Filter
64296942-d821-479e-83d1-0630666d538¢c user 58c18b8f5al9f3e5858a676blbef3c6abl5... member
d5288762-784d-4539-b291-54e6e484c529 user2 2394be384beB6f8f59dd98720c4e918a190... member
b02889cb-30b7-48f5-8af5-f70cdeBc32e2 user3 7b54889e1945737b4e9562c6a59b3299¢6... member
636cce26-039c-4b89-a82f-b95d218d1784 userd 683084130510555830374bb2bc86128884... member
a324789f-249a-4870-9bbf-9319e4cf237e user5 fd91b02c74fb64397853aeef50efd2907f7b... member
214fd34b-31d7-4d7c-bf80-d1d33d29bdec userb 804a7bd29e53b31da77ff254ebf7bead54c... member
22ec0d99-b137-40c5-ae49-3e1d37a62820 user? 7250fbcc34fc7f286422c023a0432d9c6ecba... member
8e5cce75-6c8a-475b-b44d-f28bc8d268el ken 0418bf3d859c0be5412a32edc73a36aa’fb... member
19c1d462-5bb2-4a90-a9b1-c4d75f661789 | thisis25characterusername cdf09752549a2618fc1e3b18274b5139594... member

U.2G.I 1

Password

pass

Re-enter password

pass

Registration key
secret

Register

Register

Admin Register

118

Jack Leverett 7714 50639

U.2G.1 2

< Register

Username

thisisa26characterusername

Password

pass

Re-enter password

pass

Registration key
secret

Register

Admin Register

FAILED: username cant be shorter than 3 characters or longer than 25 characters

U ,3A, | 1 username

Filter Filter Filter Filter
64296942-d821-479e-83d1-0630666d538c use 58c18bBf5al9f3e5858a676blbef3cbabls member
d5288762-784d-4539-b291-54e6e484c529 r 2394be384be86f8f59dd98720c4e918a190... member
b02889cb-30b7-48f5-8af5-f70c4eBc32e2 s 7b54889e1945737b4e9562c! . member
636cCce26-039c-4b89-a82f-b95d218d1784 userd 683084130510555830374bb2bc86128884... member
a324789f-249a-4870-9bbf-9319e4cf237e user5 fd91b02c74fb64397853aeef50 ... member

214fd34b-31d7-4d7c-bf80-d1d33d29bdec user6 804a7bd29e53b31da77ff254ebf7bead54c... member

22ec0d99-b137-40c5-ae49-3e1d37a62820 user? 7250fbcc34fc7f286422c023a0432d9¢6cba... member
Be5cce75-6c8a-475b-bd4d-f28bcB8d268el ken 0418bf3d859c0be5412a3 c73a36aa7fb... member
19c1d462-5bb2-4a90-a9b1-c4d75f661789 i S5characterusername cdf09752549a2618fc1e3b18274b5139594... member
3127flbe-8ded4-4bb8-8e21-5af16dd91111 characterusername 3 d : eef7... member
0f0daee3-687c-4374-8cf9-d09980c6c1bd admin aldcbed039760107be348186a2c91875b2... member

119

Jack Leverett

7714

50639

Filter Filter Filter Filter

64296942-d821-479e-83d1-0630666d538c user 58c18h8f5a19f3e5858a676b1bef3c6ab15... member

d5288762-784d-4539-b291-54e6e484c529 user2 2394be384be868f59dd98720c4e918a190... member

b02889cb-30b7-48f5-8af5-f70c4eBc32e2 user3 7b54889e1945737b4e9562c6a59b3299 member

636cce26-039c-4b89-a82f-h95d218d1784 userd 683084130510555830374bb2bc86128884... member

a324789f-249a-4870-9bbf-9319e4cf237e fd91b02c74fb64397853aeef50efd2907f7b... member

214fd34b-31d7-4d7c-bf80-d1d33d29bdec 804a7bd29e53b31da77ff254ebf7bead54c... member

22ec0d99-b137-40c5-ae49-3e1d37a62820 7250fbcc34fc7f286422c023a0432d9cbiecba... member

Be5cce75-6¢8a-475b-b44d-f28bc8d268el 0418bf3d859c0be5412a32edc73a36aa7fb... member

19¢1d462-5bb2-4a90-a%b1-c4d75f661789 thisis25characterusername ¢df09752549a2618fcle3b18274b5139594,,. member

3127f1be-8ded-4bb8-8e21-5af16dd91111 thisis26characterusername 1339ba8de0f0e6eadc50b777654381ceef7... member

6d7e5f72-071b-4bbb-80ae-bacfddbd78bc admin ff7c32ed473e299cc96a4794fef0227c6e29... admin

Register

Username

Password

Re-enter password

Admin Registration Code

Register
Member Register
FAILED: username cant be shorter than 3 characters or longer than 25 characters

Filter Filter Filter Filter
member

d5288762-784d-4539-b291-5426e484C529 user2 member

b02889cb-30b7-48f5-8af5-f70c4e8c32e2 user3 . member

9c-4b89-382f-b95d218d1784 userd . member

member
member
member

120

Jack Leverett

U.4A. 1

Server URL

http://localhost:9999|

L es
S

7714

BeOpen

U.4A.l 2

Server URL
http://localhost:9999

. Remember to start with http:// or hitps://

BeOpen

121

Jack Leverett

7714 50639

U.4A.l
S
T
T
Server URL a
http://localhost:9999 \';
. Remember to start with http:/ or https.// P
=
S
N
.0
23

U.4A.llI

Server URL

http://localhost:9999

122

Jack Leverett

7714 50639

U4Allll (2
Username
Password
connection
U.4B.I 1

Server URL

http://localhost:999

123

Jack Leverett

U.4B.I

2

7714 50639

Server URL
http://localhost:999

: Remember to start with hitp. or hitps./f

Unsuccessful connection

124

Jack Leverett 7714 50639

Profile

125

Jack Leverett 7714 50639

Test Number Test Description | Expected Observed Action

P.1A.l Clicking the top | Clicking the The page Setup an if
account/profile | button changes | changes to the | statementin the
button on the the page to the | profile page but | load_content
top bar of the profile page the | the title says method of
app. This title of the page | “user’s Profile” | AccountPage to
button is used | should just be (we are logged | check if the
to access the “Profile” in as “user”) it username
users own should only being passed is
profile page display the the same as the
where they can username in session.useram
edit certain the title if we e (where the
parts of their are in another logged in
profile persons profile. | username is

stored)

P.1A.II Clicking the top | Clicking the As expected
account/profile | button changes
button on the the page to the
top bar of the profile page the
app. This title of the page
button is used should just be
to access the “Profile”
users own
profile page
where they can
edit certain
parts of their
profile

P.2A.l Checking the Clicking the As expected

contents of the
profile page
and that the ui
only displays
edit buttons on
the correct
categories. In
this case we
are logged in as
just a member.

button changes
the page to the
profile page the
title of the page
should just be
“Profile” and
edit buttons
should be next
to name, role,
biography and
occupation

126

Jack Leverett 7714 50639
P.2B.I Checking the Clicking the As expected
contents of the | button changes
profile page the page to the
and that the ui | profile page the
only displays title of the page
edit buttons on | should just be
the correct “Profile” and
categories. In edit buttons
this case we should be next
are logged in as | to name, role,
just a biography and
management. | occupation
P.2C.I Checking the Clicking the As expected
contents of the | button changes
profile page the page to the
and that the ui | profile page the
only displays title of the page
edit buttons on | should just be
the correct “Profile” and
categories. In edit buttons
this case we should be next
are logged in as | to name, role,
just an admin. | biography and
occupation
P.2D.1 Checking the Clicking the
contents of the | button changes
profile page the page to the
and that the ui | profile page the
only displays title of the page
edit buttons on | should just be
the correct “Profile” and
categories. In edit buttons
this case we should be next
are logged in as | to name, role,
just an team biography, team
leader. name and
occupation
P.3A.l Clicking the edit | When clicking As expected
button on the the edit button
nhame column where the

127

Jack Leverett

and changing it

7714

profile picture
should be
displayed will
be replaced
with an edit
box.

On submit the
Ul should
update to
reflect the
change and the
server side
database
should do the
same. The Ul
should also
replace the edit
box back with
the profile
picture

50639

P.3B.1

Clicking the edit
button on the
role column
and changing it

When clicking
the edit button
where the
profile picture
should be
displayed will
be replaced
with an edit
box.

On submit the
Ul should
update to
reflect the
change and the
server side
database
should do the
same. The Ul
should also
replace the edit

As expected

128

Jack Leverett

7714

box back with
the profile
picture

50639

P.3C.I

Clicking the edit
button on the
biography
column and
changing it

When clicking
the edit button
where the
profile picture
should be
displayed will
be replaced
with an edit
box.

On submit the
Ul should
update to
reflect the
change and the
server side
database
should do the
same. The Ul
should also
replace the edit
box back with
the profile
picture

As expected

P.3D.I

Clicking the edit
button on the
occupation
name column
and creating an
occupation
change
request.

The user is a
member in this
case

After clicking
the edit button
the profile
picture should
be replaced
with an
occupation
request
creation area
(in this case
since the user
is @ member).

The occupation
change request

On clicking the
occupation
button an
empty list would
appear

This was a
problem with
how the list was
implemented.
There was
another issue
that would
prevent proper
selection from
the list as well

129

Jack Leverett 7714 50639
should appear
on the server
side database
as well.
P.3D.II Clicking the edit | After clicking On selection of | This came
button on the the edit button | the first option down to the
occupation the profile in the list and check for a
name column picture should clicking “create | selection being
and creating an | be replaced request” an made.
occupation with an _ error message | oo the
change occupation would appear .
¢ ¢ tating “ selection was
request. requgs sta mg no the O item the
. creation area selection
The useris a o check would
L (in this case made”.
member in this) return false
since the user . .
case) However since in python
is a member). L g A
picking any if 0” is false.
The occupation | other option
change request | works fine
should appear
on the server
side database
as well.
P.3D.III Clicking the edit | After clicking Didn’t clean the

button on the
occupation
name column
and creating an
occupation
change
request.

The user is a
member in this
case

the edit button
the profile
picture should
be replaced
with an
occupation
request
creation area
(in this case
since the user
is a member).

The occupation
change request
should appear
on the server
side database
as well.

text from the
create request
area. It also
didn’t set the
editing area
back to the
profile picture.
There is also no
way to close
the area if your
done.

130

Jack Leverett

7714

50639

P.3D.II Clicking the edit | After clicking As expected
button on the the edit button
occupation the profile
name column picture should
and creating an | be replaced
occupation with an
change occupation
request. request
The user is a c.reat?on area

o (in this case

member in this .

case ;lnce the user
is a member).
The occupation
change request
should appear
on the server
side database
as well.

P.3E.I Clicking the This should As expected
cancel button change the
on a pending request status
request to Approved,

this change
should be
reflected in the
database

Test Image Image

Number |Number

131

Jack Leverett 7714 50639

P.1A.l

Username

user

Name

James morgan 4

Role

maths teacher 4
Biography

this is a very long biography for the maths teacher james tommas, he loves

maths. Lorem ipsom blahh blahh blah i have an idea when this text box is /
created it should take the current content and set that as the .text of the box

this way the user can just edit the text instead of have to do an entire new bio

132

Jack Leverett

P.2A.l 1

7714 50639

Username
user

Name /
James morgan

Role /7

maths teacher

Occupation name
None ’

Team name
None

Biography

this is a very long biography for the maths teacher james

tommas, he loves maths. Lorem ipsom blahh blahh blah i have

an idea when this text box is created it should take the current
content and set that as the .text of the box this way the user 4

can just edit the text instead of have to do an entire new bio
just to replace a spelling mistake. This box should aslo allow

miilti line hawever thici ie nnt a nriaritv

133

Jack Leverett

P.3A.l 1

7714

50639

Enter a new value

Username
user

Name /7
James morgan

Role s

maths teacher
Biography
this is a very long biography for the maths teacher james tommas, he loves
maths. Lorem ipsom blahh blahh blah i have an idea when this text box is

created it should take the current content and set that as the .text of the box
this way the user can just edit the text instead of have to do an entire new bio

/7

P.3A.l 2

F

Username
user

Name
Jeremy Morgan 4

Role ya

maths teacher
Biography
this is a very long biography for the maths teacher james tommas, he loves
maths. Lorem ipsom blahh blahh blah i have an idea when this text box is

created it should take the current content and set that as the .text of the box
this way the user can just edit the text instead of have to do an entire new bio

7

P.3A.l 3

134

Jack Leverett

P.3B.I 1

7714 50639

Enter a new value

Role s

maths teacher

Occupation name
None 4

Team name
None

Biography

this is a very long biography for the maths teacher james tommas, he loves
maths. Lorem ipsom blahh blahh blah i have an idea when this text box is
created it should take the current content and set that as the .text of the box
this way the user can just edit the text instead of have to do an entire new bio

/7

P.3B.I 2

Role /s

mathematics teacher

Occupation name
None 4

Team name
None

Biography

this is a very long biography for the maths teacher james tommas, he loves
maths. Lorem ipsom blahh blahh blah i have an idea when this text box is
created it should take the current content and set that as the .text of the box
this way the user can just edit the text instead of have to do an entire new bio

7

b

P.3B.1 3

135

Jack Leverett

P.3C.I 1

7714

Enter a new value

Role
maths teacher

Occupation name
None

Team name
None

Biography

this is a very long biography for the maths teacher james tommas, he loves
maths. Lorem ipsom blahh blahh blah i have an idea when this text box is
created it should take the current content and set that as the .text of the box
this way the user can just edit the text instead of have to do an entire new bio

/7

P.3C.I 2

Enter a new value

This is a much shorter biography

Role
mathematics teacher

Occupation name
None

Team name
None

Biography

this is a very long biography for the maths teacher james tommas, he loves
maths. Lorem ipsom blahh blahh blah i have an idea when this text box is
created it should take the current content and set that as the .text of the box
this way the user can just edit the text instead of have to do an entire new bio

’

136

Jack Leverett

P.3C.I

3

7714 50639

Role ye

mathematics teacher

Occupation name
None 4

Team name
None

Biography
This is a much shorter biography

P.3C.I

Filter

P.3D.I

new request
*Occupation description

current request
occuaption

Name
Jeremy Morgan

status

Role
mathematics teacher

QOccupation name
None

Biography
This is a much shorter biography

137

Jack Leverett

7714

P.3D.I 2
an Profile 2>
new request
cleaners 'r Th~~a who keep the learning place spick and span Create request
current st
status Ccancel
occuap
N s
J prgan /
R >
reremermrartics teacher 4
Occupation name >
None 4
Biography
This is a much shorter biography
/7
P.3D.II 1

occuaption

Role
mathematics teacher

Occupation name
None

Team name
MNone

Biography
This is a much shorter biography

an Profile >
new request
Select an occupation ~ Occupation description Create request
current request
q status Cancel

138

Jack Leverett 7714 50639

P.3D.II 2

new request

pation description

teacher

current
occuap

student status

cleaners

Occupation name
None

Team name
None

Biography
This is a much shorter biography

P.3D.1I 3

new request

current request

B status
occuaption

Role
mathematics teacher

Occupation name
None

- The people who teach knowledge to the smaller people -
/7
Vd

Team name
None

Biography
This is a much shorter biography

139

Jack Leverett 7714 50639

P.3D.II 4

hew request
teacher The people who teach knowledge to the smaller people Create request

current request

. status Cancel
occuaption

Role »
mathematics teacher 4

Occupation name ya
None

Team name
None

Biography
This is a much shorter biography

No selection made

P.3D.II 5 INCOMING STATUS:
{'time': '2023-10-03T18:@3:54Z', 'level': 'INFO', 'message':
setting current selection: @

current selection @

1

P.3D.III 1

ah Profile -

new regquest
ieaches The people who teach knowledge to the smaller people Create request

current request
- . status Canod
occuaption _

oy /s
?:cupatlnn name Vs
Team name

Biography
This is a much shorter biography

140

Jack Leverett

P.3D.IlI

1

7714

- Profile

new request
Select an occupation

current request

Status: Pendin
teacher :

Role
mathematics teacher

Occupation name
None

Team name
None

Biography
This is a much shorter biography

Create request

Cancel

P.3D.IlI

2

Filter Filter Filter

9... fefgfafo-80f0-4...

P.3E.I

2 Profile 2>
new request
Select an occupation Create request
current request .
q Status: Pending Cancel
teacher
Jeremy Morgan v
Role >
mathematics teacher 4
QOccupation name X
None
Team name
Biography
This is a much shorter biography
/

141

Jack Leverett

P.3E.I

2

7714

Filter

9... fefgfafo-80f9-4...

50639

P.3E.I

Profile

new request
Select an occupation

current request

Jeremy Morgan

Role
mathematics teacher

Occupation name
None

Team name
Biography
This is a much shorter biography

Status: No request

Create request

Cancel

P.3E.I

Filter Filter

Filter

142

Jack Leverett 7714 50639

Friends

143

Jack Leverett

7714

50639

Test Number

Test Description

Expected

Observed

Action

F1A.l

To see if the
basic Ul is
displayed
correctly

There should
be a top bar
with a back
button. Then in
the content
area of the
page there
should be a
button with the
text “requests”
and a list of
friends. The
user being
tested here has
no friends.

The screen
should also be
scrollable.

The top button
is being cut off
as the scroll
view seems to
be clipping into
the top bar

| removed the
boxlayout that
was surrounding
the scrollview.
And added the
padding to the
scrollview itself
instead of the
above
boxlayout.

F.1A

To see if the
basic Ul is
displayed
correctly

There should
be a top bar
with a back
button. Then in
the content
area of the
page there
should be a
button with the
text “requests”
and a list of
friends. The
user being
tested here has
3 friends.

The screen
should also be
scrollable.

As expected

F.2A.

Removing a
friend using the
cross button

On release of
the x button the
server

As expected

144

Jack Leverett 7714 50639

displayed next | database

to their should be

username updated to
remove this
friend and the
client Ul should
also update to
show the friend
has been
removed

F.3A. Pressing the This should As expected
back button on | bring you back
the friends to the account
page screen

F.4A.l Pressing the This should As expected
“requests” bring you to the
button friend requests

screen.

F.4B.I General Ul of There should There is Remove the
the friend be a top bar uneeded padding and
requests screen | with a back padding around | included the

button and 2 the whole load_content
scrollable areas | screen. There method in the
one outgoing iS no space init (this is likely
friend requests | between the what was
each requests | username text | blocking the
and the other bar and the add | items from
incoming friend | friend button. being
requests. These items intractable)
The user being | also cant be

used here has | interacted with

0 incoming and | at all

0 outgoing

requests

F.4B.II General Ul of There should When the This is likely to
the friend be a top bar request button | do with the
requests screen | with a back is pressed the request

button and 2
scrollable areas
one outgoing

program
freezes and the
needs to be

functionality
potentially the
server is not

145

Jack Leverett

7714

friend requests
each requests
and the other
incoming friend
requests.

The user being
used here has
0 incoming and
0 outgoing
requests

forced closed

50639

returning the
correct callback
code.

Turns out the
client was
calling the
“friend_get_requ
ests” event
instead of
“friend_get_requ
est”

the friend
requests screen

be a top bar
with a back
button and 2
scrollable areas
one outgoing
friend requests
each requests
and the other
incoming friend
requests.

The user being
used here has

complains that
there is no such
thing as an
“accepted”
column in the
friends table

F.4BL.lII General Ul of There should The server In the friend
the friend be a top bar creates an error | class the
requests screen | with a back saying there is | method is called
button and 2 no get_requests
scrollable areas | “get_request” then in the
one outgoing method in handler it was
friend requests | friend called
each requests get_request.
and the other This was
incoming friend changed in the
requests. handler to
The user being f:onform with the
used here has info.py
0 incoming and
0 outgoing
requests
F.4BL.lII General Ul of There should The server The column in

the table is
called
“approved” so
changed the
SQL command
to use this
instead

146

Jack Leverett

7714

0 incoming and

50639

the friend

be a top bar
with a back

0 outgoing
requests
F.4B.IV General Ul of There should Complains that | This is because
the friend be a top bar nonetype object | | didn’t account
requests screen | with a back is not iterable for if the return
button and 2 on the client. on either
scrollable areas | This suggests requests was
one outgoing the server is None (for no
friend requests | returning None | requests). So
each requests | on incoming now if either one
and the other and or outgoing | is None they are
incoming friend | requets respectively set
requests. to [].
The user being Additionally the
used here has for loops were
0 incoming and split up where
0 outgoing they added the
requests incoming and
outgoing
widgets
F.4B.V General Ul of There should The lists are Seperated the
the friend be a top bar clipping into the | page into the
requests screen | with a back text field and making a friend
button and 2 button request area
scrollable areas and 2
one outgoing individually
friend requests scrollable lists.
each requests This solves any
and the other problems with
incoming friend clipping.
requests. Additionally
The user being centred the title
used here has and fixed the
0 incoming and direction of the
0 outgoing back button
requests
F.4B.VI General Ul of There should As expected

147

Jack Leverett

requests screen

7714

button and 2
scrollable areas
one outgoing
friend requests
each requests
and the other
incoming friend
requests.

The user being
used here has
0 incoming and

50639

outgoing
requests areas
of the page

The user being
used here has
2 incoming and
3 outgoing
requests.

request area
should display
2 incoming
friend request
each one
should have the
username, an
accept button
and a reject
button

The outgoing
request area
should show 3
outgoing
request along
with each ones
username and

items go off the
side of the
screen and the
tick icon is not
displaying
correctly

0 outgoing
requests
F.5A.1 Incoming and So each area As expected
outgoing should instead
requests areas | show a single
of the page item reading
The user being that there ?re
used here has | "° requests
0 incoming and
0 outgoing
requests.
F.5B.1 Incoming and The incoming The incoming The icon name

is wrong it
should be called
“check” not
“tick”.

The check icon
is also being

moved to the
left

148

Jack Leverett 7714 50639
a cancel button
next to each.

F.6A.l Clicking the Clicking on a It changed to Validation on
request itself users request the page but the creation of
(not its buttons) | should switch the page also the friends icon
to get to the screen to the displays the and page
users profile account page friends icon this
who is making | and clicking the | should only be
the request/is back button accessble to
being should then the user
requested take you back | themselves or

to the friend an admin
request page.

F.6A.lI Clicking the Clicking on a As expected
request itself users request
(not its buttons) | should switch
to get to the screen to the
users profile account page
who is making | and clicking the
the request/is back button
being should then
requested take you back

to the friend
request page.

F.7A.l Clicking the This should The server This is likely
accept button remove the errors claiming | because this is
on an incoming | request from that “friend_id” | meant to read
friend request | the list, this iS never self.friend_id

person should | defined.

then be added
to the friends
list on the
“friends” page.

And this person
should be listed
as an accepted
friend in the
server
database

149

Jack Leverett 7714 50639
F7A Clicking the This should The object has | This is a deeper
accept button remove the no attribute logical problem.
on an incoming | request from “friend_id". :
) _) There is no
friend request | the list, this friend id
person should attribu_te in the
then be added |)
to the friends class eve
. created so |
list on the
e y created a new
friends” page. property for it
And this person which is set
should be listed when a friend
as an accepted username is
friend in the assigned.
server
database
F7A Clicking the This should As expected
accept button remove the
on an incoming | request from
friend request | the list, this
person should
then be added
to the friends
list on the
“friends” page.
And this person
should be listed
as an accepted
friend in the
server
database
F.7B.1 Clicking the This should No changes Changes the
reject button on | remove the were made self.reject to
an incoming request from correctly. This root.reject
friend request | the list. is because the | method

And remove the
request from
the server side
database.

button was
calling
self.reject
instead of
root.reject

150

Jack Leverett 7714 50639

F.7B.lI Clicking the This should On clicking This is a server
reject button on | remove the reject the Ul side issue and
an incoming request from refreshes likely a
friend request | the list. correctly and permissions

And remove the doesn’t freeze | issue.

but even after
request from _ It came down to

: refreshing the :

the server side a syntax error in
database. requg Sts the SQL

persists

command.

It seams the

request isnt

being correcly

removed from

the table as

shown in the

pictures

F.7B.11I Clicking the This should As expected
reject button on | remove the
an incoming request from
friend request | the list.

And remove the
request from
the server side
database.

F.7C.l Clicking the This should On clicking The cancel
cancel button remove the cancel the Ul method wasn’t
on an outgoing | request from does refresh sending any
friend request. | the list and but there is no | data about

remove the change to the which request to

request from list. cancel along

the server side with it. Hence

database the server did
nothing

F7C. Clicking the This should As expected
cancel button remove the
on an outgoing | request from
friend request. | the list and

remove the

request from
the server side

151

Jack Leverett 7714 50639
database
F.8A.l Entering a valid | The box should | The program
username and | clear and the freezes due to
pressing request should | a dictionary key
request be created on error
the server side
database
F.8A.lI Entering a valid | The box should | Shows the
username and | clear and the wrong status
pressing request should | message and
request be created on doesn’t clear
the server side | the text box
database
F.8A.1NI Entering a valid | The box should | As expected
username and | clear and the
pressing request should
request be created on
the server side
database
Test Image Image
Number | Number

152

Jack Leverett

F.1A. 1

No friends

7714

BeOpen

F.1A.ll 1

useré

user

user3

BeOpen

153

Jack Leverett

7714

F.2A.l 1 BeOpen
user =2
user3 =8
F.2A.l 2 BeOpen

user

154

Jack Leverett

F.3A. 1

7714 50639

Username
user2

Name
user2 4

Role yy

None

Biography

F.FB.I 1

Enter a username -

Incoming Requests

No incoming requests

Outgoing Requests

No outgoing requests

155

Jack Leverett

F.4B.I 1

No friends

7714

BeOpen

F.4B.lI 1

No friends

BeOpen

156

Jack Leverett

F.4B.lI

157

2

7714

50639

Jack Leverett 7714 50639

selT.op].ge
AAAAAAAAAAANAANANNANAAN
File "/home/ltbleach/Nextcloud/code/projects/current/becpen/code/server/modules/usex/info.py”, line 326, in get

F4B.1lI 1

_requests
self.cur.execute("SELECT user_id FROM friends WHERE friend_id = ? AND accepted = ?", (self.id, False))

sglite3.OperationalError: no such column: accepted

now: 1695993838.476668

disconnected hFQob_ei-eZK1ZWHAAAB
127.0.0.1 - - [29/Sep/2023 14:24:07] "GET /socket.io/7transport=websocket&EIO=4&sid=7vdRG-6u-ZevFRyMAAAARt=169599

3831.2034314 HTTP/1.1" 200 @ 16.707907
now: 1695993848.483466
ACwsgi exiting

F4B.V

Requests

3 g Request
No Duopmimg) reguesis S

158

Jack Leverett

7714 50639

F.4B.VI 1
Enter a username
Incoming Requests
No incoming requests
Outgoing Requests
No outgoing requests
F.5A.1 1

Enter a username -

Incoming Requests

No incoming requests

Outgoing Requests

No outgoing requests

159

Jack Leverett 7714 50639

F.5B.1 1

Enter a username

Incoming Requests

user >

user3 >

Qutgoing Requests

No outgoing requests

F.5B.II 1

Enter a username

Incoming Requests
v user X

' user3 X

Outgoing Requests

useré X
user4 p 4
admin p 4

160

Jack Leverett

F.6A.l 1

7714

Username
user

Name
Jeremy Morgan

Role
mathematics teacher

Biography
This is a much shorter biography

F.6A.lI 1

Username
user

Name
Jeremy Morgan

Role
mathematics teacher

Biography
This is a much shorter biography

F.7A.l 1

e/1tbleach/Nextcloud/code/projects/current/beopen/code/server/modules/user/info.py",

? AND user_id

?", (self.id,

line 374, in apy

fri

end_id))

161

Jack Leverett 7714 50639

F. 7A|| 1 File "/home/ltbleach/Nextcloud/code/projects/current/beopen/code/server/modules/user/info.py", line 374, in app
pve_request
self.cur.execute("SELECT approved FROM friends WHERE friend_id = ? AND user_id = ?", (self.id, friend_id))

AANAAARAA

F7A. 1

F.7B.1 1

Requests 2>

Request

Incoming Requests

v userd 4

Outgoing Requests
userb x

user4 X

162

Jack Leverett

7714 50639

F?Bl 2 BeOpen
Enter a username
Incoming Red “python3.11" is not responding.
You may choose to wait a short while for it to continue or force
« users the app to quit entirely. X
Force Quit
Outgoing Requests
useré 4
user4 X
F.7B.I 3 File "/home/ltbleach/.conda/envs/client-beopen/lib/python3.11/site-packages/kivy/

lang/builder.py", line 55, in custom_callback
exec(__kvlang__.co_value, idmap)
File "/home/ltbleach/Nextcloud/code/projects/current/beopen/code/client/modules/u
i/beopen.kv", line 675, in <module>

self.reject()

AAAANANNN

File "kivy/weakproxy.pyx", line 32, in kivy.weakproxy.WeakProxy.__getattr__
AttributeError: 'IconRightWidget' object has no attribute 'reject'
Killed

163

Jack Leverett

7714 50639

F.7B.II
Enter a username
Incoming Requests
v userS X
Outgoing Requests
useré x
userd X
F.7B.1I

Enter a username

Incoming Requests

No incoming requests

Outgoing Requests

useré

user4

164

Jack Leverett

7714

50639

F.7B.llI 2
Filter Filter
d5288762-784d-
d5288762-784d-
d5288762-784d- -b291-54e6e484c
d5288762-784d-4539-b291-54e6e484c529
d5288762-784d- -b291-54e6e484c529
214fd34b-31d7-4d7c-bf80-d1d33d29bdec
F7C.l 1

Requests

Incoming Requests

No incoming requests

Qutgoing Requests
user4

admin

Request

165

Jack Leverett

F.7C.l

2

Enter a username

Incoming Requests

No incoming requests

Outgoing Requests
user4

admin

7714

BeOpen

F.7C.lI

Enter a username

Incoming Requests

No incoming requests

Outgoing Requests

admin

BeOpen

166

Jack Leverett

F.7C.I

2

7714 50639

friend_id

Filter Filter Filter
d5288762-784d-45
d5288762-784d-45
214fd34b-31d7-4d7c-bf80-d
d6b00e71-4329-4d0 7-63d6fd121ad3
d5288762-784d-4539 € £ £ 66d538¢c
d5288762-784d-4539-b291-54e6e484c529 b02889ch-30b7-48f5-8af5-f70cdeBc32e2
214fd34b-31d7-4d7c-bf80-d1d3 ‘ d5288762-784d-4539-b291-54e6e484c529

F.8A.l

Enter a username

user?

Incoming Rec “python3.11" is not responding.

You may choose to wait a short while for it to continue or force
the app to quit entirely.
No incomi

Force Quit

Outgoing Requests

No outgoing requests

F.8A.l

on_release: root.add_friend()
AAAAAANNAANAA

File "/home/ltbleach/Nextcloud/code/projects/current/beopen/code/client/main.py", line 856, in add_friend

message = f"{session.status['level']}: {session.status['messages']}"
~~ s AAAAANAAAANAN

KeyError: 'messages’

167

Jack Leverett

7714

50639

F.8A.ll 1
Enter a usemname
user2
Incoming Requests
No incoming requests
Outgoing Requests
MNo outgoing requests
F.8A.1lI 1

Enter a username

Incoming Requests

No incoming requests

Outgoing Requests

Mo outgoing requests

168

Jack Leverett

F.8A.llI

2

7714

Table: B friends

Filter Filter

642969... d528876...

Filter

50639

169

Jack Leverett

Notifications

Test Number

N2.1A.1

N2.1A.11

N2.1B.1

N2.1C.I

170

Test Description

Entering the
notification
screen. Clicking
the notification
button at the top
of the home
screen

Entering the
notification
screen. Clicking
the notification
button at the top
of the home
screen

Ul elements and
look of the page

Scrolling the
notification list

7714

Expected

On release of
the button the
screen should
change to the
notification
screen

On release of
the button the
screen should
change to the
notification
screen

There should be
a topbar
displaying
“Notifications” or
“{lusername}’s
Notifications” if
(for example an
admin) is
viewing another
users
notifications.

On using the
scroll wheel or
swiping down
the list of
notifications
should shift
downward.

50639

Observed Action

The app crashed This was due to
with no error the client calling
messages a non-existant
displayed on the event. This was
app itself or on fixed

the server

As expected

As expected

As expected

Jack Leverett

N2.1D.I

N2.2A.1

N2.2B.1

N2.2B.1I

171

7714

Clicking the back This should

button at the top | change the page

of the notification | back to the

page

Displaying the
notifications
themselves.

The user being
used here has 0
notifications

Displaying
notifications on
the notification
screen.

The user being
used here has 5
notifications

Displaying
notifications on
the notification
screen.

The user being
used here has 5
notifications

homefeed (if
accessing own
notifications) or
if an admin
accessed the
notifications of
another user it

should return the

admin to the
users profile.

The notification
area should
have a single
item reading “no
notifications”

There should be
5 notifications
each displaying
a title some
without extra
content. All
should have a
cross button
next to them

There should be
5 notifications
each displaying
a title some
without extra
content. All
should have a
cross button

As expected

The client
crashed after
clicking the
notification
button

Notifications
appeared with
correct titles but
the content of
the notifications
are is not correct

50639

No error
message was
displayed so this
was likely a bad
server call or
server error.

Error in the
variable name
for the
notification
information pull.

Jack Leverett 7714 50639

next to them

N2.2C.I New notification Here the user The client errors | This is because
being received should see a out complaining the
by the client and 'new notification |about a notification_id
added to the Ul | added to their dictionary key isnt sent by the
in real time. already loaded error. user notification
. |notification page service. Thisis a
Here a user will _
: server side
be logged in on _
the notification serV|.ce thgt
screen when 5 pro.v.ldeg live
P notifications to
test notifications _
are created, logged in users.
these I will change this
notifications so the service
should then be also provides the
put on the Ul. notification 1D to
the client.
N2.2C.1I New notification |Here the user The client errors, Thisis a
being received | should see a this time its that | limitation of the
by the client and 'new notification |graphics are gui framework
added to the Ul |added to their trying to be but will be
in real time.Here already loaded |added outside of | substituted with
a user will be notification page ' the main thread | a refresh button.
logged in on the of the gui. For this reshresh
notification button to work
screen when 5 the load_content
test notifications method was
are created, tweaked to clear
these notifications first
notifications before fetching
should then be all again.
put on the UL. And the user will
receive a live
notification from
their OS anyway.
N2.2C.III While the user is | The newly As expected
on the created
notifications notifications

172

Jack Leverett

N2.3A.1

N2.3B.1

N2.4A.1

173

page another
client will create
test notifications.
The first user will
then click the
refresh button on
their notifications

page

Pressing the
cross button
next to a
notification, to
remove the
notification

Pressing the
cross button
next to a
notification, to
remove the
notification. In
this case it's the
last notifications

Users of 3
different levels
will be logged
into 3 clients.
There will be a
“member” user,
“management”
user and an

7714

should appear in

the list.

The Ul should
update to
remove the
selected
notification and
this change
should also be
reflected on the
server side
database

The Ul should
update to
remove the
selected
notification, and
display “No
notifications”
and this change
should also be
reflected on the
server side
database

Of the 3 users

only the admin
should receive
the notification.

Minor syntax

error server side,

other than that
as expected.

The list goes
blank after
removing the
last notifications

As expected

50639

The Ul is not
refreshed after
removing a
notification. Now
at the end of the
delete method
the load_content
method is called
again.

Jack Leverett

N2.4B.1

N2.4C.I

N2.5A.1

174

“admin” user.

A notification

directed towards
only admins will

be generated

Users of 3
different levels
will be logged
into 3 clients.
There will be a
“member” user,
“‘management”
user and an
“admin” user.

A notification

directed towards

only
management

will be generated

Users of 3
different levels
will be logged
into 3 clients.
There will be a
“member” user,
“management”
user and an
“admin” user.

A notification

directed towards

only members

will be generated

2 users will be
logged into 2
different clients
one user will be
part of the
“teachers” team

7714

Of the 3 users
only the
management
user should
receive the
notification.

Of the 3 users
only the
member user
should receive
the notification.

Of the 2 users
only the user
apart of the
“teachers” team
should receive

As expected

As expected

50639

Jack Leverett

7714

and the other the notification
apart of the
“students” team.

A notification will
be generated
intended for
“teachers” team
members only

50639

N2.6A.1 2 users willbe | Ofthe 2 users | As expected
logged into 2 only Betty
different clients. |should receive
One with the notification.
username Adam
and the other
with username
Betty
A notification will
be generated
intended for
Betty

N2.7A.1 The client will The title of the
receive a “post | notification
time” notification. should simply
The title of this read “Post time”
type of not displaying
notification is the server code
unique and so | (which is
requires some originally sent by
processing the server in the
before displaying title)
to the user

Test Image Number Image

Number

175

Jack Leverett

N2.1A.l

N2.1A.1

7714

BeOpen

“python3.11" is not responding.

You may choose t ort while for it to continue or force
pp to quitentirely.

Force Quit

Notifications

50639

No notifications

176

Jack Leverett

N2.1B.1

N2.2A.l

7714

No notifications

No notifications

BeOpen

50639

177

Jack Leverett

N2.2B.1

N2.2B.1I

7714 50639

python3.10" is not responding.

You may choose to wait a short while for it to
continue or force the app to quit entirely.

Force Quit

Notifications >

Test notification 4
Notificaition content

Test notification 1
Notificaition content

Test notification 3
Notificaition content

Test notification 0
Notificaition content

Test notification 2
Notificaition content

N2.2B.1lI

N2.2C.1

N2.2C.lI

178

i:ile " {hom tbleacm‘ﬂ xtcloud/code/projects/cu

KeyError: 'notification_id"
KeyError: 'notification_id' ssion.notification_page.add_notification(data)
Fil home/1tbleach/Nextcloud/code/projects/current/beopen/code/client/main.p:
on
notification_item = NotificationItem(self, notification['notification_id'],

AA

KeyError: 'notification_id'

peError: Cannot create graphics instruction outside the main y thread File
line 68, in kivy.graphics.instructions,Instruction.__init__
instructions.pyx", line 154, in kivy.graphics.instructions.Inst
Cannot create graphics instruction outside the main Kivy thread
vy/graphics/instructions.pyx”, line 154, in kivy.graphi i ructionGroup.__init__
y/graphics/instructions.pyx"”, line 6@, in kivy.graphics.instructions.Instruction.__init__
raphics/instructions.pyx®, line 60, in kivy.graph
Cannot create graphics instruction outside the main
TypeError: Cannot create graphi instruction ou

Jack Leverett

N2.2C.1I

7714

BeOpen

Notifications

50639

N2.2C.III

No notifications

BeOpen

Notifications

N2.3A.1

Test notification 2
Notificaition content

Test notification 4
Notificaition content

Test notification 0
Notificaition content

Test notification 1
Notificaition content

Test notification 3
Notificaition content

BeOpen

Notifications

Test notification 2
Notificaition content

Test notification 4
Notificaition content

Test notification 0
Notificaition content

Test notification 1
Notificaition content

Test notification 3
Notificaition content

179

Jack Leverett 7714 50639

N 2 . 3A I 2 [E notifications_sent

Filter

2b9014925

N2.3A.1 3

C Notifications >

Test notification 4 e
Notificaition content

Test notification 0 e
Notificaition content

Test notification 1 e
Notificaition content

Test notification 3 e
Notificaition content

N 2 . 3A_ | 4 Table: B notifications_sent by B o Filter in any cd

Filter

e69-2b9014925f9e

180

Jack Leverett 7714 50639

N2.3B.I 1 Beopen i
C Notifications 2>
Test notification X

Motificaition content

N2.3B.1 2

& Notifications >

181

Jack Leverett 7714 50639

N23B” l BeOpen - X
c Notifications 2>
Test notification X

Motificaition content

NZBB” 2 BeOpen - X

c Notifications >

No notifications

182

Jack Leverett

7714 50639

N2.4A.1

c Notifications o c Notifications > c Notifications =

No natifications No notifications Test notification X
Metificaition content

Order: member, management, admin

N2.4B.1

Notifications Notifications

No notifications Test notification X No notifications
Notif n content

Order: member, management, admin

N2.4C.1

o &

Notifications

Test notification No notifications No notifications
Notificaition content

Order: member, management, admin

183

Jack Leverett

7714

N2.6A.1

c Notifications

Notifications

No notifications

Test notification

This is a test notification

Order: Adam, Betty

184

Jack Leverett

Occupation requests

Test Number

O.1Al

O.1B.l

O.1B.1I

O.1C.l

185

Test Description

Clicking the
occupations
button on the
organisation

page

The page UlI,
look and
navigation
functionality.
This involves
scrolling

The page UlI,
look and
navigation
functionality.
This involves
scrolling

Pressing the
back button at
the top of the

7714

Expected

This should
change the
displayed screen
to the
“occupations

page”

There should be
a top bar
displaying a
back button the
top bar should
also read the
name of the
page. There
should be a
button at the top
and a area for
the list of
occupations

There should be
a top bar
displaying a
back button the
top bar should
also read the
name of the
page. There
should be a
button at the top
and a area for
the list of
occupations

This should
bring the user
back to the

Observed

As expected

The content

starts halfway
down the page.
There is also no
padding on the
side of the page.
There is also no
requests button

As expected

As expected

50639

Jack Leverett

O.2A.

0.2B.1

O.3A.

0.3B.1

186

page

The occupation
list itself

Here the server
instance has no
occupations

The occupation
list itself.

Here the server
instance has 4
occupations

Clicking the edit
button on an
occupation

Editing an
occupation
name.

Here the title (or
name) of an
occupation will
be changed from

7714

management
page

The list should
simply display
that there are
“no
occupations”.

The list should
display all 4
occupations with
their name,
description
below and an
edit button along
side.

This should
create a new
“editing area”
above the
occupation list. It
should contain 2
text boxes with
text already
inside displaying
the title in one,
displaying the
description in
the other. There
should also be a
“done” button

On the client
side the “edit
area” should
disappear after
clicking the done
button and the
relevant
occupation

As expected

50639

Nothing changed The wrong event

on the Ul side
and nothing
changed on the
serverside
database.

was being called
on the client
side. The client
was calling
occupation_set

However neither instead of

Jack Leverett

O.3B.1I

0.3C.I

187

“maths teacher”
to “mathematics
teacher”. Then
the “done”
button will be
pressed

Editing an
occupation
name.

Here the title (or
name) of an
occupation will
be changed from
“maths teacher”
to “mathematics
teacher”. Then
the “done”
button will be
pressed

Editing an
occupation
description.

Here the
description of an
occupation will
be changed from
“teachers who
teach maths” to

7714

should be
updated in the
displayed list.

created an error

On the server
side the
occupation
should be
updated in the
database to
reflect the
change

On the client
side the “edit
area” should
disappear after
clicking the done
button and the
relevant
occupation
should be
updated in the
displayed list.

As expected

On the server
side the
occupation
should be
updated in the
database to
reflect the
change

On the client
side the “edit
area” should
disappear after
clicking the done
button and the
relevant
occupation
should be

As expected

50639

occupation_edit

Jack Leverett

0.3D.1

O.3E.l

188

“teachers who
teach
mathematics”.
Then the “done”
button will be
pressed

Editing an
occupation
name and
description.

Here the title (or
name) of an
occupation will
be changed from
“maths teacher”
to “mathematics
teacher”. And
the description
of an occupation
will be changed
from “teachers
who teach
maths” to
“teachers who
teach
mathematics”.

Then the “done”
button will be
pressed

Pressing the edit
button not
changing
anything and
clicking done

7714

updated in the
displayed list.

On the server
side the
occupation
should be
updated in the
database to
reflect the
change

On the client
side the “edit
area” should
disappear after
clicking the done
button and the
relevant
occupation
should be
updated in the
displayed list.

As expected

On the server
side the
occupation
should be
updated in the
database to
reflect the
change

On the client
side the “edit
area” should
disappear after
clicking the done
button and

As expected

50639

Jack Leverett

O.4A.

O.5A.

O.6A.l

0.6B.1

189

Creating an
occupation with
a valid name
and description
and clicking
done

Pressing the
delete button on
an occupation.

Pressing the
“requests” button

The Ul and look
of the
occupation
requests page

7714

nothing should
be changed on
server side
database

This should
clear the text
boxes and add
the new
occupation to
the server side
databse and the
occupations list
should refresh.

As expected

This should
update the Ul to
remove the
occupation and
the change
should be
reflected in the
server side
database

As expected

This should
change the page
to the
occupation
requests page.

As expected

There should be Uneeded

a top bar with a | padding around
back button and the edges of the

the name of the |screen
page at the top.

There should be

a single

scrollable list of
occupation

requests

50639

Jack Leverett

O.6B.1I

0.6C.1

O.6C.1I

O.7A.

O.7B.1

190

The Ul and look
of the
occupation
requests page

Pressing the
back button

Pressing the
back button

Checking to see
if the occupation
requests are
being displayed
correctly.

In this instance
there are no
occupation
change requests

Checking to see
if the occupation
requests are
being displayed
correctly.

In this instance

7714

There should be
a top bar with a
back button and
the name of the
page at the top.
There should be
a single
scrollable list of
occupation
requests

This should
bring us back to
the occupations
screen (the last
screen we were
on)

This should
bring us back to
the occupations
screen (the last
screen we were
on)

The occupation
requests area
should simply
display “no
occupation
change
requests”

Each occupation
requests should
have an accept
and reject button
as well as
display the
username of the

As expected

It brings us back
to the
organisation
screen

As expected

As expected

The interaction
buttons go off

the side of the
screen

50639

Setup a back
method that

uses the
previous pages
obj to move back
to it.

The accept
button will be
moved to the
right of the
request keep the
reject on the

Jack Leverett

O.7B.1I

O.8A.

0.8B.1

191

there are 3
occupation
change requests
being made

Checking to see
if the occupation
requests are
being displayed
correctly.

In this instance
there are 3
occupation
change requests
being made

Pressing the
approve button
(the tick) on an
occupation
change request

Pressing the
reject button (the
Cross) on an
occupation
change request

7714

person
requesting the
change and the
occupation
name they wish
to change to.

Each occupation As expected
requests should
have an accept
and reject button
as well as
display the
username of the
person
requesting the
change and the
occupation
name they wish
to change to.

The request As expected
should
disappear from
the list and the
user who made
the request
should have
their occupation
updated on the
server side
database

The request As expected
should

disappear from

the list and the

user who made

the request

should see no

change to their

occupation

right

50639

Jack Leverett

7714 50639

Image

Test Image
Number Number
O.1A.l 1

O.1B.I 1

IOccupations

No occupations

IOccupations

No occupations

192

Jack Leverett

O.1B.II

O.2All

7714 50639

BeOpen

Create an occupation

Name
Description
Occupations

No occupations

BeOpen

Create an occupation

Name

Description

Occupations

No occupations

193

Jack Leverett 7714 50639

OZBI 1 BeOpen

Create an occupation

Name

Description

Occupations

The people who teach knowledge to the smaller people

student Vd
The people who learn from the people who teach

cleaners Va
Those who keep the leamning place spick and span

leadership Vs

03A| l BeOpen

Edit occupation

Name

Math teacher

Description

Teaches math
Occupations

leadership Vd
Senior leadership staff who keep the place running

Math teacher ra
Teaches math

194

Jack Leverett

O.3B.l

O.3B.l

7714 50639

BeOpen

Edit occupation

Name

Math teacher

Description

Teaches math
Occupations

leadership ra
Senior leadership staff who keep the place running

Math teacher ra
Teaches math

BeOpen

Create an occupation

Name

Description
Occupations

leadership Vd
Senior leadership staff who keep the place running

Math teacher Va
Teaches math

195

Jack Leverett

O.3B.lI

0.3C.I

7714 50639

BeOpen

Create an occupation

Name

Description
Occupations

leadership Va
Senior leadership staff who keep the place running

Mathematics teacher Va
Teaches math

BeOpen

Edit occupation

Name

Mathematics teacher

Description

Teaches math
Occupations

leadership Vd
Senior leadership staff who keep the place running

Mathematics teacher ra
Teaches math

196

Jack Leverett

0.3C.

0.3D.1

7714 50639

BeOpen

Create an occupation

Name

Description
Occupations

leadership Va
Senior leadership staff who keep the place running

Mathematics teacher Va
Teaches mathematics

BeOpen

Edit occupation

Name

Maths teacher

Description

Teaches maths
Occupations

leadership Vd
Senior leadership staff who keep the place running

Mathematics teacher ra
Teaches mathematics

197

Jack Leverett

0.3D.1

O.3E.l

7714 50639

BeOpen

Create an occupation

Name

Description
Occupations

leadership Va
Senior leadership staff who keep the place running

Maths teacher Va
Teaches maths

BeOpen

Edit occupation

Name

Mathematics teacher

Description

Teaches mathematics
Occupations

leadership Vd
Senior leadership staff who keep the place running

Mathematics teacher ra
Teaches mathematics

198

Jack Leverett

O.3E.l

O.4A.l

7714 50639

BeOpen

Create an occupation

Name

Description
Occupations

leadership Va
Senior leadership staff who keep the place running

Mathematics teacher Va
Teaches mathematics

BeOpen

Create an occupation

Name

teacher

Description

The people who teach knowledge to the smaller people
Occupations

No occupations

199

Jack Leverett

7714 50639

0O.4A.l
Create an occupation
Name
Description
Occupations
teacher Vra
The people who teach knowledge to the smaller people
O.4A.
Filter Filter
O.5A.

Create an occupation

Name

Description

Occupations

The people who learn from the people who teach

X cleaners 7
Those who keep the learning place spick and span

X Maths teacher ra
Teaches maths

200

Jack Leverett 7714 50639

O.5A. 2

Filter Filter Filter

The peo

ceep the

409c4fd884 Maths teacher Teaches maths

O.5A. 3

< Occupation

Requests

Create an occupation

Done
Occupatiorjs.
X student Vd
The people who learn from the people who teach
X cleaners V4

Those who keep the learning place spick and span

O.5A. 4

Filter Filter Filter

2bl-3603-79693ef51596 teacher knowled » the ...

7beb4361-2e60-4994-b32f-cf2502ca5d5a studen eople who rn fr t le who...

ba7e5efd-970e-4387-bel2-60987bf5e4f2

201

Jack Leverett 7714 50639
O.6A.l BeOpen _ = :
Requests = ‘
Occupation change requests
No requests
0.6B.I BeOpen _ m :
< Requests Cc

Occupation change requests

No requests

202

Jack Leverett

7714 50639

O.6B.lI

Occupation change requests

No requests

0.6C.I

Create an occupation

Name

Description
Occupations

X teacher /7
The people who teach knowledge to the smaller people

X student 7

The people who learn from the peonle who teach

203

Jack Leverett 7714 50639

O-6C-II l _

Create an occupation

Name

Description
Occupations

X teacher Va
The people who teach knowledge to the smaller people

X student 7

The people who learn from the peoble who teach

O.7A. 1

BeOpen

Occupation change requests

No requests

204

Jack Leverett

7714

O.7B.1

Occupation change requests

user
teacher
The people who teach knowledge to the smaller people

user2
student
The people who learn from the people who teach

user4
student
The people who learn from the people who teach

O.7B.II

Occupation change requests

user
X teacher
The people who teach knowledge to the smaller people

user2
X student
The people who learn from the people who teach

userd
X student
The people who learn from the people who teach

v 2
v o2
v o2

205

Jack Leverett

7714

O.8A.l

50639

< Requests

Occupation change requests

user
X teacher
The people who teach knowledge to the smaller people

user2
X student
The people who learn from the people who teach

userd
X student
The people who learn from the people who teach

O.8A.l

Filter

fefafafo-80f9-4...

7beb4361-2e6...

636cce... 7beb4361-2e6...

O.8A.l

BeOpen

< Requests

Occupation change requests

user2
X student

The people who learn from the people who teach

userd
student
The people who learn from the people who teach

206

Jack Leverett 7714

50639
O.8Al 4 Refresh the data in
. fefafafe-80f9-4...
. 7beb4361-2e6...
7beb4361-2¢6...
0.8B.I 1
< Requests C
Occupation change requests
user2
X student Ve
The people who learn from the people who teach
userd
X student v
The people who learn from the people who teach
0.8B.1 2
Filter Filter Filter
. fefafafe-80f9-4...
. 7bebd4361-2e6...
7beb4361-2e6...

207

Jack Leverett

0O.8B.1

&

7714

Requests

X

O.8B.1

208

Occupation change requests

userd
student
The people who learn from the people who teach

Filter Filter Filter

Jack Leverett 7714 50639
Homepage and posts
Test Number | Test Expected Observed Action
Description
H.1A.l From the login | The page should | The page The attribute is
page getting load with a top freezes and the | being created
to the bar, and in this server after its first used
homepage. case no posts so | complains that | to set up other
Loading first 5 | it should simply | the post object | attributes in their
posts and display “no has no setters. Moved
displaying posts” to the user | database these attributes
their content connection
correctly attribute
H.1Al From the login | The page should | The client The client was
page getting load with a top crashes but the | calling post_get
to the bar, and in this server doesn’t | which only returns
homepage. case no posts so | have an error a single post
Loading first 5 | it should simply | this time a when you supply
posts and display “no string is being | a post_id. The
displaying posts” to the user | passed inplace | server has
their content of a dictiontary | methods for
correctly to the post getting friend
swiper posts and team
posts but nothing
so the server can
construct the
whole feed for the
client. So |
created a new
event that
post_get feed
that combines
friend posts and
team posts.
H.1A.ll From the login | The page should | Again the client | Proper checking

page getting
to the
homepage.
Loading first 5

load with a top
bar, and in this
case no posts so
it should simply

crashes and
the server
complains that
a Nonetype is

on the get_friends
and get_team
methods as well
as additional

209

Jack Leverett 7714 50639
posts and display “no not checks for
displaying posts” to the user | subscribtable. | get_feed to
their content This was handle no posts
correctly because lack being returned

of checking for
if the userisin
a team or not
and/or had any
friends.

H.1A.1lI From the login | The page should | As expected
page getting load with a top
to the bar, and in this
homepage. case no posts so
Loading first 5 | it should simply
posts and display “no
displaying posts” to the user
their content
correctly
H.1B.I From the login | The page should | On login the Actually comes
page getting load with a top client crashes. | down to a server
to the bar, and in this . side error on how
The post_idis | ,
homepage. case there are 5 not being it was passing
Loading first 5 | posts on the correclty data between
posts and server meant for class methods.
)) , passed to the
dlsplaylng this user. comments Now fixed
their content The client should | section of a
correctly first only load 5 post.
posts, then only
load the next 4
once the “load
more” button is
clicked.
H.1B.II From the login | The page should | The posts are | The client was not

page getting
to the
homepage.
Loading first 5
posts and
displaying

load with a top
bar, and in this
case there are 5
posts on the
server meant for
this user.

not displaying
correctly just
showing white
space. The
caption isnt
being set
correctly still

calling the
load_content
function would
uses the fetched
information to
display it on each
post.

210

Jack Leverett

7714

50639

their content
correctly

The client should
first only load 5
posts, then only
load the next 4
once the “load
more” button is
clicked.

displaying the
defualt text.

H.1B.1lI From the login | The page should | Client cant The client does
page getting load with a top iterate over not anticipate a
to the bar, and in this nonetype. As in | post to have no
homepage. case there are 5 | the varaible impressions on it.
Loading first 5 | posts on the post_likes is This is now fixed
posts and server meant for | supposed to be
displaying this user. a list but is
their content The client should | €0Ming up as a
correctly first only load 5 nonetype

posts, then only
load the next 4
once the “load
more” button is
clicked.
H.1B.IV From the login | The page should | The client only | This is due to the

page getting
to the
homepage.
Loading first 5
posts and
displaying
their content
correctly

load with a top
bar, and in this
case there are 5
posts on the
server meant for
this user.

The client should
first only load 5
posts, then only
load the next 4
once the “load
more” button is
clicked.

seams to be
showing 3
posts, however
when clicking
load more it
does load the
remaining 2
posts one by
one.

list being use for
the for loop being
the same list that
is being reduced
by the for loop

using .pop()

Simply removing
this .pop() fixes
the issue as
reducing the list
as itis looped
through is no
longer needed.

211

Jack Leverett

7714

50639

there are no
posts present.

and keep the
single label “No
posts”

when clicked
and sets the
scroll of the
screen to this
new label.

H.1C.I From the login | The login page The post loads | The username
page have the | should switch to | with the corret | comparision in the
homepage the homepage like count but HomeSwiper
load the first 5 | with 5 posts the heart object was using
posts, one of | loaded the post button isnt the posters
them has from “user9” has | illuminated. username and not
been liked a like from us on the clients

it already and so username.
should have a full
heart like icon

H.1C.II From the login | The login page As expected
page have the | should switch to
homepage the homepage
load the first 5 | with 5 posts
posts, one of | loaded the post
them has from “user9” has
been liked a like from us on

it already and so
should have a full
heart like icon

H.1D.I Loading a set | The captions As expected
of posts of should be
which all have | displayed in a
long captions, | readable and
the server resizable way
imposes a
character limit
of 100

H.2A.l Clicking the It should simply It creates Have the button
“load more” set the scroll another “No check for new
button when back to the top posts” label posts. And if

posts/text already
exist to consider
every possible
case.

Additionally fixed
issue with the
number of posts
displayed at once

212

Jack Leverett

7714

50639

H.2A.1l Clicking the It should simply | As expected
“load more” set the scroll
button when back to the top
there are no and keep the
posts present. | single label “No

posts”

H.2B.I Clicking the On clicking the The warning The message is
load more button a message about | created but forgot
button when message should | there being no | to add a condition
all available appear stating posts doesn’t to display the
posts are that all available | appear message So
already posts are already added an if
displayed. loaded. statement to
Eor this test “Something like check for if thre
the user has Sorr;:, no more are aqy mor.e |
only 5 posts posts ppsts if not it will
that should be display the
displayed, message.
they are
already
loaded.

H.2B.1I Clicking the On clicking the As expected
load more button a
button when message should
all available appear stating
posts are that all available
already posts are already
displayed. loaded.

For this test “Something like
the user has Sorr%/’, no more
only 5 posts posts

that should be

displayed,

they are

already

loaded.

H.2C.l Clicking the The load more As expected
load more button should
button when load just 5 more
there are 6

213

Jack Leverett

7714

50639

more posts for

posts, and then

the user to stop.
see.
H.2D.l Clicking the The load more As expected
load more button should
button when load the last post
thereis 1 and set the scroll
more posts for | of the page to
the user to this post.
see.
H.3A.l Clicking the The heart should | As expected
like button on | turn to be full,
a post instead of just
the outline and
the server should
save the
impression on its
database. The
like count should
update
H.3B.I Clicking the The heart should | Its seamingly The client is
un-like button | turn back to an working in the | passing the wrong
ona outline the like moment but information for
previously count should there is no impression_delete
liked post decrease by 1 change which requires a
and the relevant | happening on | impression_id
impression the server side
should be
removed from
the
post_impressions
table on the
server.
H.3B.II Clicking the The heart should | As expected

un-like button
ona
previously
liked post

turn back to an
outline the like
count should

decrease by 1

214

Jack Leverett

7714

50639

and the relevant
Impression
should be
removed from
the
post_impressions

user

table on the
server.
H.4A.l Clicking the This should As expected
profile button | remove the post
as an admin from the feed
an admin and | and the change
clicking delete | should be
reflected on the
server database
H.4B.I Clicking the This should take | As expected
profile button | the user to the
logged in as the posters
an Admin. profile, in this
Then clicking | case its an admin
profile so they should
have edit buttons
next to role,
name, biography,
H.4C.l Clicking the On clikcing the As expected
profile button | button it should
logged in a just take you
“user” who is a | straight to the
normal profile page of
member level | the poster

215

Jack Leverett 7714 50639
Test Image | Image
Number Number
H.1A.l 1
“python3.10"” is not responding.
You may choose to wait a short while for it to
continue or force the app to quit entirely.
Force Quit
| connection

H.1A.ll 1

216

“python3.10" is not responding.

You may choose to wait a short while for it to
continue or force the app to quit entirely.

Force Quit

Jack Leverett

H.1A.lI

H.1B.II

H.1B.1lI

217

7714 50639

No posts :(

Caption placeholder

File "/home/ltbleach/Nextcloud/code/projects/current/beopen/code/client/main.py", line 175, in __init__
self.load_content()
File "/home/ltbleach/Nextcloud/code/projects/current/beopen/code/client/main.py”, line 222, in load_content

if self.username in post_likes:
AAAAA AAANL AA

TypeErr rgument of type 'NoneType' is not iterable

Jack Leverett

H.1B.IV

7714

50639

= il e

218

Jack Leverett 7714 50639

H.1B.V 1

H.1C.l 1

219

Jack Leverett 7714 50639

H.1C.II 1

I

il =N

H.1D.I 1

© A BeOpen = & B

adipiscing glit.
hn m

220

Jack Leverett

H.2A.lI

No posts :(

H.2B.I

7714

L)

-

n.,
g B

s
Pr-13

Organisation

221

Jack Leverett 7714 50639

H.2B.1I 1

Sorry, no more posts

H.2C.I 1

222

Jack Leverett 7714 50639

H.2C.I 2

H.1D.I 1

223

Jack Leverett

H.1D.lI

H.2D.1

7714

(=

Memories

S ke
Z he
Y i

224

Jack Leverett 7714 50639

H.2D.I 2

225

Jack Leverett 7714 50639

H.2D.I 3

H.3A.l 1

o] .os
1 san
Home Memories Stats Organisation

226

Jack Leverett

H.3A.l

H.3A.l

H.3B.1

H.3B.1

7714

AT
A
1 L2l testingcaption

[} |

Filter Filter

aB9fl7f {e5574b11-b109-4122-9a77-9bhc

A TN

g

A
1 L2l testingcaption

9
Pr-

50639

227

Jack Leverett

H.3B.I

H.3B.II

H.3B.II

228

7714

Q1 L testingieaption ¥

Jack Leverett

H.4A.l

7714

H.4A.l

H.4A.l

view profile

delete post

9s

229

Jack Leverett 7714 50639

H.4A.l 4
©® A BeOpen = &
H.4A.l 5
H.4B.I 1
an user9's Profile >
Username
user9
by ’
Ros /
Biography
,0
- o

230

Jack Leverett

7714

H.4C.I

user11's Profile

 /

Username
user1l

Name
user1l

Role
None

Occupation name
None

Biography

50639

231

Jack Leverett 7714 50639
Posting
Test Number Test Expected Observed Action
Description
PT.1A. When post The camera As expected
time comes icon should be
about in the added to the
day the Ul top bar on the
should add the | hompage, this
cameraicon to | camera icon
the top bar on | when clicked
the homepage. | should lead to
For this test | the posting
manually set page
the time slot for
the day on the
server to be
now for testing
purposes
PT.1B.I Clicking the This page The client Changed how
camera button | should have a | errored while the client
this should camera view a | loading the page, | fetched the day
switch the view | capture button | dictionary key end and start
to the camera | and a error times.
page where the | countdown at
user can take a | the top
picture for their
post
PT.1B.II Clicking the This page The page has Created a
camera button | should have a | wrong padding method for
this should camera view a | and the time converting the
switch the view | capture button | countdown time into hours,
to the camera | and a needs to be minutes and
page where the | countdown at converted to seconds.
user can take a | the top minutes and
, . As well as
picture for their hours :
adding a clock.
post
PT.1B.III Clicking the This page As expected
camera button | should have a
this should camera view a

232

Jack Leverett

7714

50639

switch the view
to the camera
page where the

capture button
and a
countdown at

user can take a | the top
picture for their
post
PT.2A. Clicking the This should The client Forgot to add
capture button | take the user to | complains the the page object
the “post screen it tries to | to the screen
review” page switch to doesn't | manager
where they can | exist.
add a caption
and look at the
photo they just
took
PT.2A. Clicking the This should As expected
capture button | take the user to
the “post
review” page
where they can
add a caption
and look at the
photo they just
took
PT.3A.l Pressing the This should As expected
back button take the user
from the back to the
camera page homepage
PT.3B.I Pressing the his should take | As expected
back button on | the user back
the post review | to the
page homepage
PT.3C.I Pressing the This should Minor spelling Fixed and now
retake photo take the user problem in working as
button on the back to the variable “self” expected
post review camera page to | (put “sefl”)
page retake a photo
PT.3D.I Pressing the The post As expected

retake photo

preview photo

233

Jack Leverett 7714 50639

and taking should change
another photo | to the retake
for the post photo
and seeing if it
changes the
photo on the
post review
page

PT.4A.l Opening the It should go The program Instead of
photo page (as | back to the crashes and deleting the
if going to take | homepage and | complains it cant | camera page on
the photo) then go back reactivate the exit keep it
backing outto | into the camera | camera created and just
the home page | page as switch away
and then going | expected from it.
back into the

The camera

take a photo
page

even if deleted
remains active
on an OS level.
Need to find a
way to stop it on
an OS level

At the moment
this seams to
be a limitation
of the kivy gui
framework. The
camera is badly
documented.
The
documentation
does list a
stop() method
but when using
this the code
claims the
camera class
has no such
method. Will
need to look

234

Jack Leverett 7714 50639
into Kivy and
OpenCV source
code to find out
how to
accomplish this.
PT.5A.1 Taking a photo | This should The server could | This ended up
for the post, send the user | not make a post | being down to
adding a back to the and the status the server not
caption and homepage. message being
clicking the The hompage | claimed it was configured to
post button top bar should | due to accept both,
no longer insufficient/wrong | png and jpg
display the post | data being format images.
button and the | provided. The client takes
users post images in the
should appear png format but
on the server the server could
side database only do jpg, this
has now been
changed to
allow both.
PT.5A.1I Taking a photo | This should As expected
for the post, send the user
adding a back to the
caption and homepage.
clicking the The hompage
post button top bar should
no longer
display the post
button and the
users post
should appear
on the server
side database
Test Image Image
Number Number

235

Jack Leverett 7714 50639

PT.1A.l 1
PT.1B.I 1 File "/home/ltbeach/Nextcloud/code/projects/current/beopen/code/
client/main.py", line 796, in refresh_time
length = self.post_slot['end'] - self.post_slot['start']
KeyError: 'end'
Killed
PT.1B.II 1

‘ H Time left: 35033.05 c

236

Jack Leverett 7714 50639

PT.1B.III 1

PT.2A.l 1

237

Jack Leverett 7714 50639

PT.3A.l 1

PT.3A.l 2

238

Jack Leverett

PT.3B.1

7714

Time left: 5:36:36

Retake photo?

PT.3B.II

g

ARE ! \
.. |
Qo b‘testingcag

239

Jack Leverett

PT.3C.I

7714

Time left: 5:33:17

Retake photo?

PT.3C.I

240

Jack Leverett

PT.3D.1

PT.3D.I

Caption

7714

241

Jack Leverett

PT.3D.I

7714 50639

Time left: 5:8:38

PT.4A.l

242

Retake photo?

Traceback (most recent call last):
File "/home/ltbeach/.conda/envs/kivy/1lib/python3.1@/threading.p

", line 1567, in _shutdown

lock.acquire()
File "/home/ltbeach/.conda/envs/kivy/lib/python3.1@/site-package
s/engineio/client.py", line 36, in signal_handlexr
return original_signal_handler(sig, frame)
File "/home/ltbeach/.conda/envs/kivy/lib/python3.1@/site-package
s/socketio/client.py", line 26, in signal_handlexr
return original_signal_handler(sig, frame)
KeyboardInterrupt:
(kivy) [ltbeach@fedora client]$ I

Jack Leverett

7714

PT.5A.1

50639

243

Jack Leverett 7714 50639

PT.5A. 2
PT.5A.1I 1
PT.5A.1I 2
Qo &‘testing capgion : :
o o nﬁfﬂ ’
= il s
- 4

244

Jack Leverett 7714 50639
Comments
Test Number Test Expected Observed Action
Description
C.1A. Going into the | There should As expected
comments be an arrow at
page the top, this is
the back
button.
In this case
there should be
just 1 comment
in the comment
list, and there
should be
comment box
at the bottom
C.1B.l Have the Each comment | As expected While this
comments should have a specific function
page load a set | profile button, a was as
of comments in | like count and a expected | did
this case 14 like button find while
comments from setting up the
14 different test that the
users ‘comment_set”
method never
correctly set the
post_id of the
person
commenting
and defaults to
a user
commenting on
their own post.
This was
subsequently
fixed
C.1C.l Have the The page Previously liked | This was due to
comments should display | comments the client

245

Jack Leverett 7714 50639
page load 14 comments, | werent showing | incorrecly
comments but | 1 has a like up as such, the | handling the
1 comment has | countof 1 and | count would be | data passed
a like from unliked by the 1 but the heart | back by the
another user, user viewing was just an server as well
and a liked the page. outline (as if as using the
comment from | Another you had not wrong
the user commentas a | liked the username to
viewing the like count of 2 comment yet) compare
comments and is liked by against the

the user usernames that
viewing the had liked the
comments. comment.
C.2Al Clicking on a On clicking the | As expected
long comment | comment it
to expand itto | should switch
the “expand page to a page
page” and be that displays
able to read the | the full text of
full comment the comment
C.2B.l Clicking the like | It should turn The client side | This is likely a
button on a the hear to a Ul updated data verification
comment filled in heart correctly and issue on the
and increase didn’t have any | server side.
the like cognt issues, the Actually turned
by one. This server didn’t
, out to be the
change should | run into any client not
be reflected on | errors either but .
) sending the
the server side | the database .
comment_id
database entry was never -
correctly, it was
added for the .
, left with a
like on user2’s
placeholder
comment
value.
C.2B.ll Clicking the like | It should turn As expected

button on a
comment

the hearto a
filled in heart
and increase
the like count
by one. This
change should

246

Jack Leverett

7714

50639

be reflected on
the server side

as an admin.
Then selecting
delete
comment.

profile button a
menu should
appear with
options to view
profile or delete
comment. Here
we click delete
comment. This
should remove

database
C.2C. Clicking the The comment | As expected
unlike button on | should change
a liked the heart to just
comment the outline of a
heart. The like
count should
also decrease
and then then
the change
should be
reflected in the
server-side
database
C.3A. Clicking on the | On clicking the | As exepected
profile button profile button
on a comment | initially, a menu
as an admin. should appear
Then on the for the user to
menu that select delete or
should appear | view profile.
clicking view (here we select
profile view profile)
this should then
take the user to
the comment
users
C.3B.1 Clicking on the | When initially As expected
profile button clicking the

247

Jack Leverett

7714

50639

the selected
comment from
the comment
area, and
removed on the
server-side
database

C.4A.

Typing some
text into the
comment box
at the bottom of
the page. Then
clicking the
send button to
submit the
comment

The comment
should appear
in the comment
list above and
the comment
should appear
in the server-
side database

As expected

While there was
Nno errors or
major issues,
the method for
adding the
comment to the
interface itself
was changed
for performance
reasons. Now
the client
instead of
reloading all the
comments just
loads the new
one in locally

248

Jack Leverett

7714

50639

Test
Number

Image
Number

C.1Al

1

C.1B.l

Image

user9
dummy comment with plenty of words

user2
Test comment with plenty of text, loads of text

user3
Test comment with plenty of text, loads of text

userd
Test comment with plenty of text, loads of text

users
Test comment with plenty of text, loads of text

userf
Test comment with plenty of text, loads of text

user’/
Test comment with plenty of text, loads of text

userg
Test comment with plenty of text, loads of text

249

Jack Leverett

C.1C.

C.2Al

7714

BeOpen

a

user14
Test comment with plenty of text, loads of text

user1s
Test comment with plenty of text, loads of text

admin
Hello this is a standard comment that i am submitting as an "admin" user

admin
Hello this is another comment to test the new comment add system

admin
okay new comment

admin
and another one

BeOpen

user2
Test comment with plenty of text, loads of text like loads of words to much to count to be

user3d
Test comment with plenty of text, loads of text

userd
Test comment with plenty of text, loads of text

users
Test comment with plenty of text, loads of text

useré
Test comment with plenty of text, loads of text

user7
Test comment with plenty of text, loads of text

50639

Qo

Qo

L Vi

Q1

Qo

Qo

Qo

Qo

Qo

Qo

Qo

Qo

250

Jack Leverett

C.2Al

7714 50639

BeOpen - %

< user2's comment

C.2B.l

C.2B.l

Test comment with plenty of text, loads of text like loads of words to much to count to
be honest. So much that this is gonna have to go into an expand page and be expanded
by the user by clicking on the comment itself.

Table: B comment_impressions

- x
'
2 user2 Qo
Test comment with plenty of text, loads of text like loads of words to much to count to be
= Tifﬁ:or‘lmonl with plenty of text, loads of text (:) .
2 Tis:i:m'n'wnt with plenty of text, loads of text O g
= lljifgstur‘lmvnl with plenty of text, loads of text (:) 0
2 Tifﬁ:urn'wnt with plenty of text, loads of text O L
= Tifﬂur‘lmvnl with plenty of text, loads of text (:) 0
n

251

Jack Leverett

C.2B.l

C.2B.l

C.2B.lI

252

7714

BeOpen

user2
Test comment with plenty of text, loads of text like loads of words to much to count to be

userd
Test comment with plenty of text, loads of text

userd
Test comment with plenty of text, loads of text

users
Test comment with plenty of text, loads of text

useré
Test comment with plenty of text, loads of text

user7
Test comment with plenty of text, loads of text

B comment_impressions

B comment_impressions

Filter Filter

a3fe8d41-361... eddlcOfd-76...

50639

L |

Qo

Qo

Qo

Qo

Qo

Jack Leverett

C.2C.

C.2C.

a3fe8d41-361...

C.2C.l

7714

user2
Test comment with plenty of text, loads

user3
Test comment with plenty of text, loads

userd
Test comment with plenty of text, loads

users
Test comment with plenty of text, loads

userf
Test comment with plenty of text, loads

user?
Test comment with plenty of text, loads

user2
Test comment with plenty of text, loads

user3
Test comment with plenty of text, loads

userd
Test comment with plenty of text, loads

users
Test comment with plenty of text, loads

useré
Test comment with plenty of text, loads

user/
Test comment with plenty of text, loads

S

s of text like loads of words to much to count to be

s of text

; of text

; of text

; of text

; of text

eddlcOfd-76... 0Of0248...

s of text like loads of words to much to count to be

s of text

s of text

s of text

s of text

s of text

50639

L |

Qo

Qo

Qo

Qo

Qo

Qo

Qo

Qo

Qo

Qo

Qo

253

Jack Leverett 7714 50639

C.2C. 4 . .
Table: B comment_impressions
C.3A. 1
A
e . user2
ty of text, loads of text 4
view profile
delete comment ty of text, loads of text Qo
S Test comment with plenty of text, loads of text Qo
* users Qo
“* Test comment with plenty of text, loads of text
e Userb Qo
“ Test comment with plenty of text, loads of text
e User7
* Test comment with plenty of text, loads of text Q? 0
>
C.3A. 2 BeOpen
ah user2's Profile =S
Username
user2
Name o
user2 ’
Role .
None 4
Biography
/

254

Jack Leverett

C.3B.

C.3B.

7714

BeOpen

userZ
ty of text, loads of text
view profile

delete comment ty of text, loads of text

Test comment with plenty of text, loads of text

users
Test comment with plenty of text, loads of text

useré
Test comment with plenty of text, loads of text

user7
Test comment with plenty of text, loads of text

BeOpen

user3
Test comment with plenty of text, loads of text

userd
Test comment with plenty of text, loads of text

users
Test comment with plenty of text, loads of text

userb
Test comment with plenty of text, loads of text

user/
Test comment with plenty of text, loads of text

user8
Test comment with plenty of text, loads of text

50639

L

Qo

Qo

Qo

Qo

Qo

Qo

Qo

Qo

Qo

Qo

Qo

255

Jack Leverett

C.3B.

C.4A.

user3

Filter

Test comment with plenty of text, loads of text

user4

Test comment with plenty of text, loads of text

user5

Test comment with plenty of text, loads of text

usert

Test comment with plenty of text, loads of text

user?

Test comment with plenty of text, loads of text

user8

Test comment with plenty of text, loads of text

6f445658-1291-4a

6a-0928612096d6|

50639

Qo

Qo

Qo

Qo

Qo

Qo

256

Jack Leverett

7714

50639

C.4Al P
FN
e userll
“* Test comment with plenty of text, loads of text Qo
e useri2
™ Test comment with plenty of text, loads of text Qo
e useri3
“* Test comment with plenty of text, loads of text Qo
e userl4
™ Test comment with plenty of text, loads of text Qo
e userls
“* Test comment with plenty of text, loads of text Qo
e admin Qo
™ Hello this is a standard comment that i am submitting as an "admin" user
>
Settings
Test Number Test Expected Observed Action
Description
S.1A. Clicking the The page As expected

settings icon at
the top of the
homepage

should switch
to the settings
page. There
should be a top
bar showing a
back button
and a title.

Currently the
only “setting” is
the logout
button so that
should be the
only thing
display. The
logout button
should be at
the bottom of
the screen

257

Jack Leverett 7714 50639

S.1B.I Clicking the This should As expected
logout button take the user

back to the
login screen
and clear the
authentication
tokens from the
client database.

S.2A. General use There should Had small issue | This was
after loggin out | be no errors, with accounts quickly fixed
of Admin and the main thing pages, they and now works
logging in as im looking out were using the | as expected
user. for is errors old functions for

) . where there is switching
Here im going _
. duplicates of screens and so
to login as i
; screens. This were not
admin and then h h |
logout, next appens when proper.y
o screens are removing
logging in to
named the themselves
user and do . .
same thing in after use. This
some general ,
e both sessions meant there
navigation of .
or aren't was some
the app on both
properly overlap on the
accounts
deleted when screens after
the other user users switched
logs out
Test Image Image
Number Number

258

Jack Leverett 7714 50639

SlAI 1 BeOpen - x

< Settings

S.1B.1l 1
b51be95a-71f2-4bdc-8570-6a51049e61al admin 1701292096.27595
S.1B.l 2
Login
Login
Register

259

Jack Leverett

S.1B.I

Filter

Database Encryption

Table: B tokens

Filter Filter

Test Number

Test Description

Expected

Observed

Action

E.1A. Launching the | The server should As expected.
server with generate the shares
encryption and | into the specified share
shamir secret folder (via the config
sharing set to file). There should be 5
true. Minshares | shares, 2 combinations
=3 and of shares should have
numberofshares | been tested, these
= 5. The master | tests should have been
password being | noted in the log. And
set is 520 the database should be

encrypted stored at
data/.cryptdatabase.db

E.1B.l Launching the The server should As expected
server with generate the shares
encryption and | into the specified share
shamir secret folder (via the config
sharing set to file). There should be 5
true. Minshares | shares, 2 combinations
=3 and of shares should have
numberofshares | been tested, these
= 5. The master | tests should have been
password being | noted in the log. And
setis the database should be
625582934 encrypted stored at

data/.cryptdatabase.db

E.1C.I Launching the The database should
server with be encrypted stored at
encryption set the path
to true. The data/.cryptdatabase.db.

260

Jack Leverett

7714

50639

master
password being
setis
625582934

The encrypt config
should also be deleted
and the server should
be in decryption mode.

E.1D.I

Launching the
server with
encryption and
shamir secret
sharing set to
true. Minshares
=3 and
numberofshares
= 5. The master
password being
set is 520.
However not
providing a
encryptconfig
file.

The server should stop
and the logs should
show that the
encryption config file
could not be found at
the specified path

E.1E.|

Launching the
server with
encryption and
shamir secret
sharing set to
true. Minshares
=3 and
numberofshares
= 5. The master
password being
set is 520.
However the
provided string
in the
encryptconfig
path is the word
“hello” (to be
valid the master
password has
to be an
integer).

The server should stop
and the logs should
state that the master
password provided
could not be read.

261

Jack Leverett 7714 50639

E.2A. Client test. Client side:
Server settings: | It should be successful
Encryption: and so bring us to the
enabled . login page, from here

you can continue to
Shamir secret use the app as normal.
sharing: _
enabled Server side:
Master The logs should
password: 520 indicate that the
' database has been
decrypted. And the

From a client unencrypted database
the client after | Should be at the path
connecting to “data/database.db”. It
the server should be openable
should bring up (here | use dbrowser to
the decryption prove that the
page. This time database has been
we will use the | decrypted). The server
CORRECT should enter normal
master mode
password

E.2B.I Client test. Client side:

Server settings:

Encryption:
enabled

Shamir secret
sharing:
enabled

Master
password: 520

From a client
the client after
connecting to
the server
should bring up

The input fields should
error. Indicating
unsuccessful
decryption.

Server side:

The logs should show
an attempt to decrypt
the database had
failed. The database
should remain
encrypted and the

server in decrypt mode.

262

Jack Leverett 7714 50639

the decryption

page. This time

we will use the

INCORRECT

master

password

E.3A. Client test. Client side:

Server settings: | It should be successful

Encryption: and so bring us to the

enabled login page, from here
you can continue to

Shamir secret | yse the app as normal.

sharing: _

enabled Server side:

Master The logs should

password: 520 indicate that the
database has been
decrypted. And the

From a client unencrypted database

the client after should be at the path

connecting to “data/database.db”. It

the server should be openable

should bring up (here | use dbrowser to

the decryption prove that the

page. This time database has been

we will a decrypted). The server

CORRECT set | should enter normal

of shamir secret | Mode

shares

E.3B.I Client test. Client side:

Server settings:

Encryption:
enabled

Shamir secret
sharing:
enabled

Master
password: 520

The input fields should
error. Indicating
unsuccessful
decryption.

Server side:

The logs should show
an attempt to decrypt
the database had
failed. The database

263

Jack Leverett

7714

50639

From a client
the client after
connecting to
the server
should bring up
the decryption
page. This time
we will an
INCORRECT
set of shamir
secret shares

should remain
encrypted and the

server in decrypt mode.

E.4A.l

Client test.
Server settings:

Encryption:
enabled

Shamir secret
sharing:
disabled

Master
password: 520

Just testing to
see what inputs
field the client
dispalys. See
previous test for
inputting etc.

The client should only
display the master
password field.

E.4B.l

Client test.
Server settings:

Encryption:
enabled

Shamir secret
sharing:
enabled

Minshares: 5

Master

The client should
display 5 input boxes
for the Shamir secret
sharing inputs. As well
as the master
password input box at
the top and a submit
button at the bottom.

264

Jack Leverett 7714 50639

password: 520

Just testing to
see what inputs
field the client
dispalys. See
previous test for
inputting etc.

Test | Image | Image

Numb | Numb
er er
E.1A.l1 | 1

(server-beopen) [ltbeach@fedora server]$ 1ls -a data/
config.ini database.db encryptconfig.txt
(server-beopen) [ltbeach@fedora server]$

E1Al | 2 2024-01-23719:22:217 | INFO | Checking encryption

2024-01-23719:22:217 | INFO | Reading encryption configuration file

2024-01-23719:22:212 | INFO | Testing master password type (must be int)

2024-01-23719:22:217 | INFO | Deleting encryption configuration file containing master password
2024-91-23719:22:217 | INFO | Encrypting database

2024-01-23719:22:217 | INFO | Deleted unencrypted database

2024-01-23719:22:227 | INFO | Starting server background service

(10160) wsgi starting up on http://0.0.0.9:9999

E1B.I|1 (server-beopen) [ltbeach@fedora server]$ ls -a data/
config.ini database.db encryptconfig.txt
(server-beopen) [ltbeach@fedora server]$
E.1B.l | 2 2024-01-23T19:22:217 Checking encryption
B 2024-01-23719:22:217 Reading encryption configuration file
2024-01-23T19:22:2117 Testing master password type (must be int)
2024-01-23T19:22:212 Deleting encryption configuration file containing master password
2024-01-23719:22:211 Encrypting database
2024-01-23719:22:211 Deleted unencrypted database
2024-01-23719:22:221 Starting server background service
(10160) wsgi starting up on http://0.0.0.9:9399
E.1B.I | 3

(server-beopen) [ltbeach@fedora server]$ 1s data/
config.ini key.txt log.txt

(server-beopen) [ltbeach@fedora server]$ 1ls data/shares/
share-1.txt share-2.txt share-3.txt share-4.txt share
(server-beopen) [ltbeach@fedora server]$ I

265

Jack Leverett 7714 50639

E.1C.l |1 2024-81-23719:22:217 | INFO | Checking encryption

2024-01-23719:22:217 | INFO | Reading encryption configuration file

2024-01-23719:22:212 | INFO | Testing master password type (must be int)

2024-01-23719:22:217 | INFO | Deleting encryption configuration file containing master password
2024-91-23719:22:217 | INFO | Encrypting database

2024-01-23719:22:217 | INFO | Deleted unencrypted database

2024-01-23719:22:227 | INFO | Starting server background service

(10160) wsgi starting up on http://0.0.0.9:9999

E.1D.1 | 1 2024-01-23T18:52:25Z | INFO
2024-01-23T18:52:25Z | INFO
2024-01-23T18:52:25Z | INFO

Ensuring server directories
Ensuring config file
Config already exists

2024-01-23T718:52:257 | INFO
2024-01-23T18:52:25Z | FAIL | Encryption config could not be found at data/encryptconfig.txt
2024-01-23T18:52:25Z | FAIL Could not generate encryption scheme, something wrong in config file ox
2024-01-23T18:52:257 | FAIL | Could not encrypt database, something went wrong, see logs for details
(server-beopen) [ltbeach@fedora server]$

Checking encryption

|

|

|
2024-01-23T18:52:25Z | INFO | Ensuring database

|

|

|

E.1E.l | 1 2024-81-23T19:00:57Z | INFO | client AjUSh18KvwtxiZXCAAAB connected

2024-01-23T19:01:01Z | WARN | Provided password is wrong or something is wrong with the database key
2024-01-23T19:01:01Z | FAIL | Something went wrong while decrypting the database
2024-01-23719:01:02Z | WARN | Provided password is wrona or somethinag i< wrona with the datahase key

E.2Al |1

Decrypt Server Database

266

Jack Leverett

E.2A.

2

E.2A.

267

7714

50639

Server mode: decrypt

2024-01-23718:47:52Z | INFO | client s21-AhYueHZSsOWTAAAB connected
2024-01-23T18:47:57Z | INFO | Decryption of database successful
2024-01-23T718:47:57Z | INFO | Server mode normal, continuing startup
day start: 1705968000.0

day end: 1706054399.0

Jack Leverett

E.2B.|

1

E.3A.

7714

Decrypt Server Database

50639

Master password

xxxxx

This can still be used even if Shamir Secret Sharing is enabled

Submit
BeOpen
Decrypt Server Database
I
(
I
€
Submit

268

Jack Leverett

E.3B.I

7714

BeOpen

Decrypt Server Database

50639

|

Master password

This can still be used even if Shamir Secret Sharing is enabled

Share Number Share Secret

1 bbb

This Is the secret provided by the admin

Share Number Share Secret

2 R

This Is the secret provided by the admin

Share Number Share Secret

3 e

This is the secret provided by the admin

Submit

E4A1l |1

4 Decrypt Server Database

Submit

269

Jack Leverett

E.4B.I

1

7714

Decrypt Server Database

50639

Final product video testing

Test

number

Name

Description

Link

1

Admin 1

This clip shows how an Admin
would go about registering their
account, creating a number of
occupations, altering some of
their profile information and even
set a team leader for the IT staff

https://youtu.be/S7gmnO0pgMo

Admin 2

This clip shows an Admin:
logging in, accepting some
occupation change requests and
adding some team leaders to the
Students team

https://youtu.be/hxOEX4n52wU

Member
1

In this clip a member creates an
account, sets up some basic
information, sends a friend
request and creates an
occupation change request.
They also look at some provided
help boxes

https://youtu.be/iFrgAxleeTY

270

Jack Leverett

7714

50639

4

Member
2

In this clip a member logs into
an account, changes some
profile information, accepts a
friend request, sends a friend
request to a recommended
friend and looks at their team

https://youtu.be/vvCI4Xd5Rk0

Member

In this clip a member: logs into
their account, likes, comments
on some other peoples posts.
Then creates their own post with
a caption. They also view some
of their memories from a post
they made a previous day.

https://youtu.be/cwaT_C9WVOI

Member
4

In this clip a member: Plays with
the profile page closing info
change panels (attempting to
cause a bug), looks into
someone else’s profile, deletes
and views some notifications,
unlikes some posts and
comments, changes the settings
and the logs out

https://lyoutu.be/ChVRb_hM6Bg

Server 1

In this clip | show how an admin
may go about setting up
encryption on the database. |
first show the guide that’s
available in the "docs" directory.
Then | follow the process,
creating an encryption config
containing the master password,
turning encryption on. | also
show how the new database
cannot be opened by a program
used for viewing SQLite
databases. Proving it is
encrypted. | then unencrypted
the database and again open it
with the same program where it
is successful. | then log in admin
showing that the server is
functioning as formal

https://lyoutu.be/rYbMYhRXPaw

Server 2

In this clip | show how the server
database would be decrypted
using Shamir secret sharing and
how the server would re-create
the master password in the
filesystem. Then | prove the

https://youtu.be/vMhg5U_kdCM

271

Jack Leverett

7714

50639

database is working as usual by
logging in as an admin.

9 Server 3

In this clip | show how the server
database being permanently
decrypted by setting encryption
to false in the config before re-
launching the server and then
decrypting it one last time. | also
show the database is decrypted
and works as usual both using a
program to view SQL.ite
databases and logging in to the
server.

https://youtu.be/VEp7ruA1FME

In case any links do not work for some reason all the showcase videos are in the playlist
below: https://www.youtube.com/playlist?list=PL KQHuOI6LmP-OwUzidnlO_bxiQ301Ux2e

272

https://www.youtube.com/playlist?list=PLKQHu0l6LmP-OwUzidnlO_bxiQ3O1Ux2e

Jack Leverett 7714 50639

Evaluation

Potential user trials (pre-improvements)
Finley

Trial 1

Video of trial: https://youtu.be/bXM083W5ZES8

Finley is a very tech competent person, immediately he had no problem registering his account
however noticed that he could see his password in full view. He would prefer if the password was
hidden as he typed it in (both in the login and registration page) with a button to reveal it if he
wanted to. He then went on to the main homepage since he wasn't part of any teams and had no
friends, he couldn’t see any posts. Finley then immediately went to go make a post and did so with
ease he said that making a post was intuitive and caused no friction. After posting he quickly said,
“How do I see other people’s posts?” and began looking at the other tabs. He found the memories
tab and found his own post again he found no real friction in this process. However, he couldn’t
figure out how to see anyone else’s post and we ended the trial there.

Overall, though due to the application providing no explanation to the user on how to add friends or
join a team he couldn’t engage with the main function of the system, viewing others posts. He also
wanted passwords to be hidden by default when typed.

Things to be added as a result of this test:
* A first-time login page, this should help a first-time user do some basic things like join a
team, set their name, and set their role.
* Password fields will be updated to be hidden by default with a button to show.

lzumi

Since Finley’s trial a first-time login page has been added to guide the user through setting
up some basic information.

Trial 1
Video of trial: https://youtu.be/QOs6MUuUFINQ

Izumi had no problem registering the account however when she asked what the registration key
was, I realised that a note or hint about how a user should get their registration key from their admin
could be useful. Then she easily logged in, and since the Finley trial, a first-time login page had
been added. This then prompted Izumi through setting her name and role. However, there was
minor confusion about what a team was, so a better explanation to the user may need to be added to
this screen. Izumi immediately went to create a new post again this was done with no friction or
confusion. We stopped the trial here due to an interruption.

The main takeaways from this trial:

* A better explanation of teams needs to be added.
* Izumi didn’t like that she couldn’t see her own post in the homefeed

273

Jack Leverett 7714 50639

Trial 2
Video of trial: https://youtu.be/qaA-BGUFL2U

Izumi logged in to the account she created in her first trial and her occupation set request was
accepted by an admin (me). This allowed her to view posts from the other 3 people in her team,
Coops, Dan and santi. But first she clicked on to her account changed her bio and then went on to
accept a friend request from coops. Then she went through liked and commented on the posts she
could see. This time her own post appeared in the feed; however, she said it would have been better
if it appeared at the top of the feed like in other social medias. At the end she went back into her
profile page and attempted to change her profile picture, at which point I informed here this was not
an option currently. The trial ended here.

Main takeaways from this trial:
* Auser’s own post for the day should appear at the top of the home feed.
* Izumi wanted to be able to add her own profile picture.

Improvements

Of these trials, 5 possible improvements were suggested. I’m going to go through each of them in
more detail.

First time login page

This is relatively easy to add since it’s just a simple page with a few input boxes. It’s going to
include adding a name, role creating an occupation change request (to join a team). For each of
these things it’s going to include an explanation of what each one is and at the end the user can hit
“done” to go to the homepage. The page also includes an explanation of how to make a friend
request.

Password fields

Hiding the inputs of the password field with a button to reveal is another easy implementation with
huge upside to the user. This requires simply making a new custom text box widget and replacing
the standard password text boxes with this widget.

Own post in homefeed

This is something that was easily added since all I had to do was remove the function that prevented
this happening on the server side. I presumed at the time that this feature would be un-desirable but
like Izumi noted it’s a standard function in all other social media and so was re-added.

Making the post appear at the top of the feed however was more difficult. But was done since it was
still a very low complexity task. It was to be performed on the client side since it was a UI focused
issue. Before adding all other posts, the client now reaches out for the users own post. It adds this
post the top of the post stack, and then carries on as normal.

274

Jack Leverett 7714 50639

Profile picture

This is a feature that is unlikely to be added for several reasons. The first reason is its complexity,
the feature would require additional server-side code, including new profile events and class
methods, and an update to the database tables to allow adding of an image path. It would also
require significant client-side code. To properly receive and save the image as well as take/upload
profile pictures.

The second reason is due to it not adding much to the user experience. These profile pictures would
only be displayed on profile pages, and not at the top of a user’s posts (due to UI library
constraints). Generally, the benefit to the user is easy recognition of other people via their picture
but since you would have to click into their profile to see their picture user’s might as well just read
the username (displayed next to posts, comments etc) or full name of the user (displayed in the
profile page).

Overall, the effort put in to adding this feature would outweigh the benefits to the user.

Explanations

To better explain the system to the user several pages will now have a “?” at the top as a
clickable button. A number of these “help” buttons will be added to some input fields to, for
instance on the registration key input box. This button should help and explain some key
parts of how the platform functions to the user. On clicking this button, a box will pop up
containing an explanation, after being read this box can be dismissed.

These help boxes may even be added as a setting to be turned on and off. So once a user
understands the platform they can go to settings and turn off the help buttons.

If for some reason the video links do not work all Trial videos are also in the playlist linked
here: https://www.youtube.com/playlist?list=PLKQHuOI6LmMP_QRCdAfwEQzOnlIFkgVu6W

If done again

If the system was to be designed again from scratch a few parts would be reworked and,
in some cases, done in completely different languages.

Client Ul

If I were to start with a clean slate, | would likely build the client utilising native Kotlin or
Flutter. This is because while the python library Kivy does compile to an APK and run on
an android phone (and in theory an iPhone), its not very performant. That is it can take a
while to load and the app can feel sluggish. The python library runs non-native code by
creating a python environment within the running app that allows the python code to run
and then communicate with a java interface that then runs the actual code to generate the
widgets. This means to simply display some text on the screen:

275

Jack Leverett 7714 50639

Python creates widget -> Java interface -> Java creates widgets -> Widget is displayed.

This is manageable on newer devices but when it comes to older devices the app could
border on difficult to use if the user is part of a large organisation.

In my testing | used 3 different devices, | will briefly cover the performance and feel of the
app on each. The first “device” is used was the pixel 13 pro emulator (android 13/14) on
android studio, this was a virtual android device running with roughly the same
specifications the actual phone itself would have. On here the app ran well generally,
except for when generating “pop up lists” these lists are generated on the fly since their
contents can be changed by another user at any time (such as if an admin deleted an
occupation). The Kivy documentation does not recommend this due to this widgets
particularly bad performance but ultimately, | had no choice. Even then to the user this
simply appears as the pressing of a button not being very snappy. | also ran the app on my
own phone a Motorola edge 20 (a low-end, 2020 phone, on android 13) and it also ran fine
again apart from the drop down menus (again). | also ran it on a Samsung galaxy a5, 2017
(low end phone running android 11).

It was also hard to develop for since compiling from python to a native android APK does
take significantly longer than compiling Flutter or Kotlin. So basic things like syntax and
logic errors could be tested on a computer, however the look of the Ul on a phone and the
long compile times associated created a huge time sink. Faster Ul development could of
allowed for more experimentation and possibly a more intuitive design.

Flutter would probably be preferable for a redesign since like Kivy, flutter supports 10S,
MacOS, Windows, Android, Linux but also additionally web. It also runs at near native
speeds on every platform. This would make the apps a lot snappier and also allow for
deployment of a web application. A downside to using something like flutter is | would likely
have to write the socketio parser custom. Since flutter lacks a package for socketio and so
| would likely have to work with raw HTTP WebSockets and the (poorly written
documentation of python-socketio). But the overall benefits would be huge and once the
parser is written it can simply be placed to work in the background, only having to be
modified slightly if the server is ever updated to later python-socketio packages. Flutter is
also written is a package that utilises the programming language Dart which is very similar
to C syntax.

Status system

The current status system makes full use of WebSockets, while a client is connected, they
can receive status messages, the client always has an open status receiver than handles
and displays these status messages (where necessary) to the user. However, sometimes
after calling an even the client needs to look at the status “level” (INFO, WARN or FAIL) to
be able to determine if the result of the last even call was successful. With the open status

276

Jack Leverett 7714 50639

messages and multiple events and other server processes happening the last, status
message from the last event can get lost. This means that additional checks need to be
put in place.

If the system were to be designed again all events (even those who return no data) would
have a callback that returns the last status message produced from that event. This would
allow a client to perform actions purely based on this last status message as it tends to be
a success or failure. This would allow for a slightly more streamlined client coding
experience. All other features of the status mechanism would be kept the same just with
this additional feature.

User service

The only other server-side part | would re-design is the background user service. Currently
for every logged in client a background service is created, each of these services run on
their own thread. This background service allows for the serving of notifications and
updates without the client having to poll the server. This system works great as it reduces
the clients’ workloads and threads, however as a specific instance gets larger | would
worry about the performance of every client having its own background service thread.
These threads are not intensive as they only check for new notifications ever 5 seconds.
But with enough and just the fact that you must have a thread per active client could soak
up memory and clock cycles.

In a redesign of these background services, | would likely convert these into a singular
background service or a handful. Perhaps having a background service active for every 10
active clients. So, if 30 clients were actively logged in and connected, 3 background
services would be active handling their notifications and other “live” tasks. This would
reduce the number of open threads and actually could be scaled as an option. Since for
every client you have connected to one background service the less performant for the
client while the more performant for the server. So higher grade server hardware could
allow for less clients per background service. The reason this is less performant for the
client is because these background services run on a single thread. So if client A and client
B both needed to receive notifications, but client A has slower internet and is in the queue
before B the background service would have to wait for the transfer to fully complete for A
before moving on to send the notification for B. Basically you can have 29 people
connected to one background service who all have perfect internet but if just 1 person
joins that background service with slow internet notifications become slower for everyone.

However, to put this in perspective notifications generally consist of a timestamp, a title
and a description (essentially the data to be transferred is very small) and so when we say
“less performant” we only mean at most a fraction of a second. So having a background
service handle even a few dozen clients should be completely fine and performance
differences will be unobtrusive.

277

Jack Leverett 7714 50639

Code

File structure diagram

Server
1)
— B
-1
)
g

content py handlerpy L auth.py hash.py config.py L logging.py start py —> database.db
uuid.py

&

2
g
g £
& -
8 5
= 7

z
s ™ £
E

a2

£

=

2

3
z
—>
2

&

2

8
o

g &

@

=

3

g

g

a
L, &

& a2

5

&

278

50639

7714

Jack Leverett

Client

fid-awn fd1sanbay
Bud-aoud
& uadoaq fduoissas fd o
A

-~ -~ A
qpaseqelep SlsSse sabewn n uQISSas 12|puey

t t f t f f

Elep fd wew sainpon

279

Jack Leverett 7714 50639

Techniques

In this section | will lay out exactly what techniques are used from the top band (group A)
of the AQA NEA mark scheme (technical skills section). Please note that this does not
encompass all technigues used and in many cases these techniques are used on such a
large scale (for instance the class structures) that | might reference many points. | will also
note when the references I've given are just examples of the many times the techniques
are used.

Algorithms
Cross-table parameterised SQL
- See SQL and database section of the write up for many examples of this.

- Server/modules/user/info.py and server/modules/user/content.py are the 2 main
files that deal with almost every table in the database. Here you will see many
examples of joins and complex aggregations being used

Aggregate SQL functions
- See SQL and database section of the write up.

- Also see sever/modules/user/content.py, line 979. In the impressions class the
“count” method utilises an SQL count aggregate function.

User/CASE-generated DDL Scripts
- See the DDL section of the SQL and database section of this write up
- Or see server/modules/data/database.py for the code that creates the databases

- Here you will find all the generation scripts for the database. The database is made
up of 15 tables all of them have at least 1 foreign key connection to another, some
tables are almost entirely foreign keys. There is only one table without any sort of
connection that being “time_slots”.

Graph Traversal

- See under the algorithms section “friend recommendation algorithm”. It utilizes a
graph traversal to find common friend of friends and friends of friends of friends etc.

- Or see server/algorithms/recommend.py, lines 47 to 137 is the “Graph” class that
stores the graph and performs the traversal.

280

Jack Leverett 7714 50639

Queue operations

- See under the algorithms section “friend recommendation algorithm”. A queue is
used to facilitate a breadth first search of a graph. This includes queueing and
dequeuing items.

Hashing

- See under the algorithms section “username hash”. This is used in the friend
recommendation algorithm to generate hashes for peoples usernames. This allows
theses data points to be put into the graph and stored in a hash map.

- Or see server/modules/algorithms/hash.cpp, this cpp file performs that actual hash
algorithm itself but to see how this algorithm is put to use see:
server/modules/algorithms/recommend.py, lines: 47-137

Advanced matrix operations and Complex mathematical operations
- See under the algorithms section “Shamir secret sharing”.

- Or see server/modules/data/sss.cpp this file contains all the matrix operations and
polynomial mathematics used to generate polynomials given a y intercept and solve
polynomial y intercept problems by reconstructing the curve of power n-1 using n
points.

Recursive algorithms

- Under the algorithms section: “Shamir secret sharing” specifically the “det” function,
“Friend recommendations” specifically the graph generation and the
“ add_user_friends” function. These are just 2 examples, the Shamir secret
sharing algorithm actually has several instances of recursive algorithms.

- Or see: sever/modules/data/sss.cpp and server/modules/data/recommend.py you
will find the previously mentioned functions in these files along with other
recursions.

Complex user-defined algorithms (scheduling)
- Algorithms section: “post scheduling and time slots”

- Or see: server/modules/data/datetime.py the “timestamp” class deals with the
generation of post time slots, considering the length of days etc. The
server/modules/handler/tasks.py handles reading the current time and comparing it
to the slot.

- The client also has some slot management, it polls the server once for the time slot
and uses a “kivy clock” to schedule a post button appearing. See: client/main.py line
552, and in edition 921 and 977 to see how scheduling is also used to repeatedly
update the time widget on the post creation pages.

281

Jack Leverett 7714 50639

Complex user-defined algorithms and Complex mathematical operations

- UUID generation, see algorithms section: “UUID generation”. It uses binary and hex
string mathematics alongside pre-assigning bits to generate Universally Unique IDs.

- Also see: server/modules/algorithms/uuid.py
Merge sort

- Algorithm section: “merge sort”, its used for post sorting on the server side. Its
implemented to allow for sorting to be done on the server side rather than relying on
a thin client. Posts are sorted by like count.

- Or see: server/modules/user/content.py lines: 691 to 726
Dynamic generation of objects based on a complex user-defined use of OOP model

- The main files containing large use of objects on the server side is:
modules/user/info.py and modules/user/content.py, modules/handler/handler.py
also makes extensive use of objects and passing them as attributes of other
classes. Modules/algorithms/recommend.py also uses objects to generate the
graph and each user generates subsequent user objects and adds them to its
friends list attributes.

- On the server side you should look at main.py, here there is extensive use of
objects due to all Ul being handled through objects. This means heavy scripting
how objects are added, passed to children of that object and so on. For instance
page switching in the Ul and going “back” is often done by passing the parent object
to the child so they can call switch(parent).

Server-side scripting using request and response objects

- The entire model is a server client. All requests and responses are packaged the
same way.

- Each request from the client contains a dictionary simply called “data”, this
dictionary will contain key value pairs corresponding to data needed by the event
called.

- All responses to client are also very simple, the server always returns: “True, info”.
True being the Boolean value and info being a dictionary as well. This ensures that
the server doesn’t error simply didn’t receive the correct number of items passed.
The True simply states to the callback client function that what it is receiving is a
callback from the server.

- Clients can call events on the server for complicated processes or just when they
need some data or change some information on the system. This is done through a
number of pre-defined server events. For instance instead of the client getting all

282

Jack Leverett 7714 50639

the information about friends and then generating a recommendation client side, it
simply calls the friend_recommend event and the server does the computation.

Model (data structures)
Most data structures are also outlined in the data structures section of this write up.

Complex data model in database
- See database and SQL section for the server database and table structure

- The database structure results in almost every table having foreign keys, there are
also a number of link tables, look at the database diagram to see where these exist.

- The DDL scripts show in the document also dictate where these foreign keys are
how their behaviour varies (on delete cascade, on update set null etc).

Hash map

- Used in the friend recommendation algorithm as “friend directory”, Its searchable
using the hash of a username. Look at the “hash map” section for more information

- Or see server/modules/algorithms/recommend.py lines 47 to 137 for the hash maps
creation and use.

Queue

- See the data structures section or (for the best queue implementation) see
server/modules/algorithms/recommend.py

Graph

- See the algorithms section for how the graph is used and generated for the friend
recommendation algorithm, See the data structures “graph” section for more on the
generation and why its was used.

- Or see: server/modules/algorithms/recommend.py
Files organised for direct access

- On the server and client side images must be saved, for the client side images must
be saved locally before they can be displayed on the Ul. While on the server side
images must be saved to allow access to them by clients.

- The data structures section goes in depth about how this is done. Or see
server/modules/user/content.py, lines 461 to 475 and the rest of the “post” class for
how images are read, sent and stored.

Complex user-defined use of object-oriented programming models

283

Jack Leverett 7714 50639

- See the class diagram sections to see how classes are structured, inheritance and
use both composition and aggregation.

- An example of composition is used in the graph and user relationship (users are
part of the graph). An example of aggregation is in the handlers section (handlers
cannot exist independently of their corresponding table classes) but their table
classes can exist independently of the handers. Similarly with logs and status,
status messages can exist separately from the log, the log cannot exist separately
from the status.

- Looking at the class diagrams you will find more examples of this.

- Inheritance is also heavily used throughout, as well as objects being attributes of
other classes, and class references being attributes of objects.

- The main files to look at (all on server side) modules/user/info.py,
modules/user/content.py, modules/handler/handler.py,
modules/algorithms/recommend.py, modules/track/log.py and more.

File descriptions

Server

main.py

This is the so-called “root” of the program, this file mainly just handles interaction with the
web-socket connection and its events. Here event decorators are used to create events
that clients can call. Here data comes in and information (where necessary) is returned to
the client through callback functions.

Almost all events consist of taking 2 defined arguments “sid” as in server ID (an ID used
for the span of a client connection) and “data”. “data” is typically a dictionary and is the
inputs from the client. Then most events defined in this file will call a type of “handler” such
as “post_handler” pass it some basic security arguments, such as the minimum level

needed for access to the function, the event name (for error messages) and user inputs.

Then if the event needs to return some information it will have a return line that always

returns 2 pieces of information the bool “True” and “info” again info is returned from the
handler method and is typically a dictionary, or if an error occurred with the users inputs
“None” will be returned.

handler/handler.py

This file contains all the “handler” classes that inherit from the base class “root_handler”.
All these classes handle user inputs, status messages and security. Inputs are assigned
systematically through use of a verification function to check a certain dictionary key exists
in the inputs, then is assigned to an object. Each assignment also handles its own security

284

Jack Leverett 7714 50639

allowing for more nuanced security through an “authorisation” method inherited from the
root handler.

The root handler also contains the most important method “handle”, this method manages
the immediate assignment of a user_id to the obj as well as managing what data the client
wants returned by managing the obj.columns that exists in every table class. The root
class manages the basic security of what levels have access to which events.

Handlers ultimately filter user input and mange security but all processing and database
modifications is done in other modules.
handler/outgoing.py

This file handles any outgoing data from the server that is not activated from a client even.
Basically a client also has a set of events that can be called by the server for instance for
receiving a notification or status message. Outgoing event calls like this from the server
are done through functions in this file. To minimise the surface area of the system.

handlerftasks.py

This file contains all the background operations on the server that are separate from the
main event loop. When the server first starts a background service starts for managing the
deleting of expired notifications and the notification of post time. It runs every 10 seconds
and is modular so any additional background tasks that need to take place in the future
can be added.

Another main background task is one that is started whenever a new client joins and logs
in. This background service is responsible for serving real time notifications and updates to
the client. This allows real time notifications without the client having to devote recourses
to polling the server for notifications as this can consume large amounts of battery on
certain devices.

userl/info.py
This manages all tables that relate to a user’s personal information a list is below:

o table — Aroot class for all other classes that relate to tables in the database
e user_id — Non-accessible to handlers, refers to the single attribute user_id
e auth — auth_credentials table

e profile — profile table

e friend — friends table

e occupation — occupations table

e team — teams table

Each of the above is a class for a table so each can be addressed as an object. These
classes aggressively use python class “properties” which are equivalent to the “getters”

285

Jack Leverett 7714 50639

and “setters” in other languages. The getters don’t do much in most of these attributes but
the setters filter inputs. These filters act as a additional defence against SQL injection
(despite using prepared statements anyway). But also help the methods themselves
handle errors and output correct status messages, if a value is found to not be valid in a
setter the attribute is set to None instead.

Most classes here have a number of public methods that all correspond to events
available to clients. Here permissions and security is abstracted away through the
handlers.

user/content.py

This file is similar to the info but instead all classes here refer to the content that users
produce. A full list of classes is below:

e user_content — a base class for all other content classes in this file (inherits from
table)

e post — posts table

e comment — comments table

e impression — impressions table, a base class for post and comment impressions
e post_impression — post_impressions table

e comment_impression — comment_impressions table

e notification — notifications table

All the classes here act in the same way as info, using getters and setters to filter inputs
and security abstraction through the handlers that mange the security side of things.

user/generate.py

These functions are used for generating a fresh user. This happens once a user has
registered creating a friend’s team, logging credentials in the auth_credentials table and a
profile.

start/start.py

Manages the startup operation of the server and some first time setup operations such as
creating the database, configuration file. It also creates a time slot for the day if one has
not been created.

logging/logging.py

Contains 2 classes, geared towards logging and status messages to clients. The logging
class can read and write to the logs, all statuses are written to the logs as well alongside
additional information to assist in debugging.

286

Jack Leverett 7714 50639

data/config.py

Manges the configuration file. It programmatically creates the configuration file and
provides a proper interface for the rest of the server to read the configuration file.

data/database.py

Manages the programmatic creation of the database. Also has a connection class to make
an easy interface for the info and content classes to execute commands to the database. It
manages the connection, the cursor and the automatic committing of any SQL command
to lighten the load on other classes.

data/datetime.py

Contains the timestamp class. This class is used to manage all timings within the system.
It coordinates the timings of the client and the post slots. It also can be called at any point
to get the exact Unix timestamp using the property timestamp.now and timestamp. Date. It
also creates the post time notification and abstracts the complexities of assigning a post
time and retrieving it.

data/sss.cpp

This file contains the logic for Shamir Secret Sharing. This is only used if enabled in the
config but is mostly made up of matrix operations, all these operations in the correct
sequence can invert a matrix of size n x n.

auth/auth.py

This file manages all registration, login and authentication token creation. Most security
functions are present in this file and are used for authentication of users before they can
run an event. It also manages the creation and distribution of authentication tokens; these
tokens can be stored by clients and have an expiration date on them. After this date a
client will be forced to log back in and get a new authentication token.

algorithms/recomend.py

Contains the logic for generating friend recommendations for users. Containing a method
and the associated classes, such as User and Graph. This is called from the friend class in
the user/info.py.

algorithms/hash.cpp

Contains the hashing logic. Very short and this type of hash is only really used by the
friend recommendation algorithm since its unsuitable for long strings. C struggles with
large strings and large numbers and often suffers from memory overflows.

algorithms/uuid.py

This is where the function that generates UUIDs is. This function is used plenty of times
throughout the code for the generation of almost all IDs. User ID is the most important one
generated out of this since this also acts as a salt for the password. So secure and random

287

Jack Leverett 7714 50639

UUID generation is very important for the security of passwords. It also manages the hash
function which is used for hashing passwords. This makes passwords safe for storage
since if a database leak were to happen an attacker would have to devote large amounts
of compute to get username, password pairs.

Client
main.py

This is where all programable Ul management happens. It's a large file since it is
impractical to turn most of this code into modules, since most methods are executing
within widget classes and manipulating the UI.

Changing, adding, and updating of widgets all takes place in parent widgets and so on.
This class-based approach to widgets allows complex structures and in many cases
objects of parent classes becoming attributes of child classes. Small background tasks
also often take place, most of these background or scheduled functions are for updating
countdowns and managing the post slot.

ui/beopen.kv

This file is directly tied to the Ul library used for the project, Kivy. This library makes use of
some implicit links between a python class running in a main file and a “kv” file that
contains the expressions for many widgets. This custom KV language is very simple and is
designed to make creating widgets and adding static widgets to the Ul easy. Then the
main.py file will have classes of the same names as widgets in the kv file. Since their
names are the same, they are implicitly linked at runtime which means programmatically
adding widgets to the Ul is done from the python code.

Overall, this file mainly manages the looks of base widgets and the arrangement of static
widgets.

session/session.py

This session file manages the current user session. A new session is created for each
separate launch of the app/when a new user is logged in. This session stores some basic
information that can then be easily used throughout the program through a constant
“session” object present in the main file. This session object contains basic information.
For example, the username of the current user session, whether the session is logged in
any present auth_tokens, the server code etc.

Session also plays a key role in receiving information from the server callbacks. Since
session is used as a point of transfer for data. This allows the client to apply any filtering to
incoming data as well as authentication of the information.

This file also contains the db class used for seamlessly interacting with the client-side
database in a safe way. The wait class is also present this is very important for safely

288

Jack Leverett 7714 50639

awaiting data from a server callback. Without this class and its methods, if a server didn’t
respond fast enough a client would continue with invalid data causing errors. Wait
facilitates poor connections likely when a device is constantly moving around.

session/time.py

This manages the timing of the client and keeps it in sync with the server. This file allows
the rest of the client to abstract away the handling of time data, post slots and date. Its
most vital for the “memories” function of the client which must handle time and dates in a
complex manner.

handler/info.py

This file manages any complicated data that is passed back to the client. For instance,
images need to be decoded and stored on the client side. They also need to be
dynamically removed to save on performance of the application. Through the info class the
complexities of data such as images is abstracted away to the rest of the code making it
as simple as any other piece of data.

handler/request.py

This file manages all the events being called on the server side. So, every time the client
calls a get, set, or delete it goes through this requests file and its aptly named request
class. This class centralises the security of outgoing data and handles the data in an easy
way so that any method calling the request class and its “emit” method doesn’t have to see
the complexities of a callback function.

289

Jack Leverett 7714 50639

Code

| break down the code per file. Ill start from the root file of both the server and the client.
The titles of each section will depict the path from these root files.

Server
main.py

import socketio
import eventlet

SESSION
class server_session():
def _init (self):
self.clients = []
self.logged_in = []
self.accepting clients = True

self.mode = "normal"
self.flags = []

self.encrypt _on_shutdown = True
self.db_encrypted = True
self.password = None

this is a class object shared accross the server

it allows access to some basic infomation about the server's current status
session = server_session()

SESSION

STARTUP

from modules.track.logging import log

from modules.start.start import main as server_startup
server_startup(session)

STARTUP

MODULES

from modules.auth import auth

from modules.track import *

send_status = logging.status.send_status

from modules.user import info as user_info

from modules.handler.handler import *

from modules.handler.tasks import user_service, server_service
from modules.algorithms.univ import dict_key_verify

from modules.data.datetime import timestamp

from modules.data.config import read as config_read

290

Jack Leverett 7714 50639

MODULES

sio
app

socketio.Server()
socketio.WSGIApp(sio)

CONNECT/DISCONNECT EVENTS
@sio.event
def connect(sid, environ, auth):
if session.accepting clients:
sio.save_session(sid, {'id': None, 'level': None})
log("INFO", f"client {sid} connected")
session.clients.append(sid)
else:
return status here, create interface etc
sio.disconnect(sid)

@sio.event
def disconnect(sid):
log("INFO", f"client {sid} disconnected")
session.clients.remove(sid)
if sid in session.logged_in:
session.logged_in.remove(sid)
CONNECT/DISCONNECT EVENTS

AUTH EVENTS
@sio.event
def login(sid, data):
info = {'logged_in': False}
status, user_id, level = auth.login(sio, sid, data)

with sio.session(sid) as client_session:
saves some infomation to the sid of a connected client
this sid can be passed to other functions to identify the client even if
they havent provided specfic info to that event
as long as they have logged in
client_session['id'] = user_id
client_session['level'] = level

if auth.authorised(sio, sid, "member"):
info['logged_in'] = True
if sid not in session.logged_in:
session.logged _in.append(sid)
sio.start_background_task(user_service, sio, sid)

send_status(sio, sid, status)

291

Jack Leverett 7714

return True, info

any event that returns infomation will return True as its first parameter
this is to let the client side function know that the infomation being returned

is a "callback" from the server

without this the client side function would have no way of knowing if the func-

tion has been called by the server or the client itself

@sio.event
def register(sid, data):
status = auth.register(data)
send_status(sio, sid, status)
if status['level'] == "INFO":
return True, {'is_registered': True}
return True, {'is_registered': False}

@sio.event
def admin_register(sid, data):
status = auth.admin_register(data)
send_status(sio, sid, status)
if status['level'] == "INFO":
return True, {'is registered': True}
return True, {'is registered': False}

@sio.event
def auth_get(sid, data=None):

info, status = auth_handler(sio, sid, session, min_level='member',

event_name="auth_get').get(data)
return True, info

@sio.event
def auth_set(sid, data=None):

info, status = auth_handler(sio, sid, session, min_level='member',

event _name='auth _set').set(data)
AUTH EVENTS

PROFILE EVENTS
@sio.event
def profile_get(sid, data=None):

info, status = profile_handler(sio, sid, session, min_level="member’,

event_name='profile_get').get(data)
return True, info

@sio.event
def profile_get permissions(sid, data=None):

292

Jack Leverett 7714 50639

info, status = profile handler(sio, sid, session, min_level="member',
event_name='profile_get permissions').get_permissions(data)
return True, info

@sio.event
def profile set(sid, data=None):

info, status = profile handler(sio, sid, session, min_level='member',
event_name='profile set').set(data)

@sio.event
def profile _delete(sid, data=None):
info, status = profile handler(sio, sid, session, min_level='member',
event _name='profile delete').delete(data)
PROFILE EVENTS END

FRIEND EVENTS START
@sio.event
def friend get(sid, data=None):
info, status = friend handler(sio, sid, session, min_level="member',
event _name='friend get').get(data)
return True, info

@sio.event
def friend_get_requests(sid, data=None):

info, status = friend handler(sio, sid, session, min_level="member',
event_name='friend_get_requests').get_requests(data)

return True, info

@sio.event
def friend_get_recomendations(sid, data=None):

friend_get_recomendations

info, status = friend handler(sio, sid, session, min_level="member',
event_name='friend_get_recomendations').get_recomendations(data)

return True, info

@sio.event
def friend_add_request(sid, data=None):

info, status = friend_handler(sio, sid, session, min_level="member',
event_name='friend_add_request').add_request(data)

@sio.event
def friend_approve_request(sid, data=None):
info, status = friend_handler(sio, sid, session, min_level="member',

event_name='friend_approve_request').approve_request(data)

@sio.event

293

Jack Leverett 7714

def friend remove request(sid, data=None):

info, status = friend_handler(sio, sid, session, min_

event_name='friend_remove_request').remove_request(data)

@sio.event
def friend reject request(sid, data=None):

info, status = friend_handler(sio, sid, session, min_

event_name='friend reject request').reject request(data)

@sio.event
def friend remove(sid, data=None):

info, status = friend handler(sio, sid, session, min_

event_name='remove').remove(data)
FRIEND EVENTS END

OCCUAPTION EVENTS
@sio.event
def occupation get(sid, data=None):
info, status = occupation_handler(sio, sid, session,
event _name='occupation get').get(data)
return True, info

@sio.event
def occupation_get_all(sid, data=None):

info, status = occupation handler(sio, sid, session,
event_name='occupation_get_all').get_all(data)

return True, info

@sio.event
def occupation_set(sid, data=None):

info, status = occupation _handler(sio, sid, session,
event _name='occupation set').set(data)

@sio.event
def occupation_set_request(sid, data=None):

info, status = occupation_handler(sio, sid, session,
event_name='occupation_set_request').set_request(data)

@sio.event
def occupation_get request(sid, data=None):
info, status = occupation_handler(sio, sid, session,
event_name='occupation_get request').get_request(data)
return True, info

@sio.event
def occupation_get all requests(sid, data=None):

294

50639

level="member',

level="member"',

level="member"',

min_level="member",

min_level="'member',

min_level='member',

min_level="member',

min_level="member',

Jack Leverett 7714 50639

info, status = occupation_handler(sio, sid, session, min_level='member',
event_name='occupation_get_all request').get_all request(data)
return True, info

@sio.event
def occupation_delete request(sid, data=None):

info, status = occupation_handler(sio, sid, session, min_level='member',
event_name='occupation_delete request').delete request(data)

@sio.event
def occupation_approve_request(sid, data=None):

info, status = occupation_handler(sio, sid, session, min_level='management',
event_name='occupation_approve_request').approve_request(data)

@sio.event
def occupation_reject request(sid, data=None):

info, status = occupation_handler(sio, sid, session, min_level="management',
event _name='occupation reject request').reject_request(data)

@sio.event
def occupation create(sid, data=None):

info, status = occupation_handler(sio, sid, session, min_level="management',
event _name='occupation create').create(data)

@sio.event
def occupation edit(sid, data=None):

info, status = occupation_handler(sio, sid, session, min_level="management',
event _name='occupation edit').edit(data)

@sio.event
def occupation_delete occupation(sid, data=None):
info, status = occupation_handler(sio, sid, session, min_level='management’,
event _name='occupation delete occupation').delete_occupation(data)
OCCUAPTION EVENTS

TEAM EVENTS
@sio.event
def team_get(sid, data=None):
info, status = team_handler(sio, sid, session, min_level="member’,
event_name='team_get').get(data)
return True, info

@sio.event
def team_get_all(sid, data=None):

info, status = team_handler(sio, sid, session, min_level="member',
event_name='team_get all').get_all(data)

295

Jack Leverett 7714
return True, info

@sio.event
def team get leaders(sid, data=None):

info, status = team handler(sio, sid, session, min_level='member',

event_name='team_get leaders').get leaders(data)
return True, info

@sio.event
def team get members(sid, data=None):

info, status = team handler(sio, sid, session, min_level='member',

event _name='team_get members').get members(data)
return True, info

@sio.event
def team_set(sid, data=None):

info, status = team_handler(sio, sid, session, min_level="'member",

event _name='team_set').set(data)

@sio.event
def team_delete leaders(sid, data=None):

info, status = team_handler(sio, sid, session, min_level='member',

event _name='team_delete leaders').delete leaders(data)
TEAM EVENTS

POST EVENTS
@sio.event
def post_get_feed(sid, data=None):

info, status = post_handler(sio, sid, session, min_level='member',

event_name='post_get feed').get_feed(data)
return True, info

@sio.event
def post_get(sid, data=None):

info, status = post_handler(sio, sid, session, min_level="member’,

event_name='post_get').get(data)
return True, info

@sio.event
def post_get_memories(sid, data=None):

info, status = post_handler(sio, sid, session, min_level="member',

event_name='post_get').get_memories(data)
return True, info

@sio.event
def post_get_user(sid, data=None):

296

50639

Jack Leverett 7714 50639

info, status = post_handler(sio, sid, session, min_level='member',
event_name='post_get _user').get_user(data)
return True, info

@sio.event
def post get friends(sid, data=None):

info, status = post handler(sio, sid, session, min_level='member',
event_name='post_get friends').get_friends(data)

return True, info

@sio.event
def post get team(sid, data=None):

info, status = post_handler(sio, sid, session, min_level='member",
event_name='post get team').get team(data)

return True, info

@sio.event
def post get permissions(sid, data=None):

info, status = post_handler(sio, sid, session, min_level='member',
event _name='post get permissions').get permissions(data)

return True, info

@sio.event
def post set(sid, data=None):

info, status = post_handler(sio, sid, session, min_level='member',
event _name='post set').set(data)

@sio.event
def post delete(sid, data=None):
info, status = post_handler(sio, sid, session, min_level='member',
event _name='post delete').delete(data)
POST EVENTS

COMMENT EVENTS
@sio.event
def comment_get(sid, data=None):
info, status = comment_handler(sio, sid, session, min_level="member’,
event_name="'comment_get').get(data)
return True, info

@sio.event
def comment_get post(sid, data=None):

info, status = comment_handler(sio, sid, session, min_level="member’,
event_name='comment_get post').get post(data)

return True, info

297

Jack Leverett 7714 50639

@sio.event
def comment_get_permissions(sid, data=None):

info, status = comment_handler(sio, sid, session, min_level="member',
event_name='comment_get permissions').get permissions(data)

return True, info

@sio.event
def comment_set(sid, data=None):

info, status = comment_handler(sio, sid, session, min_level='member',
event_name='comment_set').set(data)

return True, info

@sio.event
def comment_delete(sid, data=None):
info, status = comment_handler(sio, sid, session, min_level='member',
event _name='comment delete').delete(data)
return True, info
COMMENT EVENTS

IMPRESSION EVENTS
@sio.event
def post_impression_get(sid, data=None):
info, status = post_impression_handler(sio, sid, session, min_level='member',
event_name='post_impression_get').get(data)
return True, info

@sio.event
def post_impression_get_post(sid, data=None):

info, status = post_impression_handler(sio, sid, session, min_level='member',
event_name="'post_impression_get_post').get_post(data)

return True, info

@sio.event
def post_impression_count(sid, data=None):

info, status = post_impression_handler(sio, sid, session, min_level="member',
event_name="'post_impression_count').count(data)

return True, info

@sio.event
def post_impression_set(sid, data=None):

info, status = post_impression_handler(sio, sid, session, min_level="member',
event_name='post_impression_set').set(data)

@sio.event
def post_impression_delete(sid, data=None):

298

Jack Leverett 7714 50639

info, status = post_impression_handler(sio, sid, session, min_level='member',
event_name='post_impression_delete').delete(data)

@sio.event
def comment_impression_get(sid, data=None):

info, status = comment_impression_handler(sio, sid, session, min_level='mem-
ber', event_name='comment_impression_get').get(data)

return True, info

@sio.event
def comment_impression_get comment(sid, data=None):

info, status = comment_impression_handler(sio, sid, session, min_level='mem-
ber', event_name='comment_impression_get comment').get comment(data)

return True, info

@sio.event
def comment_impression_count(sid, data=None):

info, status = comment_impression_handler(sio, sid, session, min_level="mem-
ber', event_name='comment_impression count').count(data)

return True, info

@sio.event

def comment_impression_set(sid, data=None):

info, status = comment_impression_handler(sio, sid, session, min_level="mem-
, event_name='comment_impression_set').set(data)

ber

@sio.event
def comment_impression delete(sid, data=None):
info, status = comment_impression_handler(sio, sid, session, min_level="mem-
ber', event_name='comment_impression delete').delete(data)
IMPRESSION EVENTS END

NOTIFICATION EVENTS START
@sio.event
def notification_get(sid, data=None):
info, status = notification_handler(sio, sid, session, min_level="member"',
event_name="notification_get').get(data)
return True, info

@sio.event
def notification_create(sid, data=None):

status = notification_handler(sio, sid, session, min_level="member',
event_name='notification_create').create(data)

@sio.event
def notification_delete(sid, data=None):

299

Jack Leverett 7714 50639

status = notification_handler(sio, sid, session, min_level='member',
event_name="notification_delete').delete(data)

@sio.event
def notification_remove(sid, data=None):
status = notification_handler(sio, sid, session, min_level='member',
event_name='notification_remove').remove(data)
NOTIFICATION EVENTS END

OTHER EVENTS
@sio.event
def get ntfy topic(sid, data=None):
info = {'topic': None}
if sio.get_session(sid)[" level']:
user_id = sio.get _session(sid)['id']
username = user_info.auth(user_id=user_id).get()['username’]

nfty topic = f"{username}-{user_id[:8]}"
info["topic'] = nfty_topic

return True, info

@sio.event

def server_code_get(sid, data=None):
code = config read('miscellaneous', 'servercode')
info = {'server_code': code}
return True, info

@sio.event
def is_post slot(sid, data=None):
info = None
if timestamp().is valid time():
info = {'is_post slot': True}
else:
info = {'is_post_slot': False}
return True, info

@sio.event

def get_date(sid, data=None):
info = {'date':timestamp().date}
return True, info

@sio.event
def post_slot_get(sid, data=None):

info, status = post_slot_handler(sio, sid, session, min_level="'member',
event_name='post _slot get').get(data)

300

Jack Leverett 7714 50639
return True, info

@sio.event
def shutdown(sid, data=None):
info, status = server(sio, sid, session, min_level='admin', event_name='shut-
down').shutdown(data)
OTHER EVENTS

ENCRYPTION EVENTS START

@sio.event

def decrypt(sid, data=None):
success = encryption_handler(session).decrypt(data)
return True, {'success': success}

@sio.event
def get mode(sid, data=None):
sss_enabled = config read('database', 'ShamirSecretSharing')
min_shares = config_read('database’, "MinimumShares"')
info = {'mode': session.mode, 'password': True, 'sss': sss_enabled,
'min_shares': min_shares}
return True, info
ENCRYPTION EVENTS END

def test():
pass

def main():
add mode check + while loop to background tasks
sio.start_background_task(server_service, session)
open_port = int(config_read('networking', 'Port"))
eventlet.wsgi.server(eventlet.listen(('', open_port)), app)
server(sio, None, session, min_level='admin', event_name='shutdown').inter-
nal shutdown({ 'time': ©.1})

modules/algorithms/hash.cpp

include<string.h>

include<string>

include<cmath>

typedef long long int Lint;

extern "C" Lint hash(char* str) {

Lint m = std::pow(10,7) + 7;
int p = 97;

301

Jack Leverett 7714 50639
Lint total = 0;

for (int i=0; i<strlen(str); i++) {
total += (int(str[i]) - 32) * pow(p,i);
}

Lint result = total % m;
return result;

extern "C" Lint printc(char* str) {
int num = strlen(str);
return num;

}

modules/algorithms/univ.py

checks a string for illegal characters

string = string to be checked

allow _chars = allowed characters should be passed as a string
def char_check(string, allow_chars):

default allow _chars value
if allow chars == None:
allow_chars = ascii_letters + digits
#allowed char = ascii_letters + digits + " " + "-"
if set(string).difference(allow_chars):
return True
else:
return False

def dict_key_verify(dictionary, keys, mode="and", *args, **kwargs):
checks if the dictionary exists, if the key exists as a field and if that fields
value is not none
can be used to check if multiple keys exist
if mode != "and" and mode != "or":
mode = "and"
if type(keys) != list:
keys = [keys]

verified = []
if type(keys) != list:
keys = [keys]

for key in keys:

302

Jack Leverett 7714

if type(dictionary) != dict or key not in dictionary or not diction-

ary[key]:
verified.append(False)
else:
verified.append(True)

if mode == "and":
if all(verified) == True:
return True
if mode == "or":
if True in verified:
return True
return False

1] ",

if _name__ == "__main__":

print(answer)

modules/algorithms/uuid.py

import random
import ctypes
import pathlib
import hashlib

RBP
import time
RBP

def bin_to_hex(byte):
byte_hex = ""
total = @
for i, bit in enumerate(byte):
total += int(bit) * 2 ** i
first_place = total // 16
second_place = total - first_place * 16

places = [first_place, second_place]
for i, place in enumerate(places):
if place < 10:
byte_hex += str(place)
else:
byte_hex += chr(65 + place - 10)

return byte_hex.lower()

303

L

data = name': "joe", 'job': "cuck", 'age':
answer = dict key verify(data, ['job', 'names'], "and")

"69"}

50639

Jack Leverett 7714 50639

def den_to_bin(number):
byte_string = ""
result = 2
power = 0

finds the greatest power of 2 that can fit in the number
this defines the length of the binary number
while result > 0:
result = number // 2**power
if result ==
break
power += 1

for i in range(power-1, -1, -1):
bit = number // 2**i
number -= bit * 2**i
byte string += str(bit)

return byte_string

def set bits(binary, num_bits):
for i in range(num_bits - len(binary)):
binary += "0"
return binary

#uuid START
def generate():
byte_list = []

generates 16 8 bit numbers as strings
for i in range(16):
number = random.randint(@, 255)
bits = den_to_bin(number)
byte = set_bits(bits , 8)
byte_list.append(byte)

setting certain places as pre-defined, as stated by the UUID4 spec (see apen-
dix)

byte list[6]

byte list[8]

byte_list[6][:4] + "@010"
byte_list[8][:6] + "01"

UUIDs are always shown in terms of hex
hex_string = ""
for byte_index, byte in enumerate(byte_list):
byte_hex = bin_to_hex(byte)
adds the dashes in the indexes as required by the UUID4 spec

304

Jack Leverett 7714 50639

if byte_index in [4, 6, 8, 10]:
hex_string += "-"
hex_string += byte_hex

return hex_string
#uuid END

#string hash START
def hash_string(string):
string = string.replace("-", "0")
string = string.replace("_ ", "0")
libname = pathlib.Path().absolute() / "modules/algorithms/libcpphash.so"
c_lib = ctypes.CDLL(1libname)

charptr = ctypes.POINTER(ctypes.c_char)
c_lib.printc.argtypes = [charptr]
c_lib.printc.restypes = int

result = c¢_lib.hash(ctypes.c_char _p(string.encode('utf-8')))
return result

def long_hash(string):
result = hashlib.sha256(string.encode('utf-8"))
result = result.hexdigest()
return result

string hash END

if name_ == " main__ ":
result = hash_string("hello")
print(result)

modules/algorithms/recommend.py

from modules.user import info as user_info
from modules.algorithms.univ import dict_key_verify
from modules.algorithms.uuid import hash_string

class User():
def __init__ (self, username, origin=False):
self.username = username
self.friends = user_info.friend(username=username)
self.origin = origin

self.exclude
self.count =
self.depth =

[]

S =

305

Jack Leverett 7714 50639
self.score = 0
self.friend_list = []

def find_friends(self, exclude=[], **kwargs):
self.exclude += exclude
friends = self.friends.get()
if dict_key verify(friends, "friends"):
self. organise_ friends(friends['friends'])

self. find excluded()

def _ organise friends(self, friends, **kwargs):
used to create the user objects of friends
for friend in friends:
if friend['username’'] not in self.exclude:
self.friend list.append(User(friend['username']))

def _ find excluded(self):
gathers the users to be excluded from the next nodes neigbours and sets
this list = to self.exclude
this exclude list includes the previously passed exclude list
if self.username not in self.exclude:
self.exclude.append(self.username)
if self.origin:
self.exclude = self.exclude + [friend.username for friend in
self.friend list]
requests = self.friends.get_requests()
if dict_key_verify(requests, "requests"):
self.exclude = self.exclude + [request for request in requests["re-
quests"]]

def _ hash_ (self):
obj_hash = hash_string(self.username)
return obj_hash

class Graph():
def __init__ (self, username):
self.origin_user = User(username, True)
self.graph = [[]] * (10**7+7)

self.friend_directory = [None] * (10**7+7)
self.friend_directory[hash(self.origin_user)] = self.origin_user

self.exclude = []

def generate(self, depth=1):
self.origin_user.depth = depth-1

306

Jack Leverett 7714 50639
self. add_user_friends(self.origin_user, self.origin_user, depth)

def __ add_user_friends(self, origin, source, depth):
origin.find_friends(self.exclude + [source.username])
if hash(self.origin_user) == hash(origin):
self.exclude += origin.exclude

for friend in origin.friend_list:
friend_hash = hash(friend)
self. add_edge(hash(origin), friend_hash)

if this user already exists in the graph add to their count in the
user's object
this count keeps track of how many other users friend lists a certain
user is
if self.friend directory[friend_hash]:
self.friend directory[friend hash].count += 1
else:
self.friend directory[friend _hash] = friend

if depth-1 > 0:
recursively calls the function until the depth is 0.
self. _add_user_friends(friend, origin, depth-1)

def __add_edge(self, node, edge):
using the + operator on the lists since .append() has some undefined be-
haviour on large arrays.
self.graph[node] = self.graph[node] + [edge]

def bft(self):
self.visted = []
adds the hash of the selected orgin user to the edge queue
self.edge_queue = [hash(self.origin_user)]

self. visit(self.edge_queue[0])

def _ visit(self, origin):
the origin is a number and so can be used as an index for the graph array
start_pos = self.graph[origin]
self. on_visit(origin)

adds the current node to the vistsed lists and removes it from the queue
self.edge_queue.pop(len(self.edge_queue)-1)
self.visted.append(origin)

for neigbour in start_pos:
neigbour_obj = self.friend_directory[neigbour]

307

Jack Leverett 7714 50639
origin_obj = self.friend_directory[origin]

checks if the node has been visted yet, if not adds it to the edge
queue and assigns it a depth from the origin
if neigbour not in self.visted and neigbour not in self.edge queue:
neigbour_obj.depth = origin_obj.depth - 1
self.edge queue = [neigbour] + self.edge queue

if len(self.edge_queue) > 0:
recursively calls this method until the edge queue is empty
self. visit(self.edge queue[len(self.edge queue)-1])

def __on_visit(self, origin):
origin_obj = self.friend_directory[origin]
each node is only visited once in the graph so the count is calculated
when constructing the graph
origin obj.score = origin obj.depth * origin_obj.count

def recomend friends(self):
self.recomendations = []

removing the user requesting the recomendations and their friends from
the visited list
this is done so that the user or people who are already friends of the
user dont get recomended
possible = []
for user in self.visted:
user_obj = self.friend_directory[user]
if user_obj.username not in self.exclude:
possible = possible + [user]

while len(self.recomendations) != len(possible):
largest = User(username="")
largest.score = -1
for friend in possible:
friend_obj = self.friend_directory[friend]
if friend_obj not in self.recomendations and friend_obj.score >
largest.score:
largest = friend_obj

self.recomendations.append(largest)
def recomend_friend(username, amount=1, depth=1):
if not (depth >= 1 and depth <= 4):
depth = 4

friend_graph = Graph(username)

308

Jack Leverett 7714 50639

friend_graph.generate(depth)
friend_graph.bft()
friend_graph.recomend_friends()

recomended = [{'username': recomended.username} for recomended in
friend_graph.recomendations[:amount]]
return recomended

def main():
result = recomend_friend("Jack", 3, 4)

if __name__ == "__main__":
main()
modules/auth/auth.py

BEFORE PRODUCTION PUSH
Need to uncomment the try and exept build into fuctions:
##t## login, register, admin_register

import sqlite3
import time
from string import ascii_letters, ascii_lowercase, digits

MODULES
from modules.track import *

from modules.user.generate import main as user_generate
from modules.user import info as user_info

from modules.data.database import connect as db_connect
from modules.data.config import read as config_read
from modules.data.datetime import timestamp

from modules.algorithms.uuid import long_hash as hash_string
from modules.algorithms.uuid import generate as uuid_generate
from modules.algorithms.univ import char_check

MODULES

need to change this to path
database_name = config_read("database", "Path")

class reg_cred():

def __init_ (self, cred):
self.level = config read("user", "DefaultLevel")

309

Jack Leverett 7714 50639

self.key = cred['key']
self.username = cred['username’]
self.password= cred['password’]
self.repassword= cred['repassword"]

self.db = db_connect()
self.db.create(self)

logging.status("INFO", "registration initialised").status_update(self)

def exec(self):
CHECKS
check _processes = [self.username_verify, self.username_bans,
self.username_clash_check, self.password_verify]
for check in check processes:

check()
if self.status['level'] == "FAIL":
return

if not self.key verify():

return
logging.status("INFO", "credential verification successful").status_up-

date(self)

CHECKS

self.id = user_generate(self.username, self.password, self.level)
#tself.db.close()

logging.status("INFO", "registration successful").status_update(self)

def username_verify(self):
This will be configurable
min_len = 3
max_len 25

if self.username == None:
logging.status("FAIL", "username cannot be null").status_update(self)

elif len(self.username) < min_len or len(self.username) > max_len:
logging.status("FAIL", f"username cant be shorter than {min_len} char-
acters or longer than {max_len} characters").status_update(self)

elif char_check(self.username, ascii_letters + digits + "_" + "-") == True:
logging.status("FAIL", f"username contains invalid characters").sta-
tus_update(self)

def username_bans(self):

310

Jack Leverett 7714 50639

servercode = config read('miscellaneous', 'servercode')
if servercode in self.username:
logging.status("FAIL", "usernames contains servercode").status_up-

date(self)

def username_clash_check(self):
self.cur.execute("SELECT username FROM auth_credentials WHERE username =

*", (self.username,))

if self.cur.fetchall():
logging.status("FAIL", "username is already in use").status_up-

date(self)

def password_verify(self):
This will be configurable
min_len = 4
max_1len 100

if self.password == None:
logging.status("FAIL", "password cannot be null").status_update(self)

elif len(self.password) < min_len or len(self.password) > max_len:
logging.status("FAIL", f"password cant be shorter than {min_len} char-
acters or longer than {max_len}").status_update(self)

elif self.password != self.repassword:
logging.status("FAIL", f"passwords do not match").status_update(self)

def key_verify(self):
if self.key == config_read('authorisation’, 'RegistrationKey'):
return True
else:
return False
logging.status("FAIL", "registration code is incorrect").status_up-
date(self)

class reg_admin(reg_cred):
def __init_ (self, cred):
super().__init_ (cred)
self.level = "admin"

logging.status("INFO", "admin registration initialised").status_up-
date(self)

def key_verify(self):

if self.key == config_read('authorisation', 'AdminKey'):
return True

311

Jack Leverett 7714 50639

else:
return False

def first time(self):
self.cur.execute("SELECT user_id FROM auth_credentials WHERE level = ?",
(self.level,))
value = self.cur.fetchone()

if value:

return False
else:

return True

class login_cred():
def __init__ (self, sio, sid, cred):
self.username = cred['username’]
self.password = cred['password’]

self.sio = sio
self.sid = sid

self.db = db_connect()
self.db.create(self)

logging.status("INFO", "credential login initialised").status_update(self)

def exec(self):
self.process_password()

self.cur.execute("SELECT user_id FROM auth_credentials WHERE username = ?
AND password = ?", (self.username, self.password hash))
self.id = self.cur.fetchone()

if self.id:
self.id = self.id[9]

logging.status("INFO", "valid login credentials").status_update(self)
login_token.create_token(self)
login_token.send_token(self)
logging.status("INFO", "login successful").status_update(self)
else:
logging.status("FAIL", "invalid login credentials").status_update(self)

self.db.close()

def process_password(self):

312

Jack Leverett 7714 50639

self.cur.execute("SELECT user_id FROM auth_credentials WHERE username = ?",
(self.username,))
user_id = self.cur.fetchone()
if user_id:
self.password_hash
else:
self.password_hash

hash_string(self.password + user_id[0@])

None

class login_token():
def init (self, cred):
self.token = cred['token']

self.db = db_connect()
self.db.create(self)

logging.status("INFO", "token login initialised").status_update(self)

def exec(self):
self.token_hash = hash _string(self.token)
self.cur.execute("SELECT user_id, token_expire FROM auth_tokens WHERE token
= ?", (self.token_hash,))
fetch_data = self.cur.fetchall()
self.id = None

if fetch_data:
self.id, self.token expire = fetch _data[@][0], fetch_data[0][1]

if self.token _expire > timestamp().now:

logging.status("INFO", "valid token").status_update(self)
else:

logging.status("FAIL", "invalid token").status_update(self)

else:
logging.status("FAIL", "invalid token").status_update(self)

self.db.close()
@staticmethod
def create_token(self):
expire_time = float(config_read("authorisation", "tokenexpirytime"))
self.token = uuid_generate()
self.token_hash = hash_string(self.token)

self.token_expire = timestamp().now + expire_time

ALL NEEDS CHANGING

313

Jack Leverett 7714 50639

self.cur.execute("INSERT INTO auth_tokens (user_id, token, token_expire)
VALUES (?, ?, ?)", (self.id, self.token_hash, self.token_expire))
self.db.commit()

logging.status("INFO", "authentication token created").status update(self)

@staticmethod
def send_token(self):
self.sio.emit('recv_token', {'token':self.token, 'expire': self.token_ex-
pire}, room=self.sid)
logging.status("INFO", "token sent").status update(self)

class error_process():

def _init (self):
logging.status("WARNING", "something went wrong").status_update(self)

self.id = None

def login(sio, sid, cred):
if "token" in cred:

try:
client = login_token(cred)
client.exec()
except:
logging.status("FAIL", "token not authorised").status_update(client)

elif all(param in cred for param in ['username', 'password']):

try:
client = login_cred(sio, sid, cred)
client.exec()
except:
logging.status("FAIL", "login failed").status_update(client)

else:
client = error_process()
logging.status("FAIL", "no credentials provided").status_update(client)

client.level = user_info.level(user_id=client.id).get()
if client.level:
client.level = client.level['level']

return client.status, client.id, client.level

def register(cred):

314

Jack Leverett 7714 50639

if all(param in cred for param in ['username', 'password', 'repassword’,
'key']):

try:
client = reg cred(cred)
client.exec()
except:
logging.status("FAIL", "registration failed").status_update(client)

else:
client = generic_process()
logging.status("FAIL", "no credentials provided").status_update(client)

return client.status

def admin_register(cred):
if all(param in cred for param in ['username', 'password', 'repassword’,
"key']):

try:
client = reg_admin(cred)
if client.key verify() == True and client.first time() == True:
client.exec()
else:
logging.status("FAIL", "admin key does not match/admin already ex-
ists").status_update(client)
except:
logging.status("FAIL", "registration failed").status_update(client)

else:
client = error_process()
logging.status("FAIL", "no credentials provided").status_update(client)

return client.status

def authorised(sio, sid, min_level="admin'):
level list = ['member', 'management', 'admin']

allow_levels = level list[level_ list.index(min_level):]
level = sio.get_session(sid)['level']

if level in allow_levels:
user_authorised = True

else:
user_authorised

False

return user_authorised

315

Jack Leverett 7714

def main():
error = error_process()

if __name__ == "__main__":
main()

modules/data/config.py

import configparser
from modules.track.logging import log

path = "data/config.ini"

def create():

try:
file = open(path, 'r")
log("INFO", "Config already exists")
return

except FileNotFoundError as e:
log("INFO", "Creating config file")
pass

config = configparser.ConfigParser()

config.add_section('authorisation")

change this to a randomly generated string

config.set('authorisation', 'AdminKey',

'secret’)

config.set('authorisation', 'RegistrationKey', 'secret')
config.set('authorisation', 'UsernameMaxLength', '20")
config.set('authorisation', 'UsernameMinLength', '5")
config.set('authorisation', 'PasswordMaxLength', '30")
config.set('authorisation', 'PasswordMinLength', '5")
config.set('authorisation', 'TokenExpiryTime', '2592000'")

config.add_section('database")

config.set('database', 'Path', 'data/database.db')

config.set('database', 'Encrypt', 'false

")

config.set('database', 'ShamirSecretSharing', 'false')

config.set('database', 'NumberOfShares',
config.set('database', 'MinimumShares',

51
'3

config.set('database', 'KeyPath', 'data/key.txt')

config.set('database', 'EncryptedPath',

"data/.cryptdatabase.db')

config.set('database', 'EncryptionConfigPath', 'data/encryptconfig.txt"')
config.set('database', 'SaltPath', 'data/.salt.txt')
config.set('database', 'SharesPath', 'data/shares/')

316

50639

Jack Leverett 7714

def

def

config.add_section('user")

config.set('user', 'DefaultLevel', 'member")

config.set('user', 'DefaultOccupationID’,

config.add section('posts')

"Null')

config.set('posts', 'PostTimeLimit', '5") # miniutes
config.set('posts', 'DayStart', '9') #24 hour time
config.set('posts', 'DayEnd', '17') #24 hour time

config.add section('notifications')

config.set('notifications', 'DefaultExpireTime', '604800')

config.set('notifications', 'ntfyUrl', 'https://ntfy.example.com')

config.add section('networking')
config.set('networking', 'Port', '9999')

config.add section('miscellaneous’)
config.set('miscellaneous', 'ServerCode’,

with open(path, 'w') as configfile:
config.write(configfile)
log("INFO", "Created config file")

read(section, key, *args, **kwargs):
config = configparser.ConfigParser()
config.read(path)

if section not in config:
return None

if key not in config[section]:
return None

info = config[section][key]

if info == "false":
info = False
if info == "true":

info = True
return info

main():

create()

info = read("users", "DefaultOccupation™")
print(info)

'12345")

50639

Jack Leverett 7714 50639

main()

modules/data/database.py

import sqlite3
import os
import ctypes
import pathlib

import base64

from cryptography.fernet import Fernet

from cryptography.hazmat.primitives import hashes

from cryptography.hazmat.primitives.kdf.pbkdf2 import PBKDF2HMAC

db encrypt

from cryptography.fernet import Fernet
#from pysqlcipher3 import dbapi2 as sqlite3
db encrypt

from modules.track.logging import log
from modules.data.config import read as config read
from modules.algorithms.uuid import generate as uuid_generate

class connect():
def _init (self):
self.path = config_read("database"”, "Path")

def create(self, obj):
self.con = sqlite3.connect(self.path)
self.cur = self.con.cursor()

if obj != None:
obj.con = self.con
obj.cur = self.cur

def commit(self):
self.con.commit()

def close(self):
self.con.commit()
self.con.close()

def execute(self, command, values=None):
cur = self.con.cursor()
cur.execute(command, values)
self.close()

318

Jack Leverett 7714 50639

Table creation
class create():
def __init_ (self):
self.path = config read("database", "Path")
self.en_path = config read("database", "EncryptedPath")

def tables(self):
decrypted _database = os.path.exists(self.path)
encrypted database = os.path.exists(self.en_path)
if decrypted database or encrypted database:
return

con = sqlite3.connect(self.path)
self.cur = con.cursor()

tables = [self.auth_credentials, self.auth_tokens, self.profile ,
self.friends, self.occupations, self.occupation_requests, self.teams,
self.team_leaders, self.posts, self.comments, self.post impressions, self.com-
ment_impressions, self.time_slots, self.notifications, self.notifications_sent]

for table in tables:

table()

def auth_credentials(self):
self.cur.execute("""
CREATE TABLE IF NOT EXISTS auth_credentials (
user_id TEXT NOT NULL PRIMARY KEY,
username TEXT NOT NULL,
password TEXT NOT NULL,
level TEXT NOT NULL,
FOREIGN KEY (user_id)
REFERENCES profile (user_id)
ON UPDATE CASCADE
ON DELETE CASCADE
)
")

def auth_tokens(self):
self.cur.execute("""
CREATE TABLE IF NOT EXISTS auth_tokens(
user_id TEXT NOT NULL,
token TEXT NOT NULL PRIMARY KEY,
token_expire REAL NOT NULL,
FOREIGN KEY (user_id)
REFERENCES auth_credentials (user_id)
ON UPDATE CASCADE
ON DELETE CASCADE

319

Jack Leverett 7714 50639

")

def profile(self):
self.cur.execute(
CREATE TABLE IF NOT EXISTS profile (
user_id TEXT NOT NULL PRIMARY KEY,
occupation_id TEXT,
name TEXT,
picture TEXT,
biography TEXT,
role TEXT,
num_friends INTEGER DEFAULT @,
FOREIGN KEY (occupation_id)
REFERENCES occupations (occupation_id)
ON UPDATE CASCADE
ON DELETE SET NULL

)
")

def friends(self):
self.cur.execute(
CREATE TABLE IF NOT EXISTS friends (
user_id TEXT NOT NULL,
friend id TEXT NOT NULL,
approved BOOLEAN,
FOREIGN KEY (user_id)
REFERENCES profile (user_id)
ON UPDATE CASCADE
ON DELETE CASCADE
FOREIGN KEY (friend_id)
REFERENCES profile (user_id)
ON UPDATE CASCADE
ON DELETE CASCADE
PRIMARY KEY (user_id, friend_id)
)
")

def occupations(self):
self.cur.execute("""

CREATE TABLE IF NOT EXISTS occupations (
occupation_id TEXT NOT NULL PRIMARY KEY,
name TEXT NOT NULL,
description TEXT
)
")

def occupation_requests(self):

320

Jack Leverett 7714 50639
self.cur.execute("""
CREATE TABLE IF NOT EXISTS occupation_requests (
user_id TEXT NOT NULL PRIMARY KEY,
occupation_id TEXT NOT NULL,
approved BOOLEAN DEFAULT False NOT NULL,
FOREIGN KEY (user_id)
REFERENCES profile (user_id)
ON UPDATE CASCADE
ON DELETE CASCADE
FOREIGN KEY (occupation_id)
REFERENCES occupations (occupation_id)
ON UPDATE CASCADE
ON DELETE CASCADE
)
")

def teams(self):
self.cur.execute(
CREATE TABLE IF NOT EXISTS teams (
team_id TEXT NOT NULL PRIMARY KEY,
name TEXT NOT NULL,
occupation_id TEXT,
user_id TEXT,
FOREIGN KEY (occupation_id)
REFERENCES occupations (occupation_id)
ON UPDATE CASCADE
ON DELETE CASCADE
FOREIGN KEY (user_id)
REFERENCES profile (user_id)
ON UPDATE CASCADE
ON DELETE CASCADE

)
")

def team_leaders(self):
self.cur.execute("""
CREATE TABLE IF NOT EXISTS team_leaders (
user_id TEXT NOT NULL,
team_id TEXT NOT NULL,
FOREIGN KEY (user_id)
REFERENCES profile (user_id)
ON UPDATE CASCADE
ON DELETE CASCADE
FOREIGN KEY (team_id)
REFERENCES teams (team_id)
ON UPDATE CASCADE
ON DELETE CASCADE

321

Jack Leverett 7714

322

PRIMARY KEY (user_id, team_id)
)
nn ll)

def posts(self):
self.cur.execute(
CREATE TABLE IF NOT EXISTS posts (
post_id TEXT NOT NULL PRIMARY KEY,
user_id TEXT NOT NULL,
content TEXT NOT NULL,
caption TEXT,
date TEXT NOT NULL,
FOREIGN KEY (user_id)
REFERENCES profile (user_id)
ON UPDATE CASCADE
ON DELETE CASCADE

)
")

def comments(self):
self.cur.execute(
CREATE TABLE IF NOT EXISTS comments (
comment_id TEXT NOT NULL PRIMARY KEY,
post_id TEXT NOT NULL,
user_id TEXT NOT NULL,
content TEXT NOT NULL,
FOREIGN KEY (post_id)
REFERENCES posts (post_id)
ON UPDATE CASCADE
ON DELETE CASCADE
FOREIGN KEY (user_id)
REFERENCES profile (user_id)
ON UPDATE CASCADE
ON DELETE CASCADE

)
")

def post_impressions(self):
self.cur.execute("""

CREATE TABLE IF NOT EXISTS post_impressions (
impression_id TEXT NOT NULL PRIMARY KEY,

post_id NOT NULL,
user_id NOT NULL,
type NOT NULL,
FOREIGN KEY (post_id)
REFERENCES posts (post_id)
ON UPDATE CASCADE

50639

Jack Leverett 7714 50639

ON DELETE CASCADE
FOREIGN KEY (user_id)
REFERENCES profile (user_id)
ON UPDATE CASCADE
ON DELETE CASCADE
)
"

def comment_impressions(self):
self.cur.execute("""
CREATE TABLE IF NOT EXISTS comment_impressions (
impression_id TEXT NOT NULL PRIMARY KEY,
comment_id NOT NULL,
user_id NOT NULL,
type NOT NULL,
FOREIGN KEY (comment_id)
REFERENCES comments (comment_id)
ON UPDATE CASCADE
ON DELETE CASCADE
FOREIGN KEY (user_id)
REFERENCES profile (user_id)
ON UPDATE CASCADE
ON DELETE CASCADE
)
")

def time_slots(self):
self.cur.execute("""

CREATE TABLE IF NOT EXISTS time_slots (

date TEXT NOT NULL PRIMARY KEY,

start FLOAT NOT NULL,

end FLOAT NOT NULL

)

")

def notifications(self):
self.cur.execute("""
CREATE TABLE IF NOT EXISTS notifications (
notification_id TEXT NOT NULL PRIMARY KEY,
target_id TEXT NOT NULL,
title TEXT NOT NULL,
content TEXT,
time_created FLOAT NOT NULL,
expire_after FLOAT NOT NULL
)
")

323

Jack Leverett 7714

def notifications_sent(self):

self.cur.execute(
CREATE TABLE IF NOT EXISTS notifications_sent (
notification_id TEXT NOT NULL,
user_id TEXT NOT NULL,
time_sent FLOAT,
sent BOOLEAN DEFAULT False NOT NULL,
PRIMARY KEY (notification_id, user_id)
FOREIGN KEY (notification_id)
REFERENCES notifications (notification_id)
ON UPDATE CASCADE
ON DELETE CASCADE
FOREIGN KEY (user_id)
REFERENCES profile (user_id)
ON UPDATE CASCADE
ON DELETE CASCADE

)
")

class encryption():

def init (self, session):

self.key = key()
needs to pass num_shares and min_shares
self.session = session

self.sss_enabled = config_read("database", "ShamirSecretSharing")
self.en_config_path = config_read("database"”, "EncryptionConfigPath")
self.db_path = config_read("database", "Path")

self.en_db_path = config_read("database", "EncryptedPath")

def mode(self):

uses a large amount of logic statements to figure out what mode the

server should enter on launch

324

additionally what flags it should launch with
encryption_enabled = config_read("database", "Encrypt")
db_encrypted = self.key.is_db_encrypted()

mode = None
flags = []
if encryption_enabled:
if db_encrypted:
mode = "decrypt"
else:
success = self.encrypt()
if success:
mode = "decrypt"
else:

50639

Jack Leverett 7714 50639

exit()
else:

if db_encrypted:
mode = "decrypt"
flags = ["forever"]

else:
mode = "normal”
self.session.db_encrypted = False

self.session.mode = mode
self.session.flags = flags

def encrypt(self, flags=[]):
if self.session.password:
password = self.session.password
else:
password = self. generate()

if not password:
log("FAIL", "Could not encrypt database, something went wrong, see logs
for details")
return False

scheme = self.key.read db_scheme(password)
with open(self.db_path, "rb") as db:
db_data = db.read()

create new encrypted database

log("INFO", "Encrypting database")

en_db_data = scheme.encrypt(db_data)

with open(self.en_db_path, "wb") as en_db:
en_db.write(en_db _data)

delete unecrypted database
os.remove("data/database.db")

log("INFO", "Deleted unencrypted database")
return True

def decrypt(self, data, flags=[]):
min_shares = config_read('database', 'MinimumShares')
if "sss" in flags:
password = int(shares(min_shares).get_key(data['shares']))
else:
password = int(data['password'])

scheme = self.key.read_db_scheme(password)
if not scheme:

325

Jack Leverett 7714 50639
return False

decrypting the databsae raw bytes
with open(self.en_db path, "rb") as en_db:
en_db_data = en_db.read()

db_data = scheme.decrypt(en_db_data)
with open(self.db _path, "wb") as db:
db.write(db_data)

if not self. database read():
log("FAIL", "Decryption of database failed, see logs for details")
return False

log("INFO", "Decryption of database successful")

self.session.password = password
for flag in flags:
if flag == "forever":
log("WARN", "Permanent decryption of the database")
self.session.encrypt_on_shutdown = False
self.key.delete()
elif flag == "sss":
with open(self.en_config_path, "w") as en_config:
en_config.write(str(password))
log("WARN", f"You decrypted the database using Shamir secret
shares, your master password has been reconstructed and can be found on the server
at the location: {self.en_config path}. Please remember to delete this file after
reading")

self.session.db_encrypted = False
self.session.mode = "normal”
return True

def _generate(self):
options = self._read_config()
if not self._config_check(options):
log("FAIL", "Could not generate encryption scheme, something wrong in
config file or with maseter password")
return None
else:
options['password'] = int(options['password'])
if self.sss_enabled:
options['num_shares']
options['min_shares']

int(options['num_shares'])
int(options['min_shares'])

self.key.generate_key file(options['password'])

326

Jack Leverett 7714 50639

if self.sss_enabled:
log("INFO", "Shamir Secret Sharing enabled, generating shares")
sss = shares(options['min_shares'], options['num_shares'])
SSs_success = sss.generate_shares(options['password'])
if not sss_success:
log("FAIL", "Something went wrong generating shamir secret shares,
see log for details")
return None

log("INFO", "Deleting encryption configuration file containing master pass-
word™)

os.remove(self.en_config path)

return options['password’]

def read config(self):

num_shares = config read("database", "NumberOfShares")

min_shares = config_read("database”, "MinimumShares™)

options = {}

try:

with open(self.en_config path, "r") as config:

log("INFO","Reading encryption configuration file")
options['password'] = config.read()

if self.sss enabled:
options['num_shares']
options['min_shares']
except:
return None

num_shares
min_shares

return options

def _config_check(self, options):
checking if the file exists
try:
en_config = open(self.en_config_path, "r")
en_config.close()
except:
log("FAIL", f"Encryption config could not be found at {self.en_con-
fig path}")
return False

check config contents
try:
log("INFO", "Testing master password type (must be int)")
master_pass = int(options['password'])
if len(options) == 1:
return True

327

Jack Leverett 7714 50639

elif self.sss_enabled and len(options) == 3:
log("INFO", "Testing number of shares type (must be integer)")
num_shares = int(options['num_shares'])
log("INFO", "Testing minimum shares type (must be integer)")
min_shares = int(options['min_shares'])

if num_shares < 20 and min_shares < 7:
return True
else:
log("WARN", "SSS number of shares is to large or minimum shares
is to large")
return False
else:
log("WARN", "Something went wrong reading config file, check the
docs for a guide")
return False
except:
log("WARN", "The master password, number of shares and minimum shares
all must be integers")
return False

def _database read(self):

try:
db = connect()
db.create(self)
db.cur.execute("SELECT * FROM time_slots")
return True

except:
return False

class key():
def init (self):
self.key_path = config_read("database", "KeyPath")
self.db_path = config_read("database", "Path")
self.en_db_path = config_read("database", "EncryptedPath")
self.salt_path = config_read("database", "SaltPath")

def _save_salt(self, salt):
with open(self.salt_path, "wb") as salt_file:
salt_file.write(salt)

def _read_salt(self):
try:
with open(self.salt_path, "rb") as salt_file:
salt = salt_file.read()
return salt
except:

328

Jack Leverett 7714 50639
return None

def _pass_to_scheme(self, password):
password = str(password).encode()
salt = self. read_salt()
if not salt:
salt = os.urandom(16)
self. save salt(salt)

kdf = PBKDF2HMAC(
algorithm=hashes.SHA256(),
length=32,
salt=salt,
iterations=480000,
)
key = base64.urlsafe b64encode(kdf.derive(password))
scheme = Fernet(key)

return scheme

def read_db_scheme(self, password):
file scheme = self. pass_to_scheme(password)

with open(self.key path, "r") as key file:
en_password = key file.read()

db_scheme = None
try:
password = file_scheme.decrypt(en_password)
db_scheme = self. pass_to _scheme(password)
except:
log("WARN", "Provided password is wrong or something is wrong with the
database key")
return db_scheme

def generate_key file(self, password):
#db_password = bytes(uuid_generate().replace("-", "").encode())
db_password = uuid_generate().replace("-", "").encode()
file_scheme = self._pass_to_scheme(password)
en_db_password = str(file_scheme.encrypt(db_password).decode())
with open(self.key path, "w") as key_file:

key file.write(en_db_password)

def delete(self):
os.remove(self.salt_path)
os.remove(self.key path)
os.remove(self.en_db_path)

329

Jack Leverett 7714 50639

def is_db_encrypted(self):
try:
db = open(self.en_db_path, "rb")
return True
except:
return False

class ShareStruct(ctypes.Structure):
__fields = [("y", ctypes.c_longlong), ("x", ctypes.c_int)]

this class is mainly geared towards acting as an interface for hte c++ code
class shares():
def __init_ (self, min_shares, num_shares=None):
if num_shares:
self.num_shares = int(num_shares)
self.min_shares = int(min_shares)
self.shares_path = config read("database", "SharesPath")

def dict to c_array(self, share_list):
c_share_array = ((ctypes.c_longlong*2)*self.min_shares)
share_array = []

for i in range(len(share_list)):
c_share = (ctypes.c_longlong*2)(*[share_list[i]['num'],
share_list[i]['secret']])
share_array.append(c_share)

c_share_array = ((ctypes.c_longlong*2)*len(share_list))(*share_array)
return c_share_array

def generate_shares(self, password):
libname = pathlib.Path().absolute() / "modules/data/libcppsss.so"
c_lib = ctypes.CDLL(1libname)

c_lib.newSecretInternal.argtypes = [ctypes.c_longlong, ctypes.c_int,
ctypes.c_int, ctypes.POINTER(ctypes.c_char)]

c_lib.newSecretInternal.restypes = None

path_ptr = ctypes.c_char_p(self.shares_path.encode('utf-8"))

c_lib.newSecretInternal(password, self.num_shares, self.min_shares,

path_ptr)

success = self.verify(password)
return success

def get_key(self, share_list):

330

Jack Leverett 7714 50639

libname = pathlib.Path().absolute() / "modules/data/libcppsss.so"
c_lib = ctypes.CDLL(libname)

c_share_array = ((ctypes.c_longlong*2)*self.min_shares)
c_share_array_pointer = ctypes.POINTER(c_share_array)

c_lib.solvelnternal.argtypes
c_lib.solvelnternal.restypes

[c_share_array pointer, ctypes.c_int]
int

new_share_array = ctypes.pointer(self. dict to_c_array(share_list))
result = c_lib.solvelnternal(new_share_array, self.min_shares)
return result

def verify(self, password):

used to verify that the shamir secret shares generated can be used to re-

construct the original key

log("INFO", "Verifying share integrity")

we essentially take a sample of the shares

if all these samples work we assume any combination of said samples will
this works well since we test the combination of all hte smallest numbers

and all teh largest

the only reason a set of shares wouldnt work is because they have become

to large and c++ starts to lose accuracy

if this doesnt happen then its safe to assume all shares work
shifts = self.num_shares - self.min_shares

for i in range(shifts):
top = i + self.min_shares
shares used = ""

for num_share in range(i, top):
shares_used += str(num_share) + ", "

shares_used = shares_used[:-2]

log("INFO", f"Attempting to generate original password with shares:

{shares_used}")

331

share_list = []

for j in range(i, top):
reads the shares from their files
path = self.shares_path + f"share-{j+1}.txt"
with open(path, "r") as share:

try:
x = int((share.readline().split(": "))[1])
y = int((share.readline().split(": "))[1])
share_list.append({'num': x, 'secret': y})

Jack Leverett 7714 50639

except:
log("WARN", "Something went wrong reading one of the
shares, have they been altered?")
break

result = self.get key(share_list)

if result != password:
log("WARN", "A set of shares could not be used to generate the
original password, try again or use a diffrent password")
return False
else:
log("INFO", f"{i+1}/{shifts} sets of shares successfully used to
generate the original password")

return True

def main():
db = create()
db.path = "database.db"
db.tables()

if _name__ == "_main__":
main()

class retrieve():
def __init_ (self):
self.db = db_connect()
self.db.create(self)

def level(self, identifier):

self.cur.execute("SELECT level FROM auth_credentials WHERE username = ? OR
user_id = ?", (identifier, identifier))
rez = self.cur.fetchone()
if rez:
return rez[0]

def user_id(self, username):

self.cur.execute("SELECT user_id FROM auth_credentials WHERE username = ?",
(username,))
rez = self.cur.fetchone()
if rez:
rez = rez[0]

332

Jack Leverett 7714 50639

return rez

def username(self, user_id):

self.cur.execute("SELECT username FROM auth_credentials WHERE user_id = ?",
(user_id,))
rez = self.cur.fetchone()
if rez:
rez = rez[0]

return rez
def occupation_id(self, user_id):

self.cur.execute("SELECT occupation_id FROM profile WHERE user_id = ?",
(user_id,))
rez = self.cur.fetchone()
if rez:
rez = rez[0]

return rez

modules/data/datetime.py

from datetime import date, timedelta, datetime

import random

import eventlet

MODULES

from modules.data.config import read as config_read
from modules.data.database import connect as db_connect
from modules.handler import outgoing

from modules.track.logging import log

MODULES

class timestamp():
def __init_ (self):
self.time_limit = float(config_read("posts", "PostTimeLimit")) * 60
self.db = db_connect()
self.db.create(self)

@property
def start(self):

value = self.get_date_timestamp()
self. start = value

333

Jack Leverett 7714 50639

return self._start

@start.setter

def start(self, value):
value = self.get_date_timestamp()
self. start = value

@property

def end(self):
value = self.get_date_timestamp(day_mod=1) - 1
self. end = value
return self. end

@end.setter

def end(self, value):
value = self.get_date_timestamp(day_mod=1) - 1
self. end = value

@property

def now(self):
value = self.get_timestamp()
self. now = value
return value

@now.setter

def now(self, value):
value = self.get_timestamp()
self. now = value

@property
def post slot start(self):
value = self.get_slot()['start']
self. post slot start = value
return self. post slot start
@post_slot_start.setter
def post slot start(self, value):
self. post slot start = self. post slot start

@property
def post_slot_end(self):
value = self.get_slot()['end']
self. post_slot_end = value
return self._post_slot_end
@post_slot_end.setter
def post_slot_end(self, value):
self. post_slot_end = self. post_slot_end

@property
def date(self):
date = str(datetime.now().date())

334

Jack Leverett

7714 50639

self. date = date
return self. date
@date.setter

def date(self, value):
self. date = value

def get date_timestamp(self, year _mod=0, month_mod=0, day mod=0, *args,
**kwargs):
modifier = [year_mod, month_mod, day mod]

def

def

now_mod = (datetime.now()+timedelta(days=day mod))

date
date

(str(now_mod.date()).replace("-0", "-")).split("-")
[int(string) for string in date]

timestamp = datetime(date[@], date[1], date[2]).timestamp()

return timestamp

get timestamp(self):

now

(float(datetime.now().timestamp()))

return now

generate_slot(self, data=None):
for i in range(2):

if 1 == 0:

date = str(datetime.now().date())
start = self.get_date_timestamp()

else:

now_mod = (datetime.now()+timedelta(days=1))
date = (str(now_mod.date()))
start = self.get_date_timestamp(0, 0, 1)

self.cur.execute("SELECT date FROM time_slots WHERE date=?", (date,))
if not self.cur.fetchone():

log("INFO", f"Generating time slot for {date}")

day_start = start + int(config_read("posts", "DayStart")) * 60 * 60
day_end = start + int(config_read("posts", "DayStart")) * 60 * 60
slot_start = random.randint(day_start, day_end)

slot_end = slot_start + self.time_limit

self.cur.execute("INSERT INTO time_slots (date, start, end) VALUES

(?, ?, ?)", (date, slot_start, slot_end))

self.db.commit()

def get_slot(self):
info = None

335

Jack Leverett 7714 50639

date = str(datetime.now().date())
self.cur.execute("SELECT start, end FROM time_slots WHERE date=?", (date,))
rez = self.cur.fetchone()
if rez:
info = {'start':rez[@0], 'end':rez[1]}
return info

def is_valid time(self):
if (self.now < self.post slot end) and (self.now >= self.post slot start):
return True
return False

modules/data/sss.cpp

#include <cstdlib>
include<iostream>
include<string>
include<random>
include<cmath>
include<array>
#include <fstream>
using namespace std;

H ¥ H OH H

typedef long long int Lint; // 64 bits
typedef double Ldouble;
struct security {

int num_shares;

int num_required;

}s

struct shareStruct {
int x;
Lint y;

¥

bool isPrime(Lint n) {
int flag = 0;
for (int 1 = 2; i <=n / i; ++1i) {
if (n % 1i==29) {
flag = 1;
break;
}
}
if (flag == 9) return true;
else return false;

}

336

Jack Leverett 7714 50639

Lint genRandInt(int n) {
// Returns a random number
// between 2**(n-1)+1 and 2**n-1
//long max = (long)powl(2, n) - 1;
//long min = (long)powl(2, n - 1) + 1;
long max = (long)pow(2, n) - 1;
long min = (long)pow(2, n - 1) + 1;
Lint result = min + (rand() % (max - min + 1));
return result;

Lint genPrime() {
Lint prime = 10;

while (isPrime(prime) == false) {
int complexity = 50;
prime = genRandInt(complexity);
}

return prime;

}

int* encodeSecret(int* poly, const int secret, const int num_required) {
poly[num_required-1] = secret;
return poly;

}

Lint getPolyY(const int* poly, int poly len, int poly_x, const Lint prime) {
Lint total = 9;
Lint poly_y = 0;

for (int i=0; i<poly_len+l; i++) {
int power = poly_len - i;
int coefficient = poly[i];
poly_y = coefficient * pow(poly_x, power);
total = total + poly_y;

return total;

shareStruct* genShares(int num_shares, int num_required, const int* poly, const
Lint prime){
shareStruct* shares = new shareStruct[num_shares];
for (int i=1; i<=num_shares; i++) {
shareStruct share;
share.x = i;

337

Jack Leverett 7714 50639

share.y = getPolyY(poly, num_required-1, share.x, prime);
shares[i-1] = share;
}

return shares;

}

int* genPoly(int degree, const Lint prime, const Lint secret) {
int* poly = new int[degree];

for (int 1 = 0; i < degree; i++) {
int random_num = genRandInt(10);
poly[i] = prime % random_num;

}

return poly;

}

// solving polynomials

struct inputStruct {
int required;
shareStruct* shares;

}s

struct polyTerm {
Lint coefficient;
int power;

}s

struct linearEquation {
shareStruct point;
polyTerm* terms;

}s

linearkEquation* constructEquations(const int required, shareStruct shares[]) {
linearEquation* equations = new linearEquation[required];
shareStruct share;
polyTerm term;

for (int 1 = 0; i < required; i++) {
share = shares[i];
linearEquation equation;
polyTerm* terms = new polyTerm[required];

for (int j = 0; j < required; j++) {
term.power = required - 1 - j;
terms[j] = term;

}

338

Jack Leverett 7714 50639

equation.terms = terms;
equation.point.x = share.x;
equation.point.y = share.y;

equations[i] = equation;
// dont delete terms from memory as its referanced in equations

}

return equations;

}

struct matrix{
Lint** matrix;
int dimension_x;
int dimension_y;
¥
struct matrix_system {
matrix A;
matrix B;
matrix X;

}s

matrix_system formMatrix(const linearEquation* equations, int required) {
Lint** matrixA = new Lint*[required];
Lint** matrixB = new Lint*[required];

for (int i=0; i < required; i++) {
linearkEquation equation = equations[i];
Lint* lineA = new Lint[required];
for (int j=0; j < required; j++) {
lineA[j] = pow(equation.point.x, equation.terms[j].power);
¥

matrixA[i] = lineA;

Lint* lineB = new Lint[1];
lineB[©@] = equation.point.y;
matrixB[i] = lineB;

matrix matrixA_data; matrix matrixB_data;
matrixA_data.matrix = matrixA; matrixB_data.matrix = matrixB;

15
required;

matrixA_data.dimension_x
matrixA_data.dimension_y

required; matrixB_data.dimension_x
required; matrixB_data.dimension_y

matrix_system matricies;
matricies.A = matrixA_data; matricies.B = matrixB_data;

339

Jack Leverett 7714 50639

return matricies;

Lint** findMinor(Lint** matrixA, const int dimension, const int pos_x, const int
pos_y) {

Lint** matrixB = new Lint*[dimension-1];

int matrixB_pos_x = 0; int matrixB_pos_y = 0;

for (int i=0; i<dimension; i++) {
Lint* line = new Lint[dimension-1];
for (int j=0; j<dimension; j++) {
if (i !'= pos_y and j != pos x) {
line[matrixB_pos_x] = matrixA[i][j];
matrixB_pos_ Xx++;
}
}
if (matrixB_pos_x != 0) {
matrixB[matrixB_pos_y] = line;
matrixB_pos_y++;

}
else {
delete[] line;
}
matrixB_pos _x = 0;

return matrixB;

Lint findDet(Lint** matrixA, const int dimension) {
Lint det = 0;

if (dimension == 0) {
det = 1;
}
else if (dimension == 1) {
det = matrixA[0@][@];
}
else if (dimension == 2) {
det = matrixA[0][0] * matrixA[1][1] - matrixA[0][1] * matrixA[1][@];
}
else {

for (int i=0; i<dimension; i++) {
// reuse form matrix? pottentially split it up into formMatrixA and formMa-
trixB?
Lint** matrixB = findMinor(matrixA, dimension, i, 9);
Lint matrixB_det = findDet(matrixB, dimension-1);
Lint term = matrixA[@][i] * matrixB_det;

340

Jack Leverett 7714 50639

if ((i+1)%2 == 0) {
term = 0-term;

}

det = det + term;

return det;

}

matrix formMatrixCofactors(Lint** matrixA, const int dimension) {
Lint** matrixB = new Lint*[dimension];

for (int i=0; i<dimension; i++) {
Lint* line = new Lint[dimension];

int sign = 1;

if ((i+1)%2 == 0) {
sign = -1;

}

for (int j=0; j<dimension; j++) {
Lint** minor = findMinor(matrixA, dimension, j, i);
Lint cofactor = findDet(minor, dimension-1) * sign;

sign = -sign;
line[j] = cofactor;
}
matrixB[i] = line;

matrix matrix_data; matrix_data.matrix = matrixB;
matrix_data.dimension_x = dimension; matrix_data.dimension_y = dimension;
return matrix_data;

matrix transposeMatrix(Lint** cofactors, const int dimension) {
Lint** matrixB = new Lint*[dimension];

for (int i=0; i<dimension; i++) {
Lint* line = new Lint[dimension];
for (int j=0; j<dimension; j++) {
line[j] = cofactors[j][i];
}
matrixB[i] = line;

}

matrix matrixB_data; matrixB_data.matrix = matrixB;

341

Jack Leverett 7714 50639

matrixB_data.dimension_x = dimension; matrixB_data.dimension_y = dimension;
return matrixB_data;

}

struct float_matrix{
Ldouble** matrix;
int dimension_x;
int dimension_y;

s

struct float_matrix_system {
matrix A;
matrix B;
matrix X;

}s

float_matrix multiplyConstant(matrix matrixA_data, const int dimension, const Lint
det) {

Ldouble** matrixB = new Ldouble*[dimension];

Lint** matrixA = matrixA_data.matrix;

for (int i=0; i<dimension; i++) {

Ldouble* line = new Ldouble[dimension];

for (int j=0; j<dimension; j++) {

line[j] = (1.0/det) * matrixA[i][j];

}

matrixB[i] = line;
}
float _matrix matrixB_data; matrixB_data.matrix = matrixB;
matrixB_data.dimension_x = matrixA_data.dimension_x; matrixB_data.dimension_y =

matrixA_data.dimension_y;

return matrixB_data;

}

float_matrix multiplyMatricies(float_matrix inverseA_data, matrix matrixB_data) {
int dimension_x = inverseA_data.dimension_x;
int dimension_y = inverseA_data.dimension_y;

Ldouble** matrixC = new Ldouble*[matrixB_data.dimension_y];
Ldouble** inverseA = inverseA_data.matrix;
Lint** matrixB = matrixB_data.matrix;

for (int i=0; i<dimension_y; i++) {
Ldouble* line = new Ldouble[0];
Ldouble result = 9;
for (int j=0; j<dimension_x; j++) {
result = result + inverseA[i][j] * matrixB[j][©];

342

Jack Leverett 7714 50639

}
line[@] = result;
matrixC[i] = line;
}
float_matrix matrixC_data; matrixC_data.matrix = matrixcC;
matrixC_data.dimension_x = matrixB_data.dimension_x; matrixC_data.dimension_y =
matrixB_data.dimension_y;

return matrixC_data;

}

Lint** StructToArray(shareStruct* struct_array, int len_array) {
Lint** array = new Lint*[len_array];
for (int i=0; i<len_array; i++) {
array[i] = new Lint[2];
array[i][@] = struct_array[i].x;
array[i][1] struct_array[i].y;

}

return array;

}

shareStruct* ArrayToStruct(Lint** array, int len_array) {
shareStruct* share_array = new shareStruct[len_array];
for (int i=0; i<len_array; i++) {
shareStruct share;
share.x = array[i][0];
share.y = array[i][1];
share_array[i] = share;

}

return share_array;

}

void writeShares(shareStruct* shares, const int num_shares, const int num_required,
string root_path) {
cout << root_path << endl;
for (int i=0; i<num_shares; i++) {
shareStruct share = shares[i];
string share_path = root_path + "share-'
ofstream share_file(share_path);
share_file << "Share number: " << share.x << endl;
share_file << "Share secret: << share.y << endl;
share_file << "Minimum share required: " << to_string(num_required) << endl <<
endl;
share_file << "IMPORTANT: Please remind your admin that its there job to dis-
tribute and delete shares from the server";

}

+ to_string(share.x) + ".txt";

343

Jack Leverett 7714 50639

extern "C" Lint solveInternal(shareStruct* shares, int required) {
inputStruct inputs;
inputs.shares = shares;
inputs.required = required;

linearEquation* equations = new linearEquation[inputs.required];
equations = constructEquations(inputs.required, inputs.shares);

matrix_system matricies = formMatrix(equations, inputs.required);
delete[] equations;
Lint det = findDet(matricies.A.matrix, matricies.A.dimension x);

matrix cofactors = formMatrixCofactors(matricies.A.matrix, matricies.A.dimen-
sion_x);
matrix transposition = transposeMatrix(cofactors.matrix, cofactors.dimension x);

float _matrix inverseA = multiplyConstant(transposition, transposition.dimen-
sion_x, det);
float_matrix matrixC = multiplyMatricies(inverseA, matricies.B);

Lint secret = matrixC.matrix[matrixC.dimension y-1]1[9];
return secret;

extern "C" void newSecretlInternal(const Lint secret, const int num_shares, const
int num_required, char* root_path) {

string str(root_path);

const Lint prime = genPrime();

int* poly = genPoly(num_required-1, prime, secret);

poly = encodeSecret(poly, secret, num_required);
shareStruct* shares = genShares(num_shares, num_required, poly, prime);

writeShares(shares, num_shares, num_required, root_path);

int main() {

}

modules/handler/handler.py

from modules.auth.auth import authorised
from modules.track import *
send_status = logging.status.send_status

344

Jack Leverett 7714 50639

status = logging.status

log = logging.log

from modules.algorithms.univ import dict_key_ verify

from modules.user import info as user_info

from modules.user import content as content_info

from modules.data.datetime import timestamp

from modules.data.config import read as config read

from modules.data.database import key as db_key

from modules.data.database import encryption as db_encrpytion

import eventlet

for this section client even calls call a handler. This handler then calls the
root handler passing the target method as an argument

this allows for one method (the root handler) to handle overhead tasks taht are
required for every event called

this is done to make the code simple and reduce boiler plate

class root_handler():
def init (self, sio, sid, session, min_level="admin', event_name='event',
*args, **kwargs):
self.info = None
self.status = None
self.sio = sio
self.sid = sid
self.event _name = event _name
self.min_level = min_level
self.session = session

self.user_id = sio.get_session(sid)['id"]
self.user_level = sio.get_session(sid)['level']

permissions levels

self.member = self.authorised(level="member")
self.management = self.authorised(level="management")
self.admin = self.authorised(level="admin")

permissions levels

self.statface = logging.status_interface(sio, sid, self.user_id, self)

def handle(self, method, data=None, auth=None):
bunch of boiler plate,
if self.session.mode == "normal":
self.obj.id = self.user_id
statface is the interface used for status messages, anytime a status
message is created this interface is also passed
self.obj.statface = self.statface

345

Jack Leverett 7714 50639

#tchecking the user calling the event is authorised based on their level
if self.authorised(level=self.min_level):
method(data=data)
else:
status("WARN", f"{self.event_name} - User not authorised",
self.statface)
else:
status("FAIL", f"Server is currently in {self.session.mode} and so is
not accepting calls to this event, try again later", self.statface)

def authorised(self, level=None, username=None, mode="and", lead username=None,
associated username=None, *args, **kwargs):
an all in one function for verifying if a user is authorised for an ac-
tion in a number of diffretn ways:
- association

- level
- team lead
auths = []

if username:
lead username = username
associated username = username

if level:
identifies if the user has level privalidges matchign that given
level auth = False
level list = ['member', 'management', 'admin']
allow levels = level list[level list.index(level):]

if self.user_level in allow_levels:
level auth = True
auths.append(level auth)

client_username = user_info.auth(user_id=self.user_id).get()['username’]

if lead_username:
checks if the user has leader privalidges over the target user
leader_auth = False
subjects_leaders = user_info.team(username=1lead_username).get_ lead-
ers()['leaders’]

if subjects_leaders and client_username in subjects_leaders:
leader_auth = True

auths.append(leader_auth)

if associated_username:
your associated to a user if your in the same team or your friends

346

Jack Leverett 7714 50639

so if associated auth is true it means the target user is in the same
team or friends with the subject user

associated_auth = False

subjects friends = user_info.friend(username=associ-
ated_username).get()['friends"']

subject_team = user_info.team(username=associated username).get mem-
bers()

if subject_team:

if client_username in subjects friends or client_username in sub-
ject team['members’']:
associated _auth = True
auths.append(associated auth)

if mode == "and":

auth = all(auths)
if mode == "or":

auth = (True in auths)
else:

auth = auths

returns auth as either true or false
return auth

def leader_ check(self, leaders, username):
leader = False
for leader in leaders:
if leader['username'] == username:
leader = True
return leader

def is_leader(self, user_id, identifier):
username = user_info.auth(user_id=user_id).get()['username’]
leader = False

leaders = user_info.team(user_id=identifier, username=identifier, occupa-
tion_id=identifier, team_id=identifier).get_leaders()['leaders']
if leaders:
leader = self._leader_check(leaders, username)
else:
leaders = user_info.team(user_id=identifier).get_leaders()['leaders’]
if leaders:
leader = self._leader_check(leaders, username)

return leader

class auth_handler(root_handler):

347

Jack Leverett 7714 50639

def __init_ (self, sio, sid, session, min_level='admin', event_name='authenti-
cation info event', *args, **kwargs):
super().__init (sio, sid, session, min_level=min_level,
event_name=event name, *args, **kwargs)
self.obj = user_info.auth(user_id=self.user_id)

def get(self, data=None):
self.handle(self. get, data)
return self.info, self.status
def get(self, data=None):
if dict_key verify(data, 'username') and self.admin:
self.obj.username = data['username’]
if dict_key verify(data, 'items'):
self.obj.columns = data['items']

self.info = self.obj.get()

def set(self, data=None):
self.handle(self. get, data)
return self.info, self.status
def set(self, data=None):
if dict_key verify(data, 'username'):
profile.username = data['username’]
if dict_key verify(data, 'items'):
profile.columns = data['items']

self.obj.set(data)

class profile handler(root_handler):
def init (self, sio, sid, session, min_level='admin', event_name='profile
event', *args, **kwargs):
super()._ init_ (sio, sid, session, min_level=min_level,
event_name=event_name, *args, **kwargs)
self.obj = user_info.profile(user_id=self.user_id)

def get(self, data=None):
self.handle(self._get, data)
return self.info, self.status
def _get(self, data=None):
if dict_key_verify(data, 'username'):
self.obj.username = data['username’]
if dict_key verify(data, 'items'):
self.obj.columns = data['items']

self.info = self.obj.get()

def get _permissions(self, data=None):

348

Jack Leverett 7714 50639

self.handle(self. get permissions, data)
return self.info, self.status
def _get permissions(self, data=None):
if dict_key verify(data, 'username'):
self.obj.username = data['username’]
if dict_key verify(data, 'target username'):
self.obj.target_username = data['target_username’]

self.info = self.obj.get permissions()

def set(self, data=None):
self.handle(self. set, data)
return self.info, self.status
def _set(self, data=None):
if dict_key verify(data, 'username'):
if self.authorised('management', data['username'], "or"):
self.obj.username = data['username’]

self.obj.columns = list(data.keys())
self.obj.set(data)
status("INFO", "item(s) successfully set to provided value(s)")

def delete(self, data=None):
self.handle(self. delete, data)
return self.info, self.status
def _delete(self, data=None):
if dict_key_verify(data, 'username') and self.management:
self.obj.username = data['username’]

if dict_key_verify(data, "items'):
self.obj.columns = data['items"']

self.obj.delete()

class occupation_handler(root_handler):
def __init_ (self, sio, sid, session, min_level='admin', event_name='occupation
event', *args, **kwargs):
super().__init_ (sio, sid, session, min_level='admin',
event_name=event_name, *args, **kwargs)
self.obj = user_info.occupation(user_id=self.user_id)

def get(self, data=None):
self.handle(self. get, data)
return self.info, self.status
def _get(self, data=None):
if dict_key_verify(data, 'username'):
self.obj.username = data['username’]

349

Jack Leverett 7714 50639

if dict_key verify(data, 'occupation_id'):
self.obj.occupation_id = data['occupation_id']

if dict_key verify(data, 'items'):
self.obj.columns = data['items']

self.info = self.obj.get()

def get all(self, data=None):
self.handle(self. get all, data)
return self.info, self.status
def get all(self, data):
self.info = self.obj.get_all()

def set(self, data=None):
self.handle(self. set, data)
return self.info, self.status
def set(self, data=None):
if dict_key_verify(data, 'username') and self.management:
self.obj.username = data['username’]
if dict_key verify(data, 'occupation_id'):
self.obj.set(data)
status("INFO", "Occupation successfully set", self.statface)
else:
status("WARN", "Occupation couldnt be updated no value(s) provided",
self.statface)

def set request(self, data=None):
self.handle(self. set request, data)
return self.info, self.status
def _set request(self, data=None):
if dict_key_verify(data, ‘username’) and self.admin:
self.obj.username = data['username’]
if dict_key_verify(data, 'occupation_id'):
self.obj.set_request(data)
status("INFO", "Occupation change request successfully created",
self.statface)
else:
status("WARN", "Occupation change request could not be created no
value(s) provided", self.statface)

def get_request(self, data=None):
self.handle(self._get_request, data)
return self.info, self.status
def _get_request(self, data=None):
if dict_key_verify(data, 'username') and self.management:
self.obj.username = data['username’]

350

Jack Leverett 7714

def

def

def

def

def

def

self.info = self.obj.get_request()

get_all request(self, data=None):
self.handle(self. get all request, data)
return self.info, self.status

_get_all request(self, data=None):
self.info = self.obj.get all requests()

delete_request(self, data=None):
self.handle(self. delete request, data)
return self.info, self.status
_delete_request(self, data=None):

if dict_key_verify(data, ‘username') and self.management:

self.obj.username = data['username’]
self.obj.delete_request()

approve_request(self, data=None):

self.handle(self. approve request, data)

return self.info, self.status

_approve_request(self, data=None):

if dict_key verify(data, 'username'):
self.obj.username = data['username’]
self.obj.approve_request()

status("INFO", "Occupation change request successfully approved",

self.statface)

def

def

else:

50639

status("FAIL", "Occupation change request unable to be approved invalid
data provided", self.statface)

reject_request(self, data=None):

self.handle(self. delete request, data)

return self.info, self.status

_reject_request(self, data=None):

if dict_key_verify(data, 'username'):
self.obj.username = data['username’]
self.obj.reject_request()

status("INFO", "Occupation change request successfully rejected"”,

self.statface)

def

def

351

else:

status("FAIL", "Occupation change request unable to be rejected invalid
data provided", self.statface)

create(self, data=None):
self.handle(self. create, data)
return self.info, self.status
_create(self, data=None):

Jack Leverett 7714 50639

if dict_key verify(data, "name"):
self.obj.create(data)
status("INFO", "Occupation successfully created", self.statface)
else:
self.status = logging.status("WARNING", "no value(s) provided").sta-
tus_update(None)

status("FAIL", "Occupation could not be created invalid data provided",
self.statface)

def edit(self, data=None):
self.handle(self. edit, data)
return self.info, self.status
def _edit(self, data=None):
if dict_key verify(data, 'occupation_id'):
self.obj.occupation_id = data['occupation_id']
self.obj.columns = list(data.keys())
self.obj.edit(data)
status("INFO", "Occupation successfully edited", self.statface)
else:

status("FAIL", "Occupation could not be edited invalid data provided",
self.statface)

def delete occupation(self, data=None):
self.handle(self. delete occupation, data)
return self.info, self.status
def _delete occupation(self, data=None):
if dict_key verify(data, 'occupation_id'):
self.obj.occupation_id = data['occupation_id']
self.obj.delete_occupation()
status("INFO", "Occuaption successfully deleted", self.statface)

else:

status("FAIL", "Occupation could not be deleted invalid data provided",
self.statface)

class team_handler(root_handler):
def __init_ (self, sio, sid, session, min_level='admin', event_name="'team
event', *args, **kwargs):
super().__init_ (sio, sid, session, min_level='admin',
event_name=event_name, *args, **kwargs)
self.obj = user_info.team(user_id=self.user_id)

def get(self, data=None):
self.handle(self. _get, data)
return self.info, self.status

def _get(self, data=None):
if dict_key_verify(data, 'username'):

352

Jack Leverett 7714 50639

self.obj.username = data['username’]
if dict_key verify(data, 'user_id'):
self.obj.id = data['user_id']
if dict_key verify(data, 'occupation_id'):
self.obj.occupation_id = data['occupation_id']
if dict_key verify(data, 'team id'):
self.obj.team_id = data['team_id']

if self.obj.team_id:
self.info = self.obj.get()
else:
status("FAIL", "Team data could not be fetched, invalid data provided",
self.statface)

def get all(self, data=None):
self.handle(self. get all, data)
return self.info, self.status
def get all(self, data=None):
if dict_key verify(data, 'items'):
self.obj.columns = data['items']

self.info = self.obj.get_all()

def get_leaders(self, data=None):
self.handle(self._get_leaders, data)
return self.info, self.status
def _get_leaders(self, data=None):
if dict_key_verify(data, 'username'):
self.obj.username = data['username’]
if dict_key_verify(data, 'id'):
self.obj.id = data['id"]
if dict_key_verify(data, 'occupation_id'):
self.obj.occupation_id = data['occupation_id']
if dict_key_verify(data, 'team_id'):
self.obj.team_id = data['team_id']

if self.obj.team_id:
self.info = self.obj.get_leaders()
else:
status("FAIL", "Team leaders could not be fetched, invalid data pro-
vided", self.statface)

def get_members(self, data=None):
self.handle(self._get_members, data)
return self.info, self.status

def _get_members(self, data=None):
if dict_key_verify(data, 'username'):

353

Jack Leverett 7714 50639

self.obj.username = data['username’]
if dict_key verify(data, 'id'):
self.obj.id = data['id"]
if dict_key verify(data, 'occupation_id'):
self.obj.occupation_id = data['occupation_id']
if dict_key verify(data, 'team id'):
self.obj.team_id = data['team_id']

if self.obj.team_id:
self.info = self.obj.get members()
else:
status("FAIL", "Team members could not be fetched, invalid data pro-
vided")

def set(self, data=None):
self.handle(self. set, data)
return self.info, self.status
def set(self, data=None):
if dict_key verify(data, 'username'):
self.obj.username = data['username’]
if dict_key verify(data, 'user_id'):
self.obj.id = data['user_id']
if dict_key verify(data, 'occupation_id'):
self.obj.occupation_id = data['occupation_id']
if dict_key verify(data, 'team_ id'):
self.obj.team_id = data['team_id"]
if dict_key verify(data, 'items'):
self.obj.columns = data['items"']

if self.is_leader(self.user_id, self.obj.team_id) or self.management:
if self.obj.team_id:
self.obj.set(data)
else:
status("FAIL", "Team data not changed invalid data provided",
self.statface)
else:
status("FAIL", "Team data not changed, not authorised to alter this
team", self.statface)

def delete_leaders(self, data=None):
self.handle(self._delete_leaders, data)
return self.info, self.status
def _delete_leaders(self, data=None):
if dict_key_verify(data, 'username'):
self.obj.username = data['username’]
if dict_key verify(data, 'user_id'):
self.obj.id = data['user_id']

354

Jack Leverett 7714 50639

if dict_key verify(data, 'occupation_id'):
self.obj.occupation_id = data['occupation_id']

if dict_key verify(data, 'team_id'):
self.obj.team_id = data['team_id"]

if data['leaders']:
if self.is_leader(self.user_id, self.obj.team_id) or management:
self.obj.delete leaders(data)
else:
status("FAIL", "Leader(s) was not deleted, not authorised to alter

this team", self.statface)

else:
status("FAIL", "Leader(s) was not deleted, not authorised to alter this

team", self.statface)

class friend handler(root handler):

def

__init_ (self, sio, sid, session, min_level="admin', event_name='friend

event', *args, **kwargs):

super().__init_ (sio, sid, session, min_level='admin',

event _name=event name, *args, **kwargs)

def

def

def

def

self.obj = user_info.friend(user_id=self.user_id)

get(self, data=None):

self.handle(self._get, data)

return self.info, self.status

_get(self, data=None):

if dict_key_verify(data, 'username') and self.management:
self.obj.username = data['username’]

self.info = self.obj.get()

get_requests(self, data=None):
self.handle(self._get_requests, data)
return self.info, self.status
_get_requests(self, data=None):
if dict_key_verify(data, 'username') and self.management:
self.obj.username = data['username’]
if dict_key_verify(data, 'mode'):
self.obj.mode = data['mode’]
else:
status("WARN", "No mode provided defaulting to fetching incoming friend

request(s)", self.statface)

355

self.info = self.obj.get _requests()

def get_recomendations(self, data=None):

self.handle(self._get recomendations, data)

Jack Leverett 7714

return self.info, self.status
def _get_recomendations(self, data=None):
if dict_key verify(data, 'username') and self.management:
self.obj.username = data['username’]

self.info = self.obj.get recomendations(data)

def add_request(self, data=None):
self.handle(self. add_request, data)
return self.info, self.status
def _add _request(self, data=None):
if dict_key verify(data, 'username') and self.admin:
self.obj.username = data['username’]

self.info = self.obj.add request(data)

def approve request(self, data=None):
self.handle(self. approve request, data)
return self.info, self.status
def _approve request(self, data=None):
if dict_key verify(data, 'username') and self.admin:
self.obj.username = data['username’]

self.info = self.obj.approve_request(data)

def reject_request(self, data=None):
self.handle(self. remove, data)
return self.info, self.status

def remove request(self, data=None):
self.handle(self. remove, data)
return self.info, self.status

def remove(self, data=None):
self.handle(self._remove, data)
return self.info, self.status
def _remove(self, data=None):
if dict_key_verify(data, 'username') and self.management:
self.obj.username = data['username’]

self.info = self.obj.remove(data)

class post_handler(root_handler):

def __init_ (self, sio, sid, session, min_level='admin', event_name='post

event', *args, **kwargs):

super().__init_ (sio, sid, session, min_level=min_level,

event_name=event_name, *args, **kwargs)

356

50639

Jack Leverett 7714

def

def

def

def

def

def

def

def

357

self.obj = content_info.post(user_id=self.user_id)

get feed(self, data=None):
self.handle(self. get feed, data)
return self.info, self.status

_get feed(self, data=None):

if dict_key verify(data, 'username'):

if self.authorised('management', data['username'], "or"):

post.username = data['username’]
if dict_key_verify(data, "items'):
self.obj.columns = data['items']

self.info = self.obj.get feed()

get(self, data=None):
self.handle(self. get, data)

return self.info, self.status
_get(self, data=None):

if dict_key verify(data, 'username'):

if self.authorised('management', data['username'], "or"):

post.username = data['username’]
if dict_key verify(data, 'post id'):
self.obj.post_id = data['post_id"]
if dict_key verify(data, 'items'):
self.obj.columns = data['items"']

self.info = self.obj.get()

get_memories(self, data=None):
self.handle(self._get_memories, data)
return self.info, self.status
_get_memories(self, data=None):

if dict_key_verify(data, 'username') and self.management:

post.username = data['username’]
if dict_key_verify(data, 'items'):
self.obj.columns = data['items']

self.info = self.obj.get_memories()

get_user(self, data=None):
self.handle(self._get_user, data)
return self.info, self.status
_get_user(self, data=None):

if dict_key_verify(data, 'username'):

if self.authorised('management', data['username'], "or"):

self.obj.username = data['username’]
if dict_key verify(data, 'items'):

50639

Jack Leverett 7714 50639
self.obj.columns = data['items"']
self.info = self.obj.get_user()
return self.info, self.status

def get friends(self, data=None):
if dict_key verify(data, 'username') and self.management:
self.obj.username = data['username’]
if dict_key verify(data, 'items'):
self.obj.columns = data['items']

self.info = self.obj.get friends()

def get team(self, data=None):
self.handle(self. get team, data)
return self.info, self.status
def get team(self, data=None):
if dict_key verify(data, 'username'):
if self.authorised('management’', lead username=data['username'],
mode="or"):
self.obj.username = data['username’]
if dict_key_verify(data, 'team_id') and self.management:
self.obj.team_id = data['team_id"]
if dict_key_verify(data, 'occupation_id') and self.management:
self.obj.occupation_id = data['occupation_id']
if dict_key verify(data, 'items'):
self.obj.columns = data['items"']

self.info =self.obj.get_team()

def get_permissions(self, data=None):
self.handle(self._get permissions, data)
return self.info, self.status
def _get_permissions(self, data=None):
if dict_key_verify(data, 'username'):
if self.authorised('management', lead_username=data['username'],
mode="or"):
self.obj.username = data['username']
if dict_key_verify(data, 'post_id'):
self.obj.post_id = data['post_id']

self.info = self.obj.get _permissions()
def set(self, data=None):

self.handle(self._set, data)
return self.info, self.status

358

Jack Leverett 7714 50639

def _set(self, data=None):
if dict_key verify(data, 'username') and self.admin:
self.obj.username = data['username’]
if dict_key verify(data, 'content'):
self.obj.content = data['content']
if dict_key verify(data, 'caption'):
self.obj.caption = data['caption']

if self.obj.content:
self.obj.columns = list(data.keys())
self.obj.set(data)
else:
status("FAIL", "Post could not be created, invalid image provided",
self.statface)

def delete(self, data=None):

self.handle(self. delete, data)

return self.info, self.status
def delete(self, data=None):

if dict_key verify(data, 'username'):

if self.authorised('management’', lead_username = data['username'],
mode="or"):
self.obj.username = data['username’]

if dict_key verify(data, 'post id'):
poster_info = content info.post(post id=data['post_id'],
items=['username']).get()
if dict_key_verify(poster_info, 'posts'):
poster_info = poster_info['posts']
if dict_key_verify(poster_info, 'username'):
poster_username = poster_info['username’]
if self.authorised('management', lead_username =
poster_username, mode="or"):
self.obj.post_id = data['post_id']

self.obj.delete()

class comment_handler(root_handler):
def __init_ (self, sio, sid, session, min_level='admin', event_name='comment
event', *args, **kwargs):
super().__init_ (sio, sid, session, min_level=min_level,
event_name=event_name, *args, **kwargs)
self.obj = content_info.comment(user_id=self.user_id)

def get(self, data=None):

self.handle(self. _get, data)
return self.info, self.status

359

Jack Leverett 7714

def

def

def

def

def

_get(self, data=None):
if dict_key verify(data, 'username'):

if self.authorised('management', data['username'], "or"):

self.obj.username = data['username’]
if dict_key verify(data, 'comment_id'):
self.obj.comment_id = data['comment_id"]
if dict_key verify(data, 'items'):
self.obj.columns = data['items']

self.info = self.obj.get()

get post(self, data=None):
self.handle(self. get post, data)
return self.info, self.status

_get post(self, data=None):

if dict_key verify(data, 'username'):

if self.authorised('management', data['username'], "or"):

self.obj.username = data['username’]
if dict_key verify(data, 'post id'):
self.obj.post_id = data['post _id']
if dict_key verify(data, 'items'):
self.obj.columns = data['items"']

self.info = self.obj.get_post()

get_permissions(self, data=None):
self.handle(self._get permissions, data)
return self.info, self.status
_get_permissions(self, data=None):

if dict_key_verify(data, 'username'):

if self.authorised('management', lead_username=data['username'],

mode="or"):

def

def

360

self.obj.username = data['username’]
if dict_key_verify(data, 'comment_id'):
self.obj.comment_id = data['comment_id']

self.info = self.obj.get_permissions()

set(self, data=None):

self.handle(self._set, data)

return self.info, self.status

_set(self, data=None):

if dict_key_verify(data, 'username') and self.admin:
self.obj.username = data['username’]

if dict_key verify(data, 'post_id'):
self.obj.post_id = data['post_id']

50639

Jack Leverett 7714

self.obj.columns = list(data.keys())
self.obj.set(data)

def delete(self, data=None):

self.handle(self. delete, data)
return self.info, self.status

def _delete(self, data=None):

if dict_key verify(data, 'username'):

if self.authorised('management', lead username=data['username'],

mode="or"):

items=[

self.obj.username = data['username’]

if dict_key verify(data, 'comment_id'):

50639

commenter_info = content_info.comment(comment_id=data['comment_id'],

"username']).get()

if dict_key verify(commenter _info, 'comments'):
commenter_info = commenter_info['comments’]
if dict_key verify(commenter info, 'username'):

commenter_username = commenter_info['username’]
if self.authorised('management', lead_username

menter_username, mode="or"):

self.obj.comment_id = data['comment_id']

self.obj.delete()

class impression_handler(root_handler):

def

def

def

def

def

get(self, data=None):

self.handle(self._get, data)

return self.info, self.status

_get(self, data=None):

if dict_key_verify(data, "impression_id'):
self.obj.impression_id = data['impression_id']

if dict_key_verify(data, "items'):
self.obj.columns = data['items"']

self.info = self.obj.get()

get_comment(self, data=None):
self.handle(self._get_content, data)
return self.info, self.status
get_post(self, data=None):
self.handle(self._get_content, data)
return self.info, self.status
_get_content(self, data=None):

if dict_key_verify(data, 'username'):

if authorised(level="'management', lead_username=data['username'],

mode="or"'):

361

Jack Leverett 7714 50639

self.obj.username = data['username’]
if dict_key verify(data, 'post_id'):
self.obj.post_id = data['post_id"]
if dict_key verify(data, 'comment_id'):
self.obj.comment_id = data['comment_id']
if dict_key verify(data, 'items'):
self.obj.columns = data['items']
if dict_key verify(data, 'types'):
self.obj.types = data[' 'types']

self.info = self.obj.get content()

def count(self, data=None):
self.handle(self. count, data)
return self.info, self.status
def _count(self, data=None):
if dict_key verify(data, 'username'):
if authorised(level="management', lead_username=data['username’],
mode="or"):
self.obj.username = data['username’]
if dict_key verify(data, 'impression_type'):
self.obj.impression_type = data['impression_type']
if dict_key verify(data, 'post id'):
self.obj.post_id= data['post_id"]
if dict_key verify(data, 'comment id'):
self.obj.comment_id = data['comment_id"]

self.info = self.obj.count(data)

def set(self, data=None):
self.handle(self. set, data)
return self.info, self.status
def set(self, data=None):
if dict_key_verify(data, 'username') and self.management:
self.obj.username = data['username’]
if dict_key_verify(data, 'impression_type'):
self.obj.impression_type = data['impression_type']
if dict_key_verify(data, 'post_id'):
self.obj.post_id= data['post_id']
if dict_key_verify(data, 'comment_id'):
self.obj.comment_id = data['comment_id']

self.info = self.obj.set(data)
def delete(self, data=None):

self.handle(self._delete, data)
return self.info, self.status

362

Jack Leverett 7714 50639

def _delete(self, data=None):
if dict_key verify(data, 'impression_id'):
self.obj.impression_id = data['impression_id"]

username = self.obj.get()['username’]

if self.is_leader(self.obj.id, username) or self.admin or self.manage-
ment:
self.info = self.obj.delete(data)

class post_impression_handler(impression_handler):
def init (self, sio, sid, session, min_level='admin', event_name='comment
impression event', *args, **kwargs):
super().__init_ (sio, sid, session, min_level=min_level,
event _name='event', *args, **kwargs)
self.obj = content_info.post impression(user_id=self.user_id)

class comment_impression_handler(impression_handler):
def init (self, sio, sid, session, min_level='admin', event_name='comment
impression event', *args, **kwargs):
super()._init_ (sio, sid, session, min_level=min_level,
event_name='event', *args, **kwargs)
self.obj = content_info.comment_impression(user_id=self.user_id)

class notification_handler(root_handler):
def _init (self, sio, sid, session, min_level="admin', event name='notifica-
tion event', *args, **kwargs):
super()._init_ (sio, sid, session, min_level=min_level,
event_name=event_name, *args, **kwargs)
self.obj = content_info.notification(user_id=self.user_id)

def get(self, data=None):
self.handle(self._get, data)
return self.info, self.status
def _get(self, data=None):
if dict_key_verify(data, 'username') and self.management:
self.obj.username = data['username’]

self.info = self.obj.get(data)
if self.info:
status("INFO", "Notification(s) successfully fetched", self.statface)
else:
status("FAIL", "Notification(s) unable to be fetched, something went
wrong", self.statface)

def create(self, data=None):
self.handle(self. create, data)

363

Jack Leverett 7714 50639

return self.status
def _create(self, data=None):
allowed = False

if dict_key verify(data, 'target_id'):
target_data = {'target_id': data['target_id']}
target_info = self.obj.get target group(target data)
if target_info["type'] == "team" or "user":
if self.is_leader(self.user_id, target_info['id']) or self.manage-
ment:
allowed = True

if allowed:
self.obj.create(data)
else:
status("FAIL", "Unable to create notification, you are unauthorised for
this action", self.statface)

def delete(self, data=None):
self.handle(self. delete, data)
return self.status
def _delete(self, data=None):
if dict_key_verify(data, 'username') and self.management:
self.obj.username = data['username’]

self.obj.delete(data)

def remove(self, data=None):
self.handle(self. remove, data)
return self.status
def _remove(self, data=None):
if dict_key_verify(data, 'username') and self.management:
self.obj.username = data['username’]
if dict_key_verify(data, 'notification_id"):
self.obj.notification_id = data['notification_id']

self.obj.remove(data)

class post_slot_handler(root_handler):
def __init_ (self, sio, sid, session, min_level='admin', event_name='post slot
event', *args, **kwargs):
super().__init_ (sio, sid, session, min_level=min_level,
event_name=event_name, *args, **kwargs)
self.obj = timestamp()

def get(self, data=None):
self.info = {'post_slot start': None, 'post_slot_end': None, 'date': None}

364

Jack Leverett 7714 50639

slot_data = self.obj.get slot()
if slot_data:
self.info['post_slot_start'] = slot_data['start']
self.info['post_slot end'] = slot data['end']
self.info['date'] = self.obj.date
status("INFO", "Successfully fetched post slot", self.statface)
else:
status("CRIT", "Unable to fetch post slot, something went wrong, please
contact administrator", self.statface)

return self.info, self.status

class server(root_handler):
def init (self, sio, sid, session, min_level='admin', event name='post slot

event', *args, **kwargs):

if sid:

super()._init_ (sio, sid, session, min_level=min_level,

event_name=event name, *args, **kwargs)

self.session session

self.clients self.session.clients

self.logged_in = self.session.logged_in

try:
to handle for the case where the database hasnt been decrypted but an
internal shutdown has been called
self.obj = content_info.notification()
except:
pass

def _estimate shutdown_ time(self):
estimate = (len(self.clients) - len(self.logged_in)) +
len(self.logged_in)*2 + 10
return estimate

def _notify_clients(self, shutdown_by):
server_code = config read("miscellaneous"”, "ServerCode")
notif_data = {'target_id': "all-"+server_code, 'expire_after':shutdown_by-
timestamp().now-1, 'title': "Server Shutting Down", ‘'content': "Its recomended to
disconnect"}
self.obj.create(notif_data)
status("INFO", "Shutdown notifications sent", self.statface)

def _shutdown_services(self):
the below is in the documentation but doesnt work
#tself.sio.shutdown()

status("INFO", "Background user and server services shutdown", self.stat-
face)

365

Jack Leverett 7714 50639

def _close_new_clients(self):
self.session.accepting clients = False
status("INFO", "Server closed to new clients", self.statface)

def _disconnect clients(self):
status("INFO", "Disconnecting clients, bye", self.statface)
for client in self.clients:
self.sio.disconnect(client)

def shutdown(self, data=None):
self.handle(self. shutdown, data)
return self.info, self.status
def _shutdown(self, data=None):
log("WARN", "Server recieved shutdown signal")
tasks = {'notifs': False, 'disconnect clients': False , 'background_ser-
vices': False, 'close new clients': False}

if dict_key verify(data, "time"):
shutdown_by = timestamp().now + float(data['time'])
else:
shutdown by = timestamp().now + 30
status("WARN", "No shutdown time was provided, shutting down in 30 sec-
onds", self.statface)

estimate = self. estimate_shutdown_time()

sent_notifs = False
while timestamp().now < shutdown_by - estimate:
if not tasks['notifs']:
self. notify_clients(shutdown_by)
tasks['notifs'] = True
if timestamp().now <= shutdown_by - estimate*1.2 and tasks['back-
ground_services'] == True:
self._shutdown_services()
tasks['background_services'] = True
self. close_new_clients()
tasks['close_new_clients'] = True
eventlet.sleep(1)
status("WARN", "Beginning final shutdown process, disconnect client",
self.statface)

if not tasks['background_services']:
self._shutdown_services()

if not tasks['close_new clients']:
self. close_new_clients()

366

Jack Leverett 7714 50639

self._disconnect_clients()
log("INFO", "Server finished pre-shutdown process calling stop")

if config read("database", "encrypt"):
if not self.session.db_encrypted:
db_encrpytion(self.session).encrypt()
else:
log("WARN", "Not encrypting database, database was never de-
crypted")
#tself.sio.shutdown()

def internal_shutdown(self, data):
self.statface = None
self. shutdown(data)

class encryption_handler():
def init (self, session):
self.obj = db_encrpytion(session)
self.session = session
self.statface = None

def decrypt(self, data=None):
if data:
success = self. decrypt(data)
return success
else:
log("FAIL", "Could not decrypt database™)
return False
def _decrypt(self, data):
sss_enabled = config_read("database", "ShamirSecretSharing")
flags = []
if sss_enabled and dict_key_verify(data, "shares") and not dict_key_ver-
ify(data, "password"):
flags = ["sss”

if dict_key_verify(data, "password") or ("sss" in flags):
try:
if dict_key_verify(data, "password"):
password = int(data['password'])
success = self.obj.decrypt(data, flags)
if success:
return True
else:
log("FAIL", "Something went wrong while decrypting the data-
base")
except:
log("FAIL", "Something went wrong with decrypting the database™)

367

Jack Leverett 7714

return False

TESTING RBP

def test():
pass

TESTING RBP

if __name__ == "__main__":
test()

modules/handler/outgoing.py

from modules.data.config import read as config read

import requests

def post slot(sio, sid=None):
if sid:
sio.emit("post _slot", room=sid)
else:
sio.emit("post slot")

def send ntfy(sio, info, sid, username):

url = config_read("notifications"”, "ntfyUrl")

if url == "https://ntfy.example.com":
return

user_id = sio.get_session(sid)['id']
nfty_topic = f"{username}-{user_id[:8]}"
if url[-1] !'= "/":

url = url + "/"

message = info['message’].encode(encoding="utf-8")

title = info['title']

print(f"ntfy: {nfty_topic}")
try:

50639

requests.post(f"{url}{ntfy_topic}", data=message, headers={"Title": title})

except:

log("WARN", "Notification server cannot be reached, ensure ntfy is up and

that the provided url is correct")

def send_notification(sio, info, sid=None, username=None):

if sid:
send_ntfy(sio, info, sid, username)

sio.emit("notification", info, room=sid)

368

Jack Leverett 7714 50639

else:
sio.emit("notification", info)

modules/handler/tasks.py

import eventlet
from modules.track.logging import log

from modules.data.database import connect as db_connect
from modules.data.config import read as config read
from modules.data.datetime import timestamp

from modules.handler import outgoing

from modules.user.content import notification

from modules.user.info import auth as auth_info

from modules.start.start import final startup

def user_service(sio, sid):
user_id = sio.get session(sid)['id']

db = db_connect()
db.create(None)
log("INFO", f"Starting user service for {user_id}")

while True:
eventlet.sleep(30)
user_notification_service(db, sio, sid, user_id)

def user_notification service(db con, sio, sid, user_id):
notifications = notification(user_id=user_id)
notifications.columns = ['notification_id', 'title', 'content']
username = auth_info(user_id=user_id).get()['username’]

notif_queue = notifications.get_unsent()['notifications']
if notif_queue:
for notif in notif_queue:
outgoing.send_notification(sio, notif, sid, username)
db_con.cur.execute("UPDATE notifications_sent SET time_sent = ?, sent =
? WHERE user_id = ? AND notification_id = ?", (timestamp().now, True, user_id, no-
tif['notification_id']))
db_con.commit()

def post_time_notification():
if timestamp().is_valid_time():
log("INFO", "Sending post time notifications")
post_time_limit = int(config_read('posts', 'posttimelimit'))
title = "post-" + config_read('miscellaneous', 'ServerCode')

369

Jack Leverett 7714 50639

content = f"you have {post_time_limit} minutes to post™

target = "all-" + config_read('miscellaneous', 'ServerCode')

notifications has a sepcial code for sending notifications accross the
server

if the target is set to "all-<unique server code>" the entire server is
notified

notification data = {'title’': title, 'content': content, 'target_id': tar-
get, "expire_after": post_time_limit*60}
notification().create(notification data)
notification created = True
log("INFO", "Sent post time notifications")
else:
notification created = False

return notification_created

def notification_remove(db con):

db_con.cur.execute("SELECT notification_id, time created, expire_after FROM no-
tifications™)

rez = db_con.cur.fetchall()

if rez:

for notif in rez:
if notif[1] + notif[2] < timestamp().now:
notification(notification_id=notif[@]).delete()

def startup_notif():
server_code = config read('miscellaneous’, 'servercode')
notif _data = {'target_id': "all-"+server_code, 'title': "Server is up", 'con-
tent': "The server is now on and functioning", 'expire_after': 180}
notification().create(notif data)

def server_service(session):
db = db_connect()
db.create(None)
log("INFO", f"Starting server background service")

while session.mode != "normal":
eventlet.sleep(1)
log("INFO", "Server mode normal, continuing startup")

final_startup(session)
startup_notif()
while True:
keeps the service running forever
post_notification = False
post_notif_title = "post-" + config _read('miscellaneous', 'ServerCode")

370

Jack Leverett 7714 50639

db.cur.execute("SELECT time_created FROM notifications WHERE title=?",
(post_notif_title,))
rez = db.cur.fetchall()
if rez:
for notif in rez:
if timestamp().start < notif[@] and timestamp().end > notif[@]:
post_notification = True

today_end = timestamp().end

while timestamp().now < today end:
keeps running this loop until the end of the day then it returns to
the while above on the start of the new day
#tprint(f"now: {timestamp().now}")
eventlet.sleep(10)
removes expired notifications
notification_remove(db)

if not post_notification:
post _notification = post time notification()

modules/start/start.py

from modules.data.database import create as db_create
from modules.data.database import encryption

from modules.data.config import read as config_read
from modules.track.logging import log

import os

def main(session):
create_directories()
log("INFO", "Ensuring server directories")

from modules.data.config import create as config_create
log("INFO", "Ensuring config file")
config_create()

log("INFO", "Ensuring database")
db_create().tables()

if session.db_encrypted:
log("INFO", "Checking encryption")

encryption(session).mode()

def final_startup(session):
from modules.data.datetime import timestamp as datetime_timestamp

371

Jack Leverett 7714 50639

datetime_timestamp().generate_slot()

def create_directories():
paths = ["data", "data/images™]
if config_read("database", "ShamirSecretSharing"):

if __name__ == "__main__":

for

paths = ["data", "data/images"”, "data/shares/"]
path in paths:
if not os.path.exists(path):

os.mkdir(path)

log("INFO", f"Created new directory: {path}")

main()

modules/track/logging.py

from datetime import datetime
from os.path import exists

class log():

372

def

def

def

def

__init_ (self, level, message):
if not hasattr(self, "message type"):
self.message_type = "log"
self.time = datetime.utcnow().strftime("%Y-%m-%dT%H:%M:%SZ")
self.level = level
self.message = message
self.path = "data/log.txt"

if self.message_type == "log":
self. create()

log file_exist(self):
file exists = exists(self.path)
return file_exists

create(self):

here for legacy support

old version required a specific call to log(*info).create
this has since been revambed

pass

_create(self, log_string=None):

if not log_string:
log string = f"{self.time} | {self.level} | {self.message}"

if not self.log file exist():

Jack Leverett 7714 50639

with open(self.path, 'w') as log file:
log_file.write(f"{self.time} | INFO | Log file created at
"{self.path}'")
else:
with open(self.path, 'a') as log file:
log file.write(log_string)
self.output(log_string)

def read(self, amount):
with open(self.path, 'r') as log file:
entries = log file.readlines()
if amount == None:
return entries
entries = entries[len(entries)-amount:]
return entries

def output(self, log string):
if self.message type == "log":
print(log_string)

class status(log):
def __init_ (self, level, message, interface=None):
self.message_type = "status"
super().__init_ (level, message)
self.status = {"time":self.time, "level":self.level, "message":self.mes-
sage}
if interface:
self.interface = interface
self.process()

LEGACY METHODS
def status_update(self, obj):
status = {"time":self.time, "level":self.level, "message":self.message}
if obj != None:
obj.status = status
obj.status_string = f"{self.time} | {self.level} | {self.message}"

return status

@staticmethod

def send_status(sio, sid, status):
sio.emit('recv_status', status, room=sid)

LEGACY METHODS

def process(self):

self. format()
self. object_update()

373

Jack Leverett

7714

self. create(self.log_string)
self.interface.send_status(self.status)

def _ object_update(self):

if self.interface.obj != None:
self.interface.obj.status = self.status

self.interface.obj.status_string = self.status_string

def _ format(self):
{"time" :self.time, "level":self.level, "message":self.mes-

self.status_string = f"{self.time} | {self.level} | {self.message}"

user_id = self.interface.user_id

50639

self.log string = f"{self.time} | {self.level} | {self.interface.user_id} |

self.status =
sage}

sid = self.interface.sid
{self.message}"

class status_interface(log):

def

def init (self, sio, sid, user_id="Unknown", obj=None):

self.
self.
self.
self.
self.

user_id = user_id

sio = sio
sid = sid
obj = obj

path = "data/actions_log.txt"

def send status(self, status):

self.sio.emit('recv_status', status, room=self.sid)

main():

entry = logging("INFO", "test log creation")
entry.path = "log.txt"

modules/user/content.py

from
from
from
from
from

from
from

374

modules.
modules.
modules.
modules.
modules.

modules.
modules.

user.info
user.info
user.info
user.info
user.info

algorithms.uuid import generate as uuid_generate

import
import
import
import
import

table, auth

user_id as info_user_id
auth as info_auth
friend as info_friends
team as info_team

algorithms.univ import dict_key_verify

Jack Leverett 7714 50639

from modules.data.config import read as config_read
from modules.data.database import connect as db_connect
from modules.data.datetime import timestamp

from modules.track.logging import status

from PIL import Image
import io

class user_content(table):
def __init__ (self, user_id=None, username=None, occupation_id=None,

team_id=None, comment_id=None, post_id=None, content=None, caption=None, *args,
**kwargs):

if not self.allowed columns:

self.allowed columns = ['post id', 'content', 'caption', 'username’,

"team_id', 'date']

super().__init_ (user_id=user_id, username=username, occupation_id=occupa-
tion_id, team id=team id, post_id=post_id, content=content)

self.post _id = post _id

self.comment_id = comment_id

self.content = content

self.caption = caption

@property
def id(self):
return self. id
@id.setter
def id(self, value):
if type(value) == str:
self.cur.execute("SELECT username FROM auth_credentials WHERE user_id =
", (value,))
if self.cur.fetchone():
self.cur.execute("SELECT post_id FROM posts WHERE user_id=? AND
date=?", (value, self.date))
rez = self.cur.fetchone()
if rez:
self.post_id = rez[0]
else:
value = None
else:
value = None
self._id = value

@property
def post_id(self):
return self. post_id

375

Jack Leverett 7714 50639

@post_id.setter
def post_id(self, value):
self.cur.execute("SELECT content FROM posts WHERE post_id = ?", (value,))
if not self.cur.fetchone():
value = None
self. post _id = value

@property
def comment_id(self):
return self. comment_id
@comment_id.setter
def comment_id(self, value):
self.cur.execute("SELECT content FROM comments WHERE comment_ id=?",
(value,))
if not self.cur.fetchone():
value = None
self. comment _id = value

@property
def occupation_id(self):
return self. occupation_id
@occupation_id.setter
def occupation_id(self, value):
team_value = None
self.cur.execute("SELECT name FROM occupations WHERE occupation_id = ?",
(value,))
if not self.cur.fetchone():
value = None
else:
self.cur.execute("SELECT team_id FROM teams WHERE occupation_id = ?",
(value,))
rez = self.cur.fetchone()
if rez:
team_value = rez[0]

self.team_id = team_value
self._occupation_id = value

@property
def content(self):
return self._content
@content.setter
def content(self, value):
if type(value) != str:
value = None
self. _content = value

376

Jack Leverett 7714

class post(user_content):
@property
def caption(self):
return self._caption
@caption.setter
def caption(self, value):
if type(value) != str:
value = None
self. caption = value

@property
def content(self):
return self. content
@content.setter
def content(self, value):
image formats = ['png', 'jpg']
for form in image formats:
try:

save_path = f"data/images/post {self.id} {self.date}.{form}"

with Image.open(io.BytesIO(value)) as recieved:
recieved.save(save_path)
break
except:
save_path = None
self. content = save path

def init (self, user_id=None, username=None, occupation_id=None,
team_id=None, post_id=None, content=None, caption=None, *args, **kwargs):

self.allowed columns = ['post id', 'content', 'caption', 'username’,

‘date']

50639

super()._init_ (user_id=user_id, username=username, occupation_id=occupa-

tion_id, team id=team _id, post_id=post_id, content=content, caption=caption)

def get_feed(self):
info = {"posts": None}
post_feeds = []

friend_posts_info = self.get_friends()

if dict_key_verify(friend_posts_info, "posts"):
friend_posts = friend_posts_info['posts’]
post_feeds.append(friend_posts)

status("INFO", "Succesfully fetched friends' post(s)", self.statface)

team_posts_info = self.get_team()

if dict_key_verify(team_posts_info, "posts"):
team_posts = team_posts_info['posts’]
post_feeds.append(team _posts)

377

Jack Leverett 7714 50639
status("INFO", "Succesfully fetched team's post(s)", self.statface)

for post_feed in post_feeds:
info = {"posts": []}
for post in post_feed:
info['posts'].append(post)

return info

def get(self):
info = {"posts":{column: None for column in self.columns}}

for column in self.columns:
gots per column for the sgl querey instead of quereying every field
this is so we can add only what the user requests as their is no easy
way of identifying onces fetched from a result
without hte user of "magic numbers" anyway
if column == "username":
column = "user_id"
self.cur.execute(f"SELECT {column} FROM posts WHERE post id=?",
(self.post _id,))
rez = self.cur.fetchone()
append_item = rez[9]

if rez:
if column == "user_id":
column = "username"
append_item = auth(user_id=append_item).get()['username’]
elif column == "content":

with open(append_item, "rb") as content:
append_item = content.read()
info["posts"][column] = append_item
status("INFO", "Succesfully fetched {column} for requested post",
self.statface)
else:
status("FAIL", "Could not fetch post data, invalid data provided",
self.statface)
else:
status("WARN", "No post data requested to be fetched, check your in-
puts", self.statface)

return info
def get_memories(self):
info = {"posts":None}

self.cur.execute(f"SELECT post_id FROM posts WHERE user_id=?", (self.id,))
rez = self.cur.fetchall()

378

Jack Leverett 7714 50639

if rez:
info = {"posts":[{column: None for column in self.columns} for post in
rez]}
for i, post _details in enumerate(rez):
post_info = post(post_id=post_details[@])
post_info.columns = self.columns
info['posts'][i] = post_info.get()['posts’']
status("INFO", "Succesfully fetched post memories", self.statface)
elif self.id:
status("WARN", "No memories exist", self.statface)

if not self.id:
status("FAIL", "Could not fetch memory data, invalid data provided or
none exist", self.statface)

return info

def get user(self):
info = {"posts":{column: None for column in self.columns}}

self.cur.execute(f"SELECT post id FROM posts WHERE user _id=? AND date=?",
(self.id, self.date))
rez = self.cur.fetchone()
if rez:
post_info = post(post _id=rez[0])
post _info.columns = self.columns
info = post_info.get()
status("INFO", "Post(s) Succesfully fetched", self.statface)
else:
info["posts"] = None
status("WARN", "No post(s) exist for that user", self.statface)

if not self.id or not self.date:
info = None
status("FAIL", "No posts fetched, invalid inputs", self.statface)

return info

def get_friends(self):
info = {'posts':None}
friends = info_friends(user_id=self.id).get()
if dict_key_verify(friends, 'friends'):
friends = friends['friends']
info = {"posts":[{column: None for column in self.columns} for friend
in friends]}

for i, friend in enumerate(friends):

379

Jack Leverett 7714 50639

friend_info = post(username=friend['username'])
friend_info.columns = self.columns
data = friend_info.get_user()['posts']
info["posts"][i] = data
else:
status("WARN", "Could not fetch friend(s) post(s), no friends ex-
ist", self.statface)
else:
status("WARN", "Could not fetch friend(s) post(s), no friends exist",
self.statface)

if not self.id:
info = None
status("FAIL", "Could not fetch friend(s) post(s), invalid data pro-
vided", self.statface)
else:
status("INFO", "Succesfully fetched friend(s) post(s)", self.statface)

return info

def get team(self):
info = {"posts": None}
members_data = info_team(user_id=self.id, username=self.username, occupa-
tion_id=self.occupation_id, team_id=self.team_id)
members_info = members_data.get_members()
if members_info:
members = members_info['members']
else:
status("WARN", "Team posts unable to be fetched, no other team mem-
bers", self.statface)
members = None
info = None

if members:
info = {"posts":[{column: None for column in self.columns} for member

in members]}

for i, member in enumerate(members):
member_info = post(username=member['username’'])
member_info.columns = self.columns
data = member_info.get_user()['posts’']

info['posts'][i] = data
if not members_data.team_id:

status("FAIL", "Team posts unable to be fetched, invalid data pro-
vided", self.statface)

380

Jack Leverett 7714 50639

vided",

def

vided",

def

381

info = None
else:
status("INFO", "Team posts Succesfully fetched", self.statface)
else:
status("WARN", "Team posts unable to be fetched, no team members pro-
self.statface)

return info

get permissions(self):
info = {"delete": False, "edit": False}

subject = info_auth(user_id=self.id, items=['level', ‘'username']).get()

if subject['level'] == "management" or subject['level'] == "admin":
info['delete’'] = True
if subject['level'] == "admin":

info['edit'] = True

target_info = post(post_id=self.post id, items=['username']).get()
if dict_key verify(target info, 'username'):
target_username = target_info['username’]
if subject['username'] == target_username:
info['delete'] = True

target_team_info = info_team(username=target_username).get_leaders()
if dict_key_verify(target_team_info, 'leaders'):
target_leaders = target_team_info['leaders']
if subject['username'] in target_leaders:
info['delete’'] = True

if not self.id or not self.post id:

info = None

status("FAIL", "Permissions could not be fetched, invalid data pro-
self.statface)
else:

status("INFO", "Permissions succesfully fetched", self.statface)
return info

set(self, data=None):
self.content = data['content']
self.caption = None
caption_intended = False

if dict_key verify(data, 'caption'):
caption_intended = True
if len(data['caption']) <= 1e0:
self.caption = data['caption']

Jack Leverett 7714 50639
post_id = uuid_generate()

valid_time = timestamp().is_valid_time()
self.cur.execute("SELECT post_id FROM posts WHERE user_id=? AND date=?",
(self.id, self.date))

if not self.cur.fetchone() and valid time and ((caption_intended and
self.caption) or (not caption_intended and not self.caption)):
self.cur.execute("INSERT INTO posts (post_id, user_id, content, cap-
tion, date) VALUES (?, ?, ?, ?, ?)", (post_id, self.id, self.content, self.caption,
self.date))
self.db.commit()
status("INFO", "Post successfully created", self.statface)
else:
status("FAIL", "Post could not be created, invalid data provided",
self.statface)

def delete(self):
if self.id and self.date:
self.cur.execute("SELECT post id FROM posts WHERE user_id=? AND
date=?", (self.id, self.date))
rez = self.cur.fetchone()
if rez and not self.post id:
self.post_id = rez[9]

if self.post id:
self.cur.execute("DELETE FROM posts WHERE post _id=?", (self.post _id,))
self.db.commit()
status("INFO", "Post successfully deleted", self.statface)
else:
status("FAIL", "Post could not be deleted, invalid data provided",
self.statface)

def sort(self, posts):
for post in posts:
if dict_key_verify(post, "post_id"):
num_likes = post_impressions(post_id=post['post_id']).count()
post['impression_count'] = num_likes

if len(posts) < 2:
return posts
mid = len(posts) // 2

return _ merge(

left=_sort(posts[:mid]),
right=_sort(posts[mid:]))

382

Jack Leverett 7714 50639

def __merge(self, left, right):
if len(left) == 0:
return right
if len(right) == 0:
return left

result = []
index_left = index_right = 0
while len(result) < len(left) + len(right):
if left[index_left]['impression_count'] <= right[index_right]['impres-
sion_count']:
result.append(left[index_left])
index_left += 1
else:
result.append(right[index_right])
index_right += 1

if index_right == len(right):
result += left[index_left:]
break

if index_left == len(left):
result += right[index_right:]
break

class comment(user_content):
def init (self, user_id=None, username=None, occupation_id=None,
team_id=None, comment_id=None, post_id=None, content=None, *args, **kwargs):
self.allowed columns = ['comment id', 'post id', 'username', 'content']
super()._init_ (user_id=user_id, username=username, occupation_id=occupa-
tion_id, team _id=team id, comment_id=comment_id, post id=post id, content=content)

def get(self):
info = {'comments':None}

info['comments'] = {column: None for column in self.columns}
for column in self.columns:
if column == "username":
column = "user_id"
self.cur.execute(f"SELECT {column} FROM comments WHERE comment_id = ?",
(self.comment_id,))
rez = self.cur.fetchone()

if rez:
comment_info = rez[0]
if column == "user_id":

column = "username"
comment_info = auth(user_id=comment_info).get()['username']
info['comments'][column] = comment_info

383

Jack Leverett 7714 50639

else:
status("FAIL", f"Comment {column} unable to be fetched, something
went wrong", self.statface)
else:
status("WARN", "No data requested to be fetched, check inputs",
self.statface)

if not self.comment_id:
info = None
status("FAIL", "Comment unable to be fetched, invalid commentID pro-
vided", self.statface)
else:
status("INFO", "Succesfully fetched comment", self.statface)

return info

def get post(self):
info = {'comments':None}

self.cur.execute("SELECT comment_id FROM comments WHERE post id=?",
(self.post _id,))
rez = self.cur.fetchall()
if rez:
info['comments'] = [{column: None for column in self.columns} for com-
ment in rez]

for i, comment in enumerate(rez):
self.comment_id = comment[0]
data = self.get()
info['comments'][i] = data['comments']
else:
status("WARN", "No comments related to requested post", self.stat-
face)
else:
status("FAIL", "Comment(s) unable to be fetched, something went wrong",
self.statface)

if not self.post_id:
info = None
status("FAIL", "Comment(s) unable to be fetched, invalid commentID pro-
vided", self.statface)
else:
status("INFO", "Succesfully fetched comment(s)", self.statface)

return info

def get_permissions(self):

384

Jack Leverett 7714 50639
info = {"delete": False, "edit": False}

subject = info_auth(user_id=self.id, items=['level', 'username']).get()

if subject['level'] == "management" or subject['level'] == "admin":
info['delete’'] = True
if subject['level'] == "admin":

info['edit'] = True

target_info = comment(comment_id=self.comment_id, items=['username']).get()
if dict_key verify(target _info, 'username'):
target_username = target_info['username’]
if subject['username'] == target_username:
info['delete’'] = True

target_team_info = info_team(username=target username).get leaders()
if dict_key verify(target team_info, 'leaders'):
target_leaders = target_team_info['leaders’]
if subject['username'] in target_ leaders:
info['delete’'] = True

if not self.id or not self.comment_id:
info = None
status("FAIL", "Unable to get comment permissions, invalid user or com-
mentID provided", self.statface)
else:
status("INFO", "Succesfully fetched comment permissions"”, self.stat-
face)
return info

def set(self, data=None):
comment_id = uuid_generate()
if dict_key_verify(data, 'content'):
self.content = data['content']

if self.content and self.post_id and self.id:
self.cur.execute("INSERT INTO comments (post_id, comment_id, user_id,
content) VALUES (?,?,?,?)", (self.post_id, comment_id, self.id, self.content))
self.db.commit()
status("INFO", "Succesfully created comment", self.statface)
else:
status("FAIL", "Could not create comment, invalid content, postID or
user provided", self.statface)

def delete(self):
if self.comment_id:
self.cur.execute("DELETE FROM comments WHERE comment_id=?", (self.com-
ment_id,))

385

Jack Leverett 7714 50639

self.db.commit()
status("INFO", "Succesfully deleted comment", self.statface)
else:
status("FAIL", "Could not delete comment, invalid commendID provided",
self.statface)

class impression(user_content):
this class is inherited by post_impression and comment_impression
because of this it uses attributes for the table names and the table fields
they are baked into the sql string because these are NOT user defined and so
therefor there is no security risk baking it into a string
@property
def impression_id(self):
return self. impression_id
@impression_id.setter
def impression_id(self, value):
self.cur.execute(f"SELECT impression_id FROM {self.table_name} WHERE im-
pression_id = ?", (value,))
if not self.cur.fetchone():
value = None
self. impression_id = value

@property

def impression_type(self):
return self. impression_type

@impression_type.setter

def impression_type(self, value):
if not value in self.types:

value = None

self._impression_type = value

@property
def table name(self):
return self. table name
@table_name.setter
def table_name(self, value):
if value != "post impressions" and value != "comment impressions":
value = None
self._table_name = value
if value:

self.attr_name = value.replace("impressions"”, "id")

@property
def attr_name(self):
return self._attr_name
@attr_name.setter
def attr_name(self, value):

386

Jack Leverett 7714 50639

if value != "post_id" and value != "comment_id":
value = None
self. attr_name = value
if not self.table_name and value:
self.table name = value.replace("id", "impressions")

@property
def attr_id(self):
return self. attr_id
@attr_id.setter
def attr_id(self, value):
root_table = "comments"
if self.attr _name:
if "post" in self.attr_name:
root_table = "posts"
self.cur.execute(f"SELECT user_id FROM {root_table} WHERE
{self.attr_name} = ?", (value,))
if not self.cur.fetchone():
value = None
else:
value = None
self. attr_id = value

def _init (self, user_id=None, username=None, comment_id=None, post id=None,

impression_id=None, impression_type=None, table name=None, attr_name=None,
attr_id=None, *args, **kwargs):

if not hasattr(self, "allowed columns"):

self.allowed columns = ['impression_id', 'username’, 'type']

super()._ init_ (user_id=user_id, username=username, post id=post_id, com-
ment_id=comment_id)

self.impression_id = impression_id

if not hasattr(self, "types"):
self.types = ['like']

if not hasattr(self, "table_name"):
self.table_name = table_name

if not hasattr(self, "attr_name"):
self.attr_name = attr_name

if not hasattr(self, "attr_id"):
self.attr_id = attr_id

def get(self):
info = {'impressions' :None}

info["impressions'] = [{column: None for column in self.columns}]

for column in self.columns:
if column == "username":

387

Jack Leverett 7714 50639

column = "user_id"
self.cur.execute(f"SELECT {column} FROM {self.table_name} WHERE impres-
sion_id=?", (self.impression_id,))
rez = self.cur.fetchone()

if rez:
rez_info = rez[9]
if column == "user_id":

column = "username"
rez_info = auth(user_id=rez_info,
items=["'username']).get()['username’]
info['impressions'][@][column] = rez_info
else:
status("FAIL", f"Impression {column} could not be fetched, some-
thing went wrong", self.statface)
else:
status("WARN", "No data requested to be fetched, check inputs",
self.statface)

if not self.impression_id:
info = None
status("FAIL", "Impressions could not be fetched, invalid impressionID
provided", self.statface)
else:
status("INFO", "Impressions succesfully fetched", self.statface)

return info

def get_content(self):
info = {'impressions': None}

if self.attr_name:
self.cur.execute(f"SELECT impression_id FROM {self.table name} WHERE
user_id=? AND {self.attr_name}=?", (self.id,self.attr_id))
rez = self.cur.fetchall()
if rez:
info['impressions'] = [{column: None for column in self.columns}
for impression_id in rez]
for i, impression_id in enumerate(rez):
impression_info = self.class_type()
impression_info.impression_id = impression_id[@]
impression_info.columns = self.columns
impression_info = impression_info.get()['impressions'][9]
info['impressions'][i] = impression_info
else:
status("WARN", "Post/comment has no impressions associated",
self.statface)
else:

388

Jack Leverett 7714 50639

status("WARN", "Impression(s) unable to be fetched, somethign went
wrong", self.statface)
else:
status("FAIL", "Impression(s) unable to be fetched, impression type un-
specified", self.statface)

if not self.attr_id:
info = None
status("FAIL", "Impression(s) unable to be fetched, invalid post/com-
ment ID provided", self.statface)
else:
status("INFO", "Succesfully fetched impression(s)", self.statface)

return info

def count(self, data=None):
info = {'impression_count': @}

if dict_key verify(data, "impression_type") and not self.impression_type:
self.impression_type = data['impression_type']

if self.impression_type:
self.cur.execute(f"SELECT COUNT(*) FROM {self.table name} WHERE type =
? AND {self.attr name} = ?", (self.impression_type,self.attr_id))
rez = self.cur.fetchall()
if rez:
info["impression count'] = rez[0][9]
status("INFO", "Succesfully fetched impression count", self.stat-
face)
else:
status("FAIL", "Impression count unable to be fetched, something
went wrong", self.statface)

else:
info = None
status("FAIL", "Impression count unable to be fetched, invalid impres-
sion type", self.statface)

return info
def set(self, data=None):
if dict_key_verify(data, "impression_type"):
self.impression_type = data['impression_type']

impression_id = uuid_generate()

exists = False

389

Jack Leverett 7714 50639

self.cur.execute(f"SELECT type FROM {self.table_name} WHERE user_id=? AND
type=? AND {self.attr_name}=?", (self.id, self.impression_type, self.attr_id))
if self.cur.fetchone():
exists = True
else:
status("WARN", "Impression from this user of this type already exists
on this content", self.statface)

if self.impression_type and self.id and self.attr_id:
if not exists:
self.cur.execute(f"INSERT INTO {self.table_name} (impression_id,
{self.attr_name}, user_id, type) VALUES (?, ?, ?, ?)", (impression_id,
self.attr_id, self.id , self.impression_type))
self.db.commit()
status("INFO", "Impression succesfully created", self.statface)
else:
status("FAIL", "Impression unable to be created, impression already
exists", self.statface)
else:
status("FAIL", "Impression unable to be created, invalid impression
type, user or post/comment ID provided", self.statface)

def delete(self, data=None):
if dict_key verify(data, "impression_id"):
self.impression_id = data['impression_id']

if self.impression_id:
self.cur.execute(f"DELETE FROM {self.table name} WHERE impres-
sion_id=?", (self.impression_id,))
self.db.commit()
status("INFO", "Succesfully deleted impression", self.statface)
else:
status("FAIL", "Impression unable to be deleted, invalid impression ID
provided", self.statface)

class post_impression(impression):
def __init_ (self, user_id=None, username=None, post_id=None, impres-
sion_type=None, *args, **kwargs):
self.allowed_columns = ['impression_id', 'post_id"', 'username’, 'type']
self.types = ['like"]
self.table_name = "post_impressions"”
self.class_type = post_impression
super().__init_ (user_id=user_id, username=username, post_id=post_id, im-
pression_type=impression_type)

if self.post_id:
self.attr_id = self.post_id

390

Jack Leverett 7714 50639

@property
def post_id(self):
return self. post_id
@post_id.setter
def post_id(self, value):
self.cur.execute("SELECT content FROM posts WHERE post_id = ?", (value,))
if not self.cur.fetchone():
value = None
self. post id = value
self.attr_id = value

def get post(self):
info = self.get content()
return info

class comment_impression(impression):

def _init (self, user_id=None, username=None, comment_id=None, impres-

sion_type=None, *args, **kwargs):

self.types = ['like"]

self.table name = "comment_ impressions"”

self.allow columns = ['impression_id', 'comment_id', 'username’', 'type']
self.class _type = comment_impression

super()._ init_ (user_id=user_id, username=username, comment_ id=comment_id,

impression_type=impression_type)

if self.comment_id:
self.attr_id = self.comment_id

def get_comment(self):
info = self.get_content()
return info

@property
def comment_id(self):
return self._comment_id
@comment_id.setter
def comment_id(self, value):
self.cur.execute("SELECT content FROM comments WHERE comment_id=?",

(value,))

if not self.cur.fetchone():
value = None

self. _comment_id = value

self.attr_id = value

class notification(table):

391

@property

Jack Leverett 7714 50639

def notification_id(self):
return self. notification_id
@notification_id.setter
def notification_id(self, value):
self.cur.execute("SELECT notification_id FROM notifications WHERE notifica-
tion_id=?", (value,))
if not self.cur.fetchone():
value = None
self. notification_id = value

@property
def target _id(self):
return self. target id
@target_id.setter
def target id(self, value):
self.cur.execute("SELECT user_id FROM auth_credentials WHERE user_id=?",
(value,))
user = self.cur.fetchone()
self.cur.execute("SELECT team_id FROM teams WHERE team_id=?", (value,))
team = self.cur.fetchone()
if value == "all-" + self.server _code:
all server = True
else:
all server = False
level = value in ['member', ‘'management', 'admin']

if not (user or team or all server or level):
value = None
self._target_id = value

@property
def title(self):
return self. title
@title.setter
def title(self, value):
if type(value) != str:
value = None
self._title = value

@property
def content(self):
return self._content
@content.setter
def content(self, value):
if type(value) != str:
value = None
self. content = value

392

Jack Leverett 7714 50639

@property
def expire_after(self):
return self. expire_ after
@expire_after.setter
def expire_after(self, value):
if type(value) != float and type(value) != int:
value = None
self. expire_after = value

def _init (self, user_id=None, username=None, notification_id=None, tar-

get_id=None, title=None, content=None, expire_ after=None):

self.allowed columns = ['notification_id', 'target id', 'title', 'content’,
"time_created']

super()._init (user_id=user_id, username=username)

self.notification_id = notification_id

self.target _id = target_id

self.title = title

self.content = content

self.expire after = expire_after

def get_target_group(self, data=None):
finds out the type of id thats been provided
below the list displays the types that can be provided
info = {'type': None, 'id': None}
types = ['server', 'user', 'team', 'level']
"server" means that everyone is the target for the notificaion

if dict_key_verify(data, 'target_id'):
self.target_id = data['target_id']

if self.target_id:
if self.target_id == "all-"+self.server_code:
"all-<server code>" is the unique way of identifying a notifica-
tion to the entire server
its structured this way to stop any collisions with a user who
might call themselves "all" or "server"
as such the server code (usually a string of numbers or 12345 by
default) is banned from use in usernames
info = {'type': types[0@], 'id': self.target_id}
elif self.target_id in ['member', 'management', ‘'admin']:
info = {'type': types[3], 'id': self.target_id}
else:
self.cur.execute("SELECT username FROM auth_credentials WHERE
user_id = ?", (self.target_id,))
rez = self.cur.fetchone()
if rez:

393

Jack Leverett 7714 50639

username = auth(user_id=self.target_id).get()['username’]
info = {'type': types[1], 'id': username}

self.cur.execute("SELECT name FROM teams WHERE team_id = ?",
(self.target_id,))
rez = self.cur.fetchone()
if rez:
info = {"type': types[2], 'id': self.target_id}

else:
info = None

return info

def get targets(self, data=None):
targets are the users that hte notifications should be sent to
targets can be specified on creation as a number of diffrent things, for
instance providing a team id allows the targeting of a team
its implicit meaning its the servers job to find out what type of ID the
user is providing
info = {'targets': None}

if dict_key verify(data, 'target id'):
self.target_id = target_id

if self.target_id:
target_group = self.get_target_group(self)

if target_group['type'] == "user":
info['targets'] = [{'user_id':info_user_id(username=tar-
get_group['id']).get()['user_id']}]

else:
if target_group['type'] == "server":
self.cur.execute("SELECT user_id FROM profile")
elif target_group['type'] == "team":

self.cur.execute("SELECT user_id FROM profile INNER JOIN teams
USING(occupation_id) WHERE team_id=?", (target_group['id'],))
elif target_group['type'] == "level":
self.cur.execute("SELECT user_id FROM auth_credentials WHERE
level=?", (target_group['id'],))
rez = self.cur.fetchall()
if rez:
info['targets'] = [{'user_id':target[0]} for target in rez]
else:
status message
info = None

394

Jack Leverett 7714 50639

return info

def get unsent(self, data=None):
info = {'notifications': None}

#self.cur.execute("SELECT notification_id FROM notifications_sent WHERE
user_id=? AND sent=?",(self.id, False))

self.cur.execute("SELECT notification_id, time_created FROM notifications
INNER JOIN notifications_sent USING(notification_id) WHERE user_id=? AND sent=?",
(self.id, False))

rez = self.cur.fetchall()

if rez:

info['notifications'] = []

queued_notifs = self. sort _notifications(rez)
for unsent in queued notifs:
notification_info = notification(notification_id=unsent)
notification_info.columns = self.columns
notif data = notification_info.get notification()['notifica-
tions'][9]
info['notifications'].append(notif data)

if not self.id:
info = None
return info

def _sort notifications(self, notifs):
for i in range(len(notifs)):
if i < len(notifs)-2:
if notifs[i][1] < notifs[i+1][1]:
swap = notifs[i+1]
notifs[i+1] = notifs[i]
notifs[i] = swap

notifs = [notif[@] for notif in notifs]
return notifs

def get(self, data=None):
info = None

if dict_key verify(data, 'user_id'):
self.id = data['user_id']

if dict_key_verify(data, 'target_id'):
self.target_id = data['target_id']

if dict_key_verify(data, 'notification_id'):
self.notification_id = data['notification_id']

395

Jack Leverett 7714 50639

if self.notification_id:
info = self.get_notification()
elif self.id:
info = self.get user()
else:
status("WARN", "Unable to fetch notifications, must provide a valid
user or notification ID", self.statface)

return info

def get user(self):
info = {'notifications’:None}

self.cur.execute("SELECT notification_id FROM notifications_sent WHERE
user_id = ?", (self.id,))
rez = self.cur.fetchall()
if rez:
info = {'notifications': []}
rez could be user_notifs
for notif in rez:
notif _id = notif[9]
user_notification = notification(notification_id=notif id)
user_notification.columns = self.columns
notification_info = user_notification.get_notification()['notifica-
tions'][9]
info['notifications'].append(notification_info)
else:
status("WARN", "No notifications exist for this user", self.stat-
face)
else:
status("WARN", "No notifications exist for this user", self.statface)

if not self.id:
status("WARN", "Unable to fetch notifications, invalid user provided",
self.statface)
info = None

return info

def get_group(self, data=None):
info = {'notifications': None}

if self.target_id:
self.cur.execute("SELECT notification_id FROM notifications WHERE tar-
get_id=?", (self.target_id,))
rez = self.cur.fetchall()

396

Jack Leverett 7714 50639

if rez:
info['notifications'] = [{column: None for column in self.columns}
for notif in rez]
for i, notif in enumerate(rez):
notification_info = notification(notification_id=notif[0])
notification_info.columns = self.columns
notif data = notification_info.get notification()['notifica-
tions'][@]
info['notifications'][i] = notif_data
else:
status message
info = None
return None

def get notification(self, data=None):
info = {'notifications': None}
info['notifications’'] = [{column: None for column in self.columns}]

if self.notification_id:
for column in self.columns:
self.cur.execute(f"SELECT {column} FROM notifications WHERE notifi-
cation_id = ?", (self.notification_id,))
rez = self.cur.fetchone()

if rez:
info_item = rez[9]
if column == "target id":

info_item = self.get_target_group({'target_id':
info_item})['id']
info['notifications'][@][column] = rez[0]
else:
status("WARN", "Notification {column} unable to be fetched,
something went wrong", self.statface)
else:
status("WARN", "No data requested to be fetched, check inputs",
self.statface)

else:
info = None
status("WARN", "Notification unable to be fetched, invalid notification
ID provided", self.statface)
return info

def load_notification(self, data=None):
loads notifications into the "notification_sent" table. This is where no-
tifications are queued for sending when their target next logs in
if dict_key_verify(data, 'notification_id'):
self.notification_id = data['notification_id']

397

Jack Leverett 7714 50639

if self.notification_id:
notification_info = notification(notification_id=self.notification_id)
notification_data = notification_info.get notification()['notifica-
tions'][@]

notification_info.target _id = self.target_id
target_data = notification_info.get_targets()[' 'targets']
if target_data:
for target in target data:
self.cur.execute("INSERT INTO notifications_sent (notifica-
tion_id, user_id) VALUES (?, ?)", (self.notification_id, target['user_id']))
self.db.commit()

def create(self, data=None):

if dict_key verify(data, 'target id'):
self.target_id = data['target _id']

if dict_key verify(data, 'title'):
self.title = data['title’']

if dict_key verify(data, 'content'):
self.content = data['content']

if dict_key verify(data, 'expire after'):
self.expire_after = data['expire after']

notification_id = uuid_generate()
time_created = timestamp().now

if self.title and self.target_id:
if not self.content:
self.content = self.title
status("WARN", "No notification content provided, setting content
to title", self.statface)
if not self.expire_ after:
self.expire_after = float(config_read(section="notifications",
key="defaultexpiretime"))
status("WARN", "No notification expire after time provided, setting
to default", self.statface)

self.cur.execute("INSERT INTO notifications (notification_id, tar-
get_id, title, content, time_created, expire_after) VALUES (?, ?, ?, ?, ?, ?)",
(notification_id, self.target_id, self.title, self.content, time_created, self.ex-
pire_after))

self.db.commit()

status("INFO", "Notification successfully created", self.statface)

pre_load_notification_id = self.notification_id

self.load_notification({'notification_id': notification_id})

self.notification_id = pre_load_notification_id

398

Jack Leverett 7714 50639

else:
status("FAIL", "Unable to create notification, invalid title or target
ID provided", self.statface)

def delete(self, data=None):
if dict_key verify(data, 'target_id'):
self.target_id = data['target_id']
if dict_key verify(data, 'notification_id'):
self.notification_id = data['notification_id']

if self.notification_id:
self.delete notification(data)
elif self.target id:
self.delete group(data)
elif self.id:
self.delete_user(data)
else:
status("FAIL", "Unable to delete notification, invalid user or tar-
get/notification ID provided", self.statface)

def delete user(self, data=None):
if self.id:
self.cur.execute("SELECT notification_id FROM notifications_sent WHERE
user_id=?", (self.id,))
rez = self.cur.fetchall()
if rez:
for notif in rez:
notification _info = notification()
notification_info.delete notification({'notification_id':no-
tif[o]})
else:
status("WARN", "User has no notifications to be deleted",
self.statface)
else:
status("FAIL", "Unable to delete notification(s), something went
wrong", self.statface)
else:
status("FAIL", "Unable to delete notification(s), invalid user pro-
vided", self.statface)

def delete_group(self, data=None):
if self.target_id:

self.cur.execute("SELECT notification_id FROM notifications WHERE tar-

get_id=?", (self.target_id,))
rez = self.cur.fetchall()

399

Jack Leverett 7714 50639

if rez:
for notif in rez:
notification_info = notification(notification_id=notif[@])
notification_info.delete_notification()
else:
status("WARN", "Target(s) have no notifications to be deleted",
self.statface)
else:
status("FAIL", "Notification(s) unable to be deleted somethign went
wrong", self.statface)
else:
status("FAIL", "Notification(s) unable to be deleted, invalid target ID
provided", self.statface)

def delete notification(self, data=None):
if self.notification_id:
self.cur.execute("DELETE FROM notifications_sent WHERE notifica-
tion_id=?", (self.notification_id,))
self.db.commit()
status("INFO", "Succesfully deleted notification", self.statface)
else:
status("FAIL", "Unable to delete notification, invali notification ID
provided", self.statface)

def remove(self, data=None):
if self.notification_id:
self.cur.execute("DELETE FROM notifications_sent WHERE user_id = ? AND
notification _id=?", (self.id, self.notification_id,))
self.db.commit()
status("INFO", "Notification successfully removed", self.statface)
else:
status("FAIL", "Notification unable to be removed, invalid notification
ID provided", self.statface)

modules/user/generate.py

This will essentially run one a successful registration happens
This could become a class or function in the user_info file

Since this file is essentially just going to be using that one
However it will also create some of its own database entries

import sqlite3
from modules.data.config import read as config_read

from modules.data.database import connect as db_connect

from modules.algorithms.uuid import generate as uuid_generate

400

Jack Leverett 7714 50639
from modules.algorithms.uuid import long_hash as hash_string
from modules.user import info

db = db_connect()
db.create(None)
cur = db.cur

def auth_credentials(user_id, username, password, level):
cur.execute("INSERT INTO auth_credentials (user_id, username, password, level)
VALUES (?, ?, ?, ?)", (user_id, username, password, level))

return user_id

def profile(user _id):
cur.execute("INSERT INTO profile (user_id) VALUES (?)", (user_id,))

occupation_id = config read("user", "DeafultOccupation™)

finds wether or not the occupation_id exists
cur.execute("SELECT name FROM occupations WHERE occupation_id = ?", (occupa-
tion_id,))
rez = cur.fetchone()
if rez:
info.occupation(user_id).set({"occupation_id":occupation_id})

def team(user_id, name="friends"):
team_id = uuid_generate()

cur.execute("INSERT INTO teams (team_id, name, user_id) VALUES (?, ?, ?)",
(team_id, name, user_id))

cur.execute("INSERT INTO team leaders (team_id, user_id) VALUES (?, ?)",
(team_id, user_id))

def main(username, password, level):
user_id = uuid_generate()
password_hash = hash_string(password + user_id)

auth_credentials(user_id, username, password_hash, level)
profile(user_id)

team(user_id)

db.commit()
return user_id

401

Jack Leverett 7714

if __name__ == "_main__":

main("test_user", "test_password")
modules/user/info.py
from modules.track.logging import log, status
from modules.data.config import read as config read
from modules.data.database import retrieve
from modules.data.database import connect as db_connect
from modules.data.datetime import timestamp
from modules.algorithms.uuid import generate as uuid_generate
from modules.algorithms.univ import dict_key_verify
from modules.algorithms.recomend import recomend friend

class table():

def __in

it (self, user_id=None, username=None, occupation_id=None, al-

lowed columns=None, *args, **kwargs):

self
self
self

self
self
self
if n

self
self

@propert
def id(s
retu
@id.sett
def id(s
if t

else

.statface = None
.db = db_connect()
.db.create(self)

.id = user_id

.username = username

.occupation_id = occupation_id

ot self.allowed columns:

self.allowed columns = allowed columns

.columns = self.allowed_columns

.server_code = config_read('miscellaneous', 'servercode')
y

elf):

rn self. id

er

elf, value):

ype(value) == str:

50639

self.cur.execute("SELECT username FROM auth_credentials WHERE user_id =
", (value,))

if not self.cur.fetchone():
value = None

value = None

self._id = value
@property
def username(self):

402

Jack Leverett 7714 50639

return self._username
@username.setter
def username(self, value):
self.cur.execute("SELECT user_id FROM auth_credentials WHERE username = ?",
(value,))
if not self.cur.fetchone():
value = None

self. username = value

if value:
u_id = user_id(username=value).get()['user_id"]
if self.id != u_id:
self.id = u_id

@property
def occupation_id(self):
return self. occupation_id
@occupation_id.setter
def occupation_id(self, value):
self.cur.execute("SELECT name FROM occupations WHERE occupation_id = ?",
(value,))
if not self.cur.fetchone():
value = None
self. occupation_id = value

@property
def team id(self):
return self. team_id
@team_id.setter
def team id(self, value):
self.cur.execute("SELECT name FROM teams WHERE team_id = ?", (value,))
if not self.cur.fetchone():
value = None
self. team_id = value

@property
def columns(self):
return self._columns
@columns.setter
def columns(self, value):
valid = []

if type(value) == list:
for column in value:
if column in self.allowed_columns:
valid.append(column)

403

Jack Leverett 7714 50639

self. columns = valid

@property
def date(self):
self. date = timestamp().date
return self. date
@date.setter
def date(self, value):
self. date = value

class user_id():
def _init (self, username=None, *args, **kwargs):
self.username = username
self.db = db_connect()
self.db.create(self)

def get(self):
info = {'user_id':None}

self.cur.execute(f"SELECT user_id FROM auth_credentials WHERE username =
?", (self.username,))
rez = self.cur.fetchone()

if rez:
info

"user_id":rez[0]}

else:
info = None
return info

class auth(table):
def __init_ (self, user_id=None, username=None, *args, **kwargs):
self.allowed columns = ["username", "level"]
super().__init__ (user_id=user_id, username=username)

def get(self):
info = {}

for column in self.columns:
info[column] = None

self.cur.execute(f"SELECT {column} FROM auth_credentials WHERE user_id
= ", (self.id,))

rez = self.cur.fetchone()

if rez:

404

Jack Leverett 7714 50639
info[column] = rez[0]

if not self.id:
status("FAIL", "Invalid username provided", self.statface)
info = None
else:
status("INFO", "Authorisation info successfully fetched", self.stat-
face)

return info

def set(self, data):
for column in self.columns:
value = data[column]
rez = None

if column == ‘'username':

the select statement was here instead of update i have no idea
why

ive replaced it with an update since updating a username is com-
pletetly fine

#tself.cur.execute("SELECT username FROM auth_credentials WHERE
username = ?", (value,))

self.cur.execute("UPDATE auth_credentials SET username = ? WHERE

user_id = ?", (value, self.id))
status("INFO", "Successfully changed username", self.statface)
if column == 'level':
self.cur.execute("UPDATE auth_credentials SET level = ? WHERE
user_id = ?", (value ,self.id))
status("INFO", "Successfully changed level"”, self.statface)
self.db.commit()

V RBP: I think this is depricated and no longer in use
class level(auth):
def __init_ (self, user_id):
super().__init__ (user_id=user_id)
self.columns = ["level"]
~ RBP: I think this is depricated and no longer in use

class team(table):
def __init_ (self, user_id=None, username=None, occupation_id=None,
team_id=None, *args, **kwargs):
self.allowed_columns = ['team_id', 'name', 'occupation_id', 'user_id']
super().__init_ ()
if user_id:
self.id = user_id

405

Jack Leverett 7714 50639

if username:
self.username = username

if occupation_id:
self.occupation_id = occupation_id

if team_id:
self.team_id

team_id

@property
def id(self):
return self. id
@id.setter
def id(self, value):
occupation_value = None
self.cur.execute("SELECT username FROM auth_credentials WHERE user_id = ?",
(value,))
if not self.cur.fetchone():
value = None
else:
self.cur.execute("SELECT occupation_id FROM profile WHERE user_id s

1
v

(value,))
rez = self.cur.fetchone()
if rez:
occupation_value = rez[0]

self.occupation_id = occupation_value
self. id = value

@property
def occupation_id(self):
return self. occupation_id
@occupation_id.setter
def occupation_id(self, value):
team_value = None
self.cur.execute("SELECT name FROM occupations WHERE occupation_id = ?",
(value,))
if not self.cur.fetchone():
value = None
else:
self.cur.execute("SELECT team_id FROM teams WHERE occupation_id = ?",
(value,))
rez = self.cur.fetchone()
if rez:
team_value = rez[0]

self.team_id = team_value
self._occupation_id = value

406

Jack Leverett 7714 50639

def get(self):
info = {column: None for column in self.columns}
for column in self.columns:
self.cur.execute(f"SELECT {column} FROM teams WHERE team_id = ?",
(self.team_id,))
rez = self.cur.fetchone()
if rez:
info[column] = rez[0]

if not all(info.values()) and not(self.team_id):
info = None
status("FAIL", "Team data could not be fetched, invalid data provided",
self.statface)
else:
status("INFO", "Team data successfully fetched", self.statface)

return info

def get all(self):
info = {'teams': None}

for column in self.columns:
self.cur.execute(f"SELECT {column} FROM teams WHERE user_id IS NULL")
rez = self.cur.fetchall()
if rez:
if not info['teams']:
info['teams'] = [{} for i in range(len(rez))]
for i, items in enumerate(rez):
info["teams'][i][column] = items[Q]
status("INFO", "Team(s) successfully fetched", self.statface)
else:
status("FAIL", "Team(s) could not be fetched, something went
wrong", self.statface)

return info

def get_members(self):
info = {'members': None}
self.cur.execute("""SELECT auth_credentials.username FROM auth_credentials
INNER JOIN profile USING(user_id)
CROSS JOIN teams ON profile.occupation_id = teams.occupation_id
WHERE teams.team_id=?""", (self.team_id,))

rez = self.cur.fetchall()

if rez:
info['members'] = [{'username': member[@]} for member in rez]

407

Jack Leverett 7714 50639
status("INFO", "Team members successfully fetched", self.statface)

if not self.team_id:
status("FAIL", "Team members could not be fetched, invalid data pro-
vided")
info = None

return info

def get leaders(self):
info = {'leaders': None}

self.cur.execute("SELECT user_id FROM team_leaders WHERE team id = ?",
(self.team_id,))
rez = self.cur.fetchall()
if rez:
info['leaders'] =
[{"username’: (auth(user_id=user_id).get())['username'] for user_id in leader} for
leader in rez]
status("INFO", "Team leaders successfully fetched", self.statface)
else:
status("FAIL", "Team leaders could not be fetched, invalid data pro-
vided", self.statface)

return info

def set(self, data):
for column in self.columns:
if column == "name" and dict_key_ verify(data, 'name'):
self.cur.execute("UPDATE teams SET name=? where team id=?",
(data['name'] ,self.team id))
self.db.commit()
status("INFO", "Team data successfully changed", self.statface)

if dict_key_verify(data, 'leaders'):
current_leaders = (self.get_leaders())['leaders']
for leader in data['leaders']:

exists = False
if current_leaders:
for current_leader in current_leaders:
if current_leader['username'] == leader['username']:
exists = True

if not exists:

self.cur.execute("SELECT user_id FROM auth_credentials
WHERE username = ?", (leader['username'],))

408

Jack Leverett 7714 50639

info = user_id(username=1leader['username']).get()
if info:
self.cur.execute("INSERT INTO team_leaders (user_id,

team_id) VALUES (?, ?)", (info['user_id'], self.team_id))

self.db.commit()
status("INFO", "New leader successfully added to team",

self.statface)

else:
status("FAIL", "Leader not set, user does not exist",

self.statface)

else:
status("WARN", "This user already exists as a leader of the

team", self.statface)

def delete leaders(self, data):
leaders = data['leaders']
current_leaders = self.get leaders()['leaders']
if type(leaders) == str:

for

team_id=?",

this team",

leaders = [leaders]
leader in leaders:

exists = False
if current_leaders:
for current_leader in current_leaders:
if current_leader['username'] == leader['username’]:
exists = True

if exists:
self.cur.execute("DELETE FROM team_leaders WHERE user_id=? AND
(user_id(username=1leader[' 'username’]).get()['user_id'],self.team_id,))
self.db.commit()
status("INFO", "User {leader['username']} removed as a leader from
self.statface)
else:
status("WARN", "User {leader['username']} does not exist as a

leader of this team", self.statface)

class friend(table):
@property
def friend_username(self):
return self._ friend_username

@friend_

username.setter

def friend_username(self, value):

obj

= friend(username=value)

if not obj.username:

value = None

else:

409

Jack Leverett 7714 50639

self.friend_id = user_id(username=value).get()['user_id']
self. friend_username = value

@property
def friend id(self):
return self. friend_id
@friend_id.setter
def friend id(self, value):
obj = friend(user_id=value)
if not obj.id:
value = None
self. friend id = value

@property
def mode(self):
return self. mode
@mode.setter
def mode(self, value):
if value not in ['incoming', 'outgoing']:
value = "incoming"
self. mode = value

def __init_ (self, user_id=None, username=None, *args, **kwargs):
self.allowed columns = ['username', 'friend username’]
self.mode = "outgoing"
super()._ init_ (user_id=user_id, username=username)

def get(self):
info = {'friends':None}

self.cur.execute("SELECT friend id FROM friends WHERE user_id = ? AND ap-
proved = ?", (self.id, True))
rez = self.cur.fetchall()

info['friends'] = [auth(user_id=user[0]).get() for user in rez]

if not self.id:
info = None
status("FAIL", "Friends not fetched, invalid data provided", self.stat-
face)
else:
status("INFO", "Friends successfully fetched", self.statface)

return info

def get_requests(self):
info = {'requests': None}

410

Jack Leverett 7714 50639

if self.mode == 'incoming':
self.cur.execute("SELECT user_id FROM friends WHERE friend_id = ? AND
approved = ?", (self.id, False))
else:
self.cur.execute("SELECT friend_id FROM friends WHERE user_id = ? AND

approved = ?", (self.id, False))
rez = self.cur.fetchall()

if rez:
users = [auth(user_id=user[0]).get()['username'] for user in rez]
info['requests'] = users
status("INFO", f"Successfully fetched {self.mode} friend request(s)",
self.statface)
elif not self.id:
status("FAIL", f"Could not fetch {self.mode} friend request(s), invalid
data provided", self.statface)
info = None

return info

def get_recomendations(self, data):

info = {'recomended': None}

if dict_key verify(data, 'amount') and isinstance(data['amount'], int):
amount = data["'amount']

else:
status("FAIL", "Could not fetch friend recomendation(s), invalid amount

provided or data is in wrong format", self.statface)

return None

depth = 3
username = auth(user_id=self.id).get()['username’]
recomendations = recomend friend(username, amount, depth)
if recomendations:
info['recomended'] = recomendations
status("INFO", "Successfully fetched friend recomendations", self.stat-
face)
else:
status("FAIL", "Could not fetch friend recomendation(s), something went
wrong generating recomendation(s)", self.statface)

return info

def add_request(self, data):
approved = False

if dict_key verify(data, 'friend username'):

411

Jack Leverett 7714 50639

self.friend_username = data['friend_username']
friend_id = user_id(data['friend_username']).get()['user_id']

if friend_id:
checks if the other person has added them as a friend
if so it accepts the other persons request and creates their own ap-
proved request
self.cur.execute("SELECT user_id FROM friends WHERE friend id = ? AND
user_id = ?", (self.id, friend_id))
rez = self.cur.fetchone()
if rez:
self.cur.execute("UPDATE friends SET approved = True WHERE
friend_id = ? AND user_id = ?", (self.id, friend_id))
approved = True

checks to see if this friend request already exists (wether accepted
or rejected)
if not then it makes a new unaproved friend request
self.cur.execute("SELECT approved FROM friends WHERE user_id = ? AND
friend id = ?", (self.id, friend_id))
rez = self.cur.fetchone()
if not rez:
self.cur.execute("INSERT INTO friends (user_id, friend_id, ap-
proved) VALUES (?, ?, ?)", (self.id, friend_id, approved))
status("INFO", "Friend request successfully created", self.stat-
face)
elif rez[@] == False:
status("WARN", "User already has an active friend request to this
user", self.statface)
elif rez[@] == True:
status("WARN", "User is already friends with other user",
self.statface)
else:
status("FAIL", "Could not create friend request, invalid data pro-
vided")

self.db.commit()

def approve_request(self, data):
if dict_key_verify(data, 'friend_username'):
self.friend_username = data['friend_username']
self.cur.execute("SELECT approved FROM friends WHERE friend_id = ? AND
user_id = ?", (self.id, self.friend_id))
rez = self.cur.fetchone()
if rez:
self.add_request(data)
else:

412

Jack Leverett 7714 50639

status("FAIL", "Friend request does not exist", self.statface)

def reject request(self, data):
self.remove(data)

def delete request(self, data):
self.remove(data)

def remove(self, data):
if dict_key verify(data, 'friend username'):
self.friend username = data['friend_username']

if self.friend_id:
self.cur.execute("DELETE FROM friends WHERE user_id = ? AND friend_id

*", (self.id, self.friend_id))

self.cur.execute("DELETE FROM friends WHERE friend id = ? AND user_id =
?", (self.id, self.friend_id))

status("INFO", "Friend/friend request successfully removed/rejected",
self.statface)

else:
status("FAIL", "Friend/friend request could not be removed/rejected,

invalid data provided", self.statface)

self.db.commit()

class profile(table):

413

@property
def target_username(self):
return self._target_username
@target_username.setter
def target_username(self, value):
prof = profile(username=value)
if not prof.username:
value = None
self._target_username = value

def __init_ (self, user_id=None, username=None, *args, **kwargs):
self.allowed_columns = ["biography", "role", "name", "occupation_id"]
super().__init__ (user_id=user_id, username=username)

def get(self):
info = {}

for column in self.columns:
info[column] = None

Jack Leverett 7714 50639

self.cur.execute(f"SELECT {column} FROM profile WHERE user_id = ?",
(self.id,))
rez = self.cur.fetchone()
if rez:
info[column] = rez[0]

if not self.id:
status("FAIL", "Invalid username provided profile unable to be
fetched")
info = None
else:
status("INFO", "Profile infomation successfully fetched")

return info

def get permissions(self):
info = {"delete": False, "edit": False}

subject = auth(user_id=self.id, items=['level', 'username']).get()
if subject['level'] == "management" or subject['level'] == "admin":
info['delete’'] = True
info['edit'] = True

if self.target_username:
if subject['username'] == self.target_username:
info['delete'] = True
info['edit'] = True

target_team_info = team(username=self.target_username).get_leaders()
if dict_key_verify(target_team_info, 'leaders'):
target_leaders = target_team_info['leaders']
if subject['username'] in target_leaders:
info['delete’'] = True

if not self.id or not self.target_username:
status("FAIL", "Invalid username or data provided", self.statface)
info = None

else:
status("INFO", "Permissions successfully fetched", self.statface)

return info
def set(self, data):

for column in self.columns:
item = data[column]

414

Jack Leverett 7714 50639

self.cur.execute(f"UPDATE profile SET {column} = ? WHERE user_id = ?",
(item, self.id))
status("INFO", "Successfully changed/deleted {column}", self.statface)

self.db.commit()

def delete(self):
data = {}

for column in self.columns:
data[column] = None
self.set(data)

class occupation(table):
def init (self, user_id=None, username=None, occupation_id=None, *args,
**kwargs):
self.allowed columns = ["occupation_id", "name", "description"]
super().__init_ (user_id=user_id, username=username, occupation_id=occupa-
tion_id)

def get(self):
info = {column: None for column in self.columns}

if not self.occupation_id:
self.cur.execute("SELECT occupations.occupation_id, occupations.name,
description FROM profile INNER JOIN occupations USING(occupation_id) WHERE user_id
= ?", (self.id,))
else:
self.cur.execute("SELECT occupation_id, name, description FROM occupa-
tions WHERE occupation_id = ?", (self.occupation_id,))
rez = self.cur.fetchone()

if rez:
occupation = {'occupation_id':rez[0@], 'name':rez[1l], 'descrip-
tion':rez[2]}

for column in self.columns:
info[column] = occupation[column]

if not rez and not self.id:
status("FAIL", "Occupation could not be fetched: invalid data pro-
vided", self.statface)
info = None
else:
status("INFO", "Occupation successfully fetched", self.statface)

return info

415

Jack Leverett 7714 50639

def get request(self):
info = {'occupation_id': None, 'approved': None}

self.cur.execute("SELECT occupation_id, approved FROM occupation_requests
WHERE user_id = ?", (self.id,))
rez = self.cur.fetchone()
if rez:
info['occupation_id'] = rez[0]
info["approved'] = rez[1]
status("INFO", "Occupation requests fetched successfully")
else:
status("FAIL", "Occupation requests could not be fetched invalid data
provided", self.statface)
info = None

return info

def get all requests(self):
info = {'requests’': None}

self.cur.execute("SELECT user_id, occupation_id FROM occupation_requests
WHERE approved = ?", (False,))
rez = self.cur.fetchall()

if rez:
info['requests'] = [{'username': auth(user_id=re-
quest[@]).get()['username'], 'occupation_id': request[1]} for request in rez]
status("INFO", "Occupation requests successfully fetched", self.stat-
face)
else:
status("FAIL", "Occupation requests could not be fetched something went
wrong", self.statface)
return info

def set(self, data):
occupation_id = data["occupation_id"]

self.cur.execute("SELECT name FROM occupations WHERE occupation_id = ?",
(occupation_id,))
if self.cur.fetchone():
self.cur.execute("UPDATE profile SET occupation_id = ? WHERE user_id =
?", (occupation_id, self.id))
status("INFO", "Occupation successfully updated", self.statface)
else:
status("FAIL", "Occupation could not be updated invalid data provided",
self.statface)

416

Jack Leverett 7714 50639

self.db.commit()

def set_request(self, data):
occupation_id = data['occupation_id"]

self.cur.execute("SELECT approved FROM occupation_requests WHERE user_id =
", (self.id,))
if self.cur.fetchone():
self.delete request()
status("INFO", "Removing previous occupation change request”,
self.statface)

self.cur.execute("SELECT name FROM occupations WHERE occupation_id = ?",
(occupation_id,))
if self.cur.fetchone():
self.cur.execute("INSERT INTO occupation_requests (user_id, occupa-
tion_id, approved) VALUES (?, ?, ?)", (self.id, occupation_id, False))
else:
status("FAIL", "Occupation change request could not be made invalid oc-
cupation_id provided", self.statface)

self.db.commit()

def approve request(self):
self.cur.execute("SELECT occupation_id FROM occupation_requests WHERE ap-
proved = ? AND user_id = ?", (False, self.id,))
if self.cur.fetchone():
self.cur.execute("UPDATE occupation_requests SET approved = ? WHERE
user_id = ?", (True, self.id))
self.cur.execute("SELECT occupation_id FROM occupation_requests WHERE
user_id = ?", (self.id,))
rez = self.cur.fetchone()
if rez:
self.set({ 'occupation_id': rez[0]})
status("INFO", "Occupation change request successfully approved",
self.statface)
else:
status("CRIT", "Occupation change request approved but not changed
in the user entry, contact admin", self.statface)
else:
status("FAIL", "Occupation change request from that user does not exist
or has already been approved", self.statface)

self.db.commit()

def reject_request(self):

417

Jack Leverett 7714 50639
self.delete_request()

def delete(self):
self.cur.execute("UPDATE profile SET occupation_id = ? WHERE user_id = ?",
(None, self.id))
self.db.commit()
status("INFO", "Occupation no longer associated with user", self.statface)

def delete request(self):
self.cur.execute("DELETE FROM occupation_requests WHERE user_id = ?",
(self.id,))
self.db.commit()
status("INFO", "Occupation change request successfully deleted", self.stat-
face)

def get all(self):
info = {'occupations' :None}

self.cur.execute("SELECT occupation_id, name, description FROM occupa-
tions")
rez = self.cur.fetchall()

if rez:
occupations = [{'occupation_id':occupation[@], 'name':occupation[1],
"description’: occupation[2]} for occupation in rez]
info['occupations'] = occupations
status("INFO", "Occupation(s) successfully fetched", self.statface)
else:
status("FAIL", "Occupation(s) could not be fetched", self.statface)

return info

def create(self, data={'name': None, 'description': None}):
occupation_uuid = uuid_generate()
team_uuid = uuid_generate()
name = data['name’]
description = data['description']

self.cur.execute("INSERT INTO occupations(occupation_id, name, description)
VALUES (?, ?, ?)", (occupation_uuid, name, description))

self.cur.execute("INSERT INTO teams (team_id, name, occupation_id) VALUES
(?, ?, ?)", (team_uuid, name, occupation_uuid))

self.db.commit()

def edit(self, data):
if 'occupation_id' in data and not self.occupation_id:

self.occupation_id = data['occupation_id']

418

Jack Leverett 7714 50639

for column in self.columns:
if column == "occupation_id":
continue
value = data[column]
self.cur.execute(f"UPDATE occupations SET {column} = ? WHERE occupa-
tion_id = ?", (value, self.occupation_id))
self.db.commit()

def delete occupation(self, data=None):
if dict_key verify(data, "occupation_id") and not self.occupation_id:
self.occupation_id = data['occupation_id']
self.cur.execute("DELETE FROM occupations WHERE occupation_id = ?",
(self.occupation_id,))
self.db.commit()

def main():
log("WARN", "modules/user/info.py has been called as main. This file is not in-
tended to run solo. Please use main.py or modules/handler/handler.py")

if _name__ == "__main__":
main()

dockerfile

FROM python:3.11-alpine

WORKDIR /

ADD main.py .

ADD modules ./modules

RUN pip install python-socketio eventlet pathlib configparser datetime pillow py-
thon-dotenv

CMD python -u ./main.py

Docs/’Guide to encrypting the database.md’

Overview

This document is designed to guide an administrator through setting up encryption
on their BeOpen database. This can be a good idea for increased security and ease
of response to a breach. If you have database encryption in event of a breach all
you have to do is shutdown the server application, this encrypts the database imme-
diately.

Remember you can (while logged in on an admin account) shutdown the server from
your settings panel.

Options

Before enabling encryption and getting it setup you have to consider some options
available to you. Standard encryption simply utilises a single master password

419

Jack Leverett 7714 50639

which you can use to decrypt the database from any active client device while the
server is in "decrypt" mode.

You also have the option of enabling Shamir secret sharing. This allows you to cre-
ate a number of "shares", you can then hand out shares to trusted colleagues or
friends, in the event you as the administrator ever loses the master password you
can ask for a set number of these shares to be given back to you, inputting these
shares into the "decrypt" screen of the client will decrypt the database and recon-
struct your master password.

You can decide how many shares are required to reconstruct your master password and
how many shares you want to create. Its completely up to you. The only limitations
is that the number of shares created must be less than 20 and the number of shares
needed for reconstruction must be less than 7. These parameters can be changed in
the configuration file, under the database section.

Guide

1) Decide upon a master password, note your master password must be an integer. We
recommend that this integer is made to be significantly large, short common inte-
gers may be easily guessed or easy to crack.

2) Create a text file at the path "data/encryptconfig.txt" (This path is configura-
ble in the database section of your configuration file) and type your master pass-
word into this file.

3) Enable encryption in the configuration file by setting "EncryptDatabase” to
"true".

4) If you want Shamir secret sharing enable this in the same section of your con-
figuration file by setting "ShamirSecretSharing" to "true". Additionally change the
values of "MinimumShares" and "NumberOfShares" to your preferred values.

5) Launch the server, if all goes according to plan the server will launch normally
and you will be able to start any client and enter the decryption credentials.

Distribution of shares

If you used Shamir secret sharing your shares will now be sat as a collection of
text files in (by default) data/shares. These text files will NOT be automatically
deleted and so deleting these text files is left up to you as the administrator.

When you give someone a share make sure they remember their share number and share
secret. If you know your share secret but cannot remember your share number it is
not possible to use the share. The minimum shares required for reconstruction of
the master password is considered public so this fact is also included on all
shares. However this number is also stored in the configuration file of the server.

Fail
Encryption

If the encryption fails in anyway the server will log the problem and shutdown.
Have a good read of the server logs, the most common issue may be that the shares

420

Jack Leverett 7714 50639

generated could not reconstruct the original key. If this is the case simply try
again or use a shorter master password.

Server shutdown (ungraceful)

If the server suddenly lost power or was unable to perform a graceful shutdown for
any reason the unencrypted database will be left on the system. This happens to
avoid the risk of data loss. In this event:

1) Backup the encrypted database and the unencrypted database

2) Set encryption to false in the configuration file

3) Decrypt the database from any client

4) Shutdown the server again (gracefully)

5) Delete the database in the server directory and replace it with the previous
version you backed up

6) You can then re-enable encryption and go through the process of setting that up
again. If you use the same master password you do NOT have to re distribute the
Shamir secret shares. However a set of new shares may be generated simply delete
these files.

Dos and don'ts

If you use Shamir secret sharing do NOT change the "MinimumShares" configuration
even after the encryption has successfully happened and the shares have been gener-
ated. If for some reason this option does change contact share holders to see if
they or anyone else knows the correct value, without this value the master password
cannot be re-constructed.

Do not manually change or alter any files unless instructed to do so by this guide.
Changing configuration options while the server is running can lead to loss of
data.

Do not share your master password with anyone else, if you wish to have a "backup"
please use the Shamir secret sharing feature built into the server.

Client

main.py

import kivy

from kivymd.app import MDApp
from kivy.lang import Builder
from kivy.clock import Clock

from kivymd.uix.label import MDLabel

from kivymd.uix.button import MDIconButton, MDRaisedButton
from kivymd.uix.behaviors.magic_behavior import MagicBehavior

421

Jack Leverett 7714 50639

from kivymd.uix.textfield import MDTextField

from kivymd.uix.list import OnelLineAvatarIconListItem, TwolLineAvatarIconListItem,
ThreeLineAvatarIconListItem, IconRightWidget, MDList

from kivymd.uix.fitimage import FitImage

from kivymd.uix.snackbar import Snackbar

from kivymd.uix.menu import MDDropdownMenu

from kivymd.uix.bottomnavigation import MDBottomNavigationItem

from kivymd.uix.list import IRightBodyTouch

from kivy.uix.camera import Camera

from kivymd.uix.screen import MDScreen

from kivymd.uix.screenmanager import MDScreenManager
from kivy.core.window import Window

from kivymd.uix.controllers import WindowController
from kivymd.uix.dialog import MDDialog

from kivymd.uix.button import MDFlatButton

from kivymd.uix.boxlayout import MDBoxLayout
from kivymd.uix.relativelayout import MDRelativelayout

import socketio
import os

remove before production
import time
remove before production

kivy.require('2.1.0")
__version__ = "0.0.2"

IMPORTS
import uuid as uniqueid
from modules.session.session import session_info, wait, db
from modules.session.time import timestamp
from modules.session.session import setting as setting_info
from modules.handler.request import request, account_page
from modules.handler.info import image as image_info
def generate_uuid():

uuid = str(uniqueid.uuid4())

return uuid

def dict_key_verify(dictionary, keys, mode="and", *args, **kwargs):
if mode != "and" and mode != "or":
mode = "and"
if type(keys) != list:
keys = [keys]

422

Jack Leverett 7714 50639

verified = []
if type(keys) != 1list:
keys = [keys]

for key in keys:
if type(dictionary) != dict or key not in dictionary or not diction-
ary[key]:
verified.append(False)
else:
verified.append(True)

if mode == "and":
if all(verified) == True:
return True
if mode == "or":
if True in verified:
return True
return False

def go to(string, previous line, file):
line = previous_line
while line != string:
line = file.readline().strip()
return line

def read_to(string, file):
line = file.readline().strip()
lines = []
while line != string:
lines.append(line)
line = file.readline().strip()
return lines

def get_dialog_content(dialog_title):
with open("./data/assets/help.txt", "r") as f:

line = f.readline().strip()
line = go_to(f"[{dialog_title}:START]", line, f)
line = go_to(f"(title:START)", line, f)
title = read_to(f"(title:END)", f)
line = go_to(f"(body:START)", line, f)
body lines = read_to(f"(body:END)", f)

body = ""
for line in body_lines:
body += line + "\n"
body = body[:-2]
return {'title': title[©], 'body': body}

423

Jack Leverett 7714 50639

def open_help(app, page, dialog title):

content = get_dialog content(dialog_title)

page.dialog help = HelpDialog(page, app, title=content['title'], text=con-
tent['body'])

page.dialog _help.open()
IMPORTS

#:::::::::::::::::: Socketio START oo oSoSoS=====
sio = socketio.Client()
session = session_info()

http://localhost:9999
def start client(sio, url):
print("DEBUG: starting socketio client...")
try:
if not url:
url = "http://localhost:9999"
print(f"DEBUG: Connecting with url {url}")
sio.connect(url)
print("DEBUG: socketio client online!")
return True
except:
print("DEGUB: socketio client failed to connect!")
return False

def stop client(sio):
print("DEBUG: stopping socketio client...")
sio.disconnect()

connect/disconnect START
@sio.event
def connect():

print("DEBUG: Connected!")

@sio.event
def connect_error(data):
print("DEBUG: connection error")

@sio.event

def disconnect():
print("Disconnected")

connect/disconnect END

@sio.event

def recv_status(data):
session.status = data

424

Jack Leverett 7714

string = f"{data['time']} | {data['level']} | {data['message']}"
print(string)
#:import Snackbar kivymd.uix.snackbar.Snackbar

auth START

@sio.event

def recv_token(data):
wait(session).wait_username()
session.auth_tokens.append(data['token'])

50639

db().execute("INSERT INTO tokens(token, username, expire) VALUES(?, ?, ?)",

(data['token'], session.username, data['expire']))

def login_cred(username="user", password="pass"):
data = {'username': username, 'password': password}
sio.emit('login', data, callback=auth)

def auth(callback, data):
pass
auth END

other events START

@sio.event

def notification(data):
pass

other events END

Utility START
class ExpandText(MDLabel):
pass

class ExpandPage(MDScreen):
def __init_ (self, expand_text, banner, previous_page, **kwargs):
super (ExpandPage, self).__init__ (**kwargs)
self.expand_text = expand_text
self.previous_page = previous_page
self.load_content()
self.toolbar.title = banner

@property

def expand_text(self):
return self._expand_text

@expand_text.setter

425

Jack Leverett 7714 50639

def expand_text(self, value):
if type(value) != str or type(value) != list:
if type(value) == str:
value = [value]
else:
value=None
self. expand_text = value

def load content(self):
self.text_area.clear_widgets()
for text in self.expand_text:
item = ExpandText(text=text)
self.text_area.add widget(item)

def back(self, app):
app.set _screen(self.previous page.name, "right")
app.sm.remove_widget(self)

class HelpDialog(MDDialog):
def __init__ (self, page, app, **kwargs):

kwargs["buttons"] = [MDFlatButton(text="Close", on_release=self.close,
theme_text _color = "Custom", text_color=app.theme cls.primary color), MDFlatBut-
ton(text="Turn off help?", on_release=self.settings, theme_text_color = "Custom",
text_color=app.theme_cls.primary color)]

super().__init__ (**kwargs)

self.page = page

self.app = app

def close(self, button):
self.page.dialog_help.dismiss()

def settings(self, button):
self.close(button)

if self.page.name == "SettingsPageScreen":
return
settings_screen_name = "SettingsPageScreen"

settings_screen = SettingsPage(self.page, name=settings_screen_name)
self.app.sm.add_widget(settings_screen)

self.app.set_screen(settings_screen_name, "left")
Utility END

HomePage START
class HomeSwiper(MDBoxLayout):
@property
def username(self):
return self._username

426

Jack Leverett

7714

@username.setter

def

username(self, value):
self.ids.username.text = value
self. username = value

@property

def

caption(self):
return self._caption

@caption.setter

def

caption(self, value):
if value == None:

value = ""
self.ids.caption.text = value
self. caption = value

@property

def

content(self):
return self. content

@content.setter

50639

'post_id': self.post_id,

def content(self, value):
self.load _image(value)
self.ids.content.source = self.image.path
self._content = self.image.path

def __init_ (self, page, post_id, **kwargs):
super().__init__ (**kwargs)
self.post _id = post _id
self.page = page
self.action_menu = None
self.load content()

def load_image(self, value):
self.image = image_info(self.post_id)
self.image.load(value)
self.ids.content.source = self.image.path

def load_content(self):
post_data = {'post_id': self.post_id}
post_content = request(sio, session).emit('post_get', post_data)['posts']
self.username = post_content['username’]
self.caption = post_content['caption']
self.content = post_content['content']
user_impression_data = {'items': ['username'],

"impression_type': "like"}

427

Jack Leverett 7714 50639

post_likes = request(sio, session).emit('post_impression_get post"',
user_impression_data)['impressions']

impression_data = {'post _id': self.post_id, 'impression_type': "like"}
num_post_likes = request(sio, session).emit('post_impression_count', im-
pression_data)["impression_count']

self.ids.like number.text = str(num_post likes)
if post_likes:
for like in post_likes:
if self.page.username in like['username’]:
self.ids.like.icon = "heart"

def like(self):
server = request(sio, session)

if self.ids.like.icon == "heart-outline":
self.ids.like.icon = "heart"

data = {'impression_type': "like", 'post id': self.post id}

server.emit('post _impression_set', data, None)

self.ids.like number.text = str(int(self.ids.like_number.text) + 1)
else:

self.ids.like.icon = "heart-outline"

data = {'impression_type': "like", 'post id': self.post id, 'items':
["username', "impression_id']}
impression_info = server.emit('post_impression_get_post', data)

if dict_key_verify(impression_info, 'impressions'):
for impression in impression_info['impressions']:
if impression['username'] == self.page.username:
impression_id = impression['impression_id’']

data = {'impression_type': "like", 'impression_id': impression_id}
server.emit('post_impression_delete', data, None)
self.ids.like_number.text = str(int(self.ids.like_number.text) - 1)

def switch_to_comments(self, app, direction="up'):
comments_screen_name = "CommentsPageScreen_"+self.post_id
comments_screen = CommentsPage(self.post_id, name=comments_screen_name)
app.sm.add_widget(comments_screen)
app.set_screen(comments_screen_name, direction)

def post_options(self, app, direction='right'):
data = {'post_id': self.post_id}

428

Jack Leverett 7714 50639

delete_allowed = request(sio, session).emit("post_get permissions",
data)['delete']

if delete_allowed:

profile_item = {'text': "view profile", 'viewclass': "OnelLinelListItem",
‘on_release': lambda x=app: self.switch to_account(app)}
delete item = {'text': "delete post", 'viewclass': "OnelLinelListItem",

‘on_release': lambda: self.delete post()}
items = [profile_item, delete_item]
self.action_menu = MDDropdownMenu(caller=self.account_button,
items=items, width_mult=3)
self.action_menu.open()
else:
self.switch_to_account(app, direction)

def delete post(self):

if self.action_menu:
self.action_menu.dismiss()

data = {'post_id': self.post id}

request(sio, session).emit("post delete", data, None)

self.page.home_swiper grid.remove widget(self)

if len(self.page.home_swiper_grid.children) == 1:
self.page.load_home()

def switch_to account(self, app, direction="right'):
if self.action_menu:
self.action_menu.dismiss()
self.page.switch_to_account(app, self.username, direction)

class HomelLoadButton(MDBoxLayout):
def __init_ (self, **kwargs):
if "home_obj' in kwargs and kwargs["home_obj']:
if kwargs['home_obj']:
self.home_obj = kwargs["home_obj"]
del kwargs["home_obj']
super().__init__ (**kwargs)

def load_content(self):
self.home_obj.home_swiper_grid.remove_widget(self)
self.home_obj.load_home()

class NoPostLabel(MDBoxLayout):
pass

class MemoriesMonth(MDBoxLayout):

def get_memories_swiper_height(self):
swiper_height = Window.height * 0.8 * 0.02

429

Jack Leverett 7714 50639
return swiper_height

class SwiperMagicButton(MagicBehavior,MDIconButton):
pass

class MemoriesSwiper (MDBoxLayout):
pass

class OccupationPageButton(MDRaisedButton):
def _init (self, tab, page, **kwargs):
super().__init__ (**kwargs)
self.tab = tab
self.page = page

def switch_to occupation(self, app):
self.tab.switch_to_occupation(app)

class OrganisationBottomItem(MDBottomNavigationItem):
def init (self, page, username, **kwargs):
super().__init__ (**kwargs)
self.page = page
self.load content()
self.username = username

def load content(self):
occupation_button = OccupationPageButton(self, self.page)
level = request(sio, session).emit('auth_get')['level']
if level != "member":
self.occupation_button_area.add_widget(occupation_button)

def switch_to occupation(self, app, direction="left"):
occupation_screen_name = "OccupationPageScreen"
occupation_screen = OccupationPage(self.page, name=occupation_screen_name)

app.sm.add_widget(occupation_screen)
app.set_screen(occupation_screen_name, direction)

def switch_to_team(self, app, direction="left"):
team_screen_name = "TeamPageScreen"
team_screen = TeamPage(self.page, self.username, name=team_screen_name)

app.sm.add_widget(team_screen)
app.set_screen(team_screen_name, direction)

class MonthListItem(OneLineAvatarIconListItem):
def __init_ (self, date, posts, month_list, **kwargs):

super().__init_ (**kwargs)

430

Jack Leverett 7714 50639

self.month_list = month_list
self.posts = posts
self.date = date

def day view(self):
day list = DayList(self.date, self.posts, self.month list)
self.month_list.page.root scroll.remove widget(self.month_list)
self.month_list.page.root scroll.add widget(day_ list)

class MonthList(MDBoxLayout):
def init (self, page, **kwargs):
super().__init__ (**kwargs)
self.page = page
self.back _stack = [self]
self.load content()

def load _content(self):
month_1list = ["January", "February", "March", "April", "May", "June",
"July", "August", "September", "October", "November", "December"]
data = {'items': ['post_id', 'date']}
post_response = request(sio, session).emit("post get memories”, data)

if dict_key verify(post response, 'posts'):
posts = post_response['posts’]
post _months = {}

for post in posts:
if dict_key_verify(post, ‘'date'):

date = post['date’]

date list = date.split("-")

if dict_key_verify(post_months, date):
post_months[date].append(post)

else:
post_months[date] = [post]

for post_group in post_months:
date = post_group.split("-")
month_name = month_list[int(date[1])-1]
date_string = date[0] + ": " + month_name

item = MonthListItem(date, post_months[post_group], self,
text=date_string)
self.scroll.add_widget(item)

else:

item = OneLineAvatarIconListItem(text="No memories : (")
self.scroll.add_widget(item)

431

Jack Leverett 7714 50639

class DayListItem(OnelLineAvatarIconListItem):
def __init__ (self, date, post, day_list, **kwargs):
super().__init__ (**kwargs)
self.day_list = day list
self.post = post
self.date = date

def post_open(self):
memory = MemorylLayout(self.post, self.day list)
area = self.day list.month_list.page.root_scroll
area.clear_widgets()
area.add_widget(memory)

class DaylList(MDBoxLayout):
def _init (self, date, posts, month_list, **kwargs):
super().__init__ (**kwargs)
self.month_list = month_list
self.posts = posts
self.date = date
self.back stack = self.month_list.back stack

self.back_stack.append(self)
self.load content()

def load _content(self):
for post in self.posts:
date_string = self.date[2]
item = DayListItem(self.date, post, self, text=date_string)
self.scroll.add_widget(item)

def back(self):
last = len(self.back stack)-1
self.month_list.page.root_scroll.clear_widgets()
self.month_list.page.root_scroll.add _widget(self.back_stack[last-1])
self.back_stack.pop(last)

class MemoryLayout(MDBoxLayout):
def __init_ (self, post, day_list, **kwargs):
super().__init__ (**kwargs)
self.post = post
self.day_list = day_list
self.page = self.day_list.month_list.page
self.back_stack = self.day_list.back_stack

self.back_stack.append(self)
self.load_content()

432

Jack Leverett 7714 50639

def remove_username(self, post):
post.ids.username.text = self.post['date’]
post.ids.profile_area.remove_widget(post.ids.account_button)

def load content(self):
post = HomeSwiper(self.page, self.post['post id'])
self.remove_username(post)
self.post_area.add widget(post)

class HomePage(MDScreen, WindowController):
def _init (self, username=None, app=None, **kwargs):
super().__init__ (**kwargs)
post_login()

self.username = username
self.app = app

self.account_screens = []
self.notifications_screens = []
self.settings screen = None
self.settings_screen_name = None

self.posts displayed = []
self.post _exist = False
self.camera_widget_exists = False
self.camera_page_screen = None

self.organisation_item_exists = False

self.post_slot = request(sio, session).emit("post_slot_get")
self.posted_today()
self.load content()

self.selected_tab = "Home"
self.help_tool = ["help", lambda x: self.open_help(self.app)]

def login(self):
login_cred()

def load_content(self):
self.load_home()
self.load_memories()
self.load_organisation()
Clock.schedule_interval(self.check_post_time, 1)
self.load_toolbar()

433

Jack Leverett 7714 50639

def load_toolbar(self):
if not setting_info("Help boxes").value:
for i, option in enumerate(self.toolbar.right action_items):
if option[@].lower() == "help":
self.toolbar.right_action_items.pop(i)
else:
toolbar_len = len(self.toolbar.right_action_items)
for i in range(toolbar_len):
if self.toolbar.right_action_items[i][@] == "help":
return
new_toolbar = [self.help tool] + self.toolbar.right action_items[0:]
self.toolbar.right action_items = new_toolbar

def on_tab_press(self, name):
self.selected tab = name

def open_help(self, app):
level = request(sio, session).emit('auth_get')['level']

if self.selected tab == "Home":
open_help(app, self, "Home")

elif self.selected tab == "Memories":
open_help(app, self, "Memories")

elif self.selected tab == "Organisation" and level == "member":
open_help(app, self, "Organisation")

elif self.selected tab == "Organisation" and level != "member":

open_help(app, self, "Organisation-admin™)

SWITCHING

def switch_to_settings(self, app, direction="left'):
settings_screen_name = "SettingsPageScreen"
settings_screen = SettingsPage(self, name=settings_screen_name)
app.sm.add_widget(settings_screen)

app.set_screen(settings_screen_name, direction)

def switch_to_account(self, app, username=None, direction='right', *args,
**kwargs):
if not username:
username = self.username
account_screen_name = "AccountPageScreen_"+username

account_screen = AccountPage(username, self, name=account_screen_name)

app.sm.add_widget(account_screen)
app.set_screen(account_screen_name, direction)

434

Jack Leverett 7714 50639

def switch_to_notifications(self, app, username=None, direction='right', *args,
**kwargs) :
if not username:
username = self.username
notifications_screen_name = "NotificationsScreen-"+username

notifications_screen = NotificationsPage(username, self, name=notifica-
tions_screen_name)

app.sm.add widget(notifications_screen)
app.set_screen(notifications_screen_name, direction)

FETCHING DATA

def fetch_posts(self):
data = {'items': ['post _id']}
posts = request(sio, session).emit('post get feed', data)['posts']
post list = []

if self.post made:
post = request(sio, session).emit("post get user")
if dict_key verify(post, "posts"):
post = post['posts']
if dict_key verify(post, "post id"):
if post['post id'] not in self.posts_displayed:
post list.append(post)

if posts:
for i, post in enumerate(posts):
if post:
post list.append(post)

return post _list

HOME

def load _home(self):
posts = self.fetch posts()
post_list = []

if posts:
for i, post in enumerate(posts):
if post['post_id'] not in self.posts_displayed:

exists = False
for existing _post in post_list:
if existing_post['post_id'] == post['post_id']:
exists = True

if not exists:
post_list.append(post)

435

Jack Leverett 7714

posts = post_list

for i, post in enumerate(posts):
if not self.post _exist:
self.home_swiper grid.clear_widgets()
self.post_exist = True
home_swiper = HomeSwiper(self, post['post_id'])

if i == 0:
first_home_swiper = home_swiper

adds your own post to the top of the post list

50639

its done in this way below because there is no way to pre-pend

with kivy widgets

the only way is to manually modify the child list which is not

recomended

if home_swiper.username == self.username:
saves the previous post list
old grid = self.home_swiper_ grid.children[1:]
clears the grid
self.home_swiper_grid.clear_widgets()
adds your new post at the top
self.home_swiper_grid.add_widget(home_swiper)

adds the rest of the previous posts
for old_post in old_grid:
self.home_swiper_grid.add_widget(old_post)
first_home_swiper = home_swiper
else:
self.home_swiper_grid.add_widget(home_swiper)

self.posts_displayed.append(post[' 'post_id'])
if 1 == 4:
break

if "first_home_swiper" in locals():
self.home_swiper_scroll.scroll to(first_home_swiper)

if not posts:
Snackbar(text="Sorry, no more posts").open()

else:
if not self.post_exist:
self.home_swiper_grid.clear_widgets()
self.home_swiper_grid.add_widget(NoPostLabel())

436

Jack Leverett 7714 50639

self.load_more_button = HomeLoadButton(home_obj=self)
self.home_swiper_grid.add_widget(self.load_more_button)

def get_home_swiper_height(self):
swiper_height = Window.height * 0.70
return swiper_height

MEMORIES

def get_memories_swiper_height(self):
month_height = self.get _memories_month_height()
swiper_height = month_height * 0.8 * ©.02
return swiper_height

def get memories_month_height(self):
month_height = Window.height * 2
return month_height

def load memories(self):
self.root_scroll.clear widgets()
item = MonthList(self)
self.root_scroll.add_widget(item)

STATS
def load stats(self):
pass

ORGANISATION
def load_organisation(self):
if not self.organisation_item_exists:
self.organisation_item_exists = True
self.bottom_navigation.add_widget(OrganisationBottomItem(self,

self.username))

437

SIZE
def update(self):
self.home_swiper_grid.row_default_height = self.get_home_swiper_height()

def on_size(self, *args):
self.update()

Post time
def posted_today(self):
date = {'items': ['date']}
posts = request(sio, session).emit("post_get memories", date)['posts’']
if posts:
date = request(sio, session).emit("get_date")['date']
for post in posts:

Jack Leverett 7714 50639

if date == post['date’]:
self.post_made = True
return
self.post_made = False

def check post time(self, dt):
now = timestamp().now
if self.post_slot['post slot start’'] < now and
self.post_slot['post slot end'] > now and not self.post made:
if not self.camera_widget exists:
self.toolbar.right action_items.append(["camera", lambda x:
self.switch_to camera(self.app, direction="up')])
self.camera_widget exists = True
else:
for i, action_item in enumerate(self.toolbar.right action_items):
if "camera" in action_item:
self.toolbar.right_action_items.pop(i)
break

def switch_to camera(self, app, direction="up"):
camera_page _screen_name = "CameraPageScreen"
self.camera_page_screen = CameraPage(self, name=camera_page_screen_name)
app.sm.add_widget(self.camera_page_screen)
app.set_screen(camera_page_screen_name, direction)

First time
def check first time(self, app):
occupation = request(sio, session).emit("occupation_get")
profile = request(sio, session).emit("profile_get", {'items': ['role’,
‘name']})
friends = request(sio, session).emit("friend_get")['friends']
if not occupation['occupation_id'] and not friends and not profile['role']
and not profile['name']:
first_time_page_screen_name = "FirstTimePage"
first_time_page_screen =
FirstTimePage(name=first_time_page_screen_name)
app.sm.add_widget(first_time_page_screen)
app.set_screen(first_time_page_screen_name, "down")
HomePage END

Comments START
class CommentContainer(IRightBodyTouch, MDBoxLayout):
pass

class Comment(TwolLineAvatarIconListItem):
def __init_ (self, username, comment_id, page, **kwargs):

438

Jack Leverett

super
self.
self.
self.
self.
self.

self.

def liked
data

impre

data)['impres

7714

().__init__ (**kwargs)
username = username
comment_id = comment_id
page = page

screen_prefix = "comment"
action_menu = None

load_content()

_previously(self):
= {'comment_id': self.comment_id}

50639

ssions = request(sio, session).emit("comment_impression_get_comment",

sions']

if impressions:
for impression in impressions:

retur

def load_

if se
s

data
count

pression_coun
self.

def expan

expand_page_name = f"{self.screen_prefix}_expand_page_{self.username}"
expand_page = ExpandPage(self.secondary_text, self.text+"'s comment"”,

if dict_key verify(impression, "username"):
if session.username == impression['username']:
self.impression_id = impression['impression_id']

return True

= {'impression_type': "like", 'comment_id': self.comment_id}

= request(sio, session).emit("comment_ impression_count", data)['im-

n False

content(self):

1f.liked previously():
elf.like button.icon = "heart"
t']

like _count.text = str(count)

d(self, app):

self.page, name=expand_page_name)
app.sm.add_widget(expand_page)

app.set_screen(expand_page_name, "left")

def like(self):
if self.like_button.icon == "heart-outline":
data = {'impression_type': "like",

if self.liked_previously():

else:
S

439

self.like_button.icon = "heart"
self.like_count.text = str(int(self.like_count.text)+1)

elf.like_button.icon = "heart-outline"

"comment_id': self.comment_id}
request(sio, session).emit('comment_impression_set', data, None)

Jack Leverett 7714 50639

data = {'impression_id': self.impression_id}
request(sio, session).emit("comment_impression_delete", data, None)
self.like_count.text = str(int(self.like_count.text)-1)

def profile(self, app):
if self.action_menu:
self.action_menu.dismiss()
account_page name = f"{self.screen_prefix} account_page {self.username}"
account_page = AccountPage(self.username, self.page, remove on_exit=True,
name=account_page_name)
app.sm.add widget(account_page)
app.set_screen(account_page _name, "right")

def delete_comment(self):
if self.action_menu:
self.action_menu.dismiss()
data = {'comment_id': self.comment_id}
request(sio, session).emit("comment delete", data, None)
self.page.comment_stack.remove_widget(self)
if not self.page.comment_stack.children:
self.page.load content()

def action_options(self, app):
data = {'comment_id': self.comment_id}
delete allowed = request(sio, session).emit("comment get permissions”,
data)['delete’]

if delete_allowed:

profile item = {'text': "view profile", 'viewclass': "OnelLinelListItem",
‘on_release': lambda x=app: self.profile(app)}
delete item = {'text': "delete comment", 'viewclass': "OnelLinelis-

tItem", 'on_release': lambda: self.delete comment()}
items = [profile_item, delete item]
self.action_menu = MDDropdownMenu(caller=self.profile button,
items=items, width_mult=3)
self.action_menu.open()
else:
self.profile(app)

class CommentsPage(MDScreen):
def __init_ (self, post_id, **kwargs):
super(CommentsPage, self). init__ (**kwargs)
self.post_id = post_id
self.comments = []
self.comments_exist = False
self.load_content()

440

Jack Leverett 7714

def

def

get_comments(self):
data = {'post_id': self.post_id}

50639

comments = request(sio, session).emit("comment_get post", data)['comments']

return comments

add_comment(self, comment):
if not self.comments:
self.comment_stack.clear widgets()

comment_id = comment['comment_id']
username = comment['username’]

comment_item = Comment(username, comment_id, self, text=username, second-
ary_text=comment['content'])

self.comments.append(comment_id)
self.comment_stack.add widget(comment_item)

LOADING

def

def

content

load content(self):
self.comment_stack.clear widgets()
comments = self.get comments()

if comments:
for comment in comments:
self.add comment(comment)
else:
item = OnelLineAvatarIconListItem(text="No comments
self.comment_stack.add_widget(item)

submit(self):

content = self.comment_field.text

data = {'post _id': self.post _id, 'content': content}
request(sio, session).emit("comment set", data, None)
self.comment field.text = ""

comments = self.get_comments()

for comment in comments:

if comment['username'] == session.username and comment['content'] ==

and comment['comment_id'] not in self.comments:
self.add_comment(comment)
break

SWITCHING

def

switch_to_home(self, app):
app.set_screen("HomePageScreen", 'down')
app.sm.remove_widget(self)

Comments END

441

Jack Leverett 7714 50639

Post START
class CameraPage(MDScreen):

def

def

def

def

def

__init_ (self, previous_page, **kwargs):

super(CameraPage, self). init_ (**kwargs)

self.path = "data/images/post.png"

self.post_slot = request(sio, session).emit("post_slot_get")
self.previous_page = previous_page

Window.size = (800, 600)

self.load content()
self.refresh_time()
Clock.schedule_interval(self.refresh time, 1)

load content(self):
self.camera = Camera(play=True)
self.camera_area.add widget(self.camera)

if not setting info("Help boxes").value:
for i, option in enumerate(self.toolbar.right_action_items):
if option[@].lower() == "help":
self.toolbar.right_action_items.pop(i)

open_help(self, app):
open_help(app, self, "Camera")

format_time(self, time left):
time_left = int(time_left)
seconds = time_ left%60
minutes = time_left//60
hours = ©
if minutes > 60:
hours = minutes//60
minutes = minutes - hours*60
time_format = f"{hours}:{minutes}:{seconds}"
return time_format

refresh_time(self, dt=None):
length = self.post_slot['post_slot_end'] -

self.post_slot['post_slot_start']

442

def

time_in = timestamp().now - self.post_slot['post_slot_start']
time_left = round(length - time_in, 2)

time_format = self.format_time(time_left)

self.toolbar.title = f"Time left: {time_format}"

capture(self, app):
self.camera.export_to_png(self.path)
self.camera_to_post(app)

Jack Leverett 7714 50639

def camera_to_post(self, app):
post_review_page_screen_name = "PostReviewPage"
post_review _page screen = PostReviewPage(self, self.path, name=post_re-
view_page_screen_name)
app.sm.add widget(post_review page screen)
app.set_screen(post_review page screen_name, "left")

def exit(self, app):
app.set_screen("HomePageScreen", "down")
app.sm.remove widget(self)
Window.size = (800, 1000)

class PostReviewPage(MDScreen):
def init (self, camera_page, path, **kwargs):
super(PostReviewPage, self).__init__ (**kwargs)
self.path = path
self.camera_page = camera_page
self.post _slot = request(sio, session).emit("post slot get")

self.load content()
self.refresh_time()
Clock.schedule_interval(self.refresh time, 1)

def load content(self):
self.image.source = self.path

if not setting_info("Help boxes").value:
for i, option in enumerate(self.toolbar.right_action_items):
if option[@].lower() == "help":
self.toolbar.right_action_items.pop(i)

def open_help(self, app):
open_help(app, self, "PostReview")

def refresh_time(self, dt=None):
length = self.post_slot['post_slot_end'] -
self.post_slot['post_slot_start']
time_in = timestamp().now - self.post_slot['post_slot_start']
time_left = round(length - time_in, 2)
time_format = self.camera_page.format_time(time_left)
self.toolbar.title = f"Time left: {time_format}"

def post(self, app):
with open(self.path, "rb") as image:
image_data = image.read()
data = {'content': image_data, 'caption': self.caption.text}

443

Jack Leverett 7714 50639

request(sio, session).emit("post_set", data, None)
self.camera_page.previous_page.post_made = True
self.image.source = ""
os.remove(self.path)

self.exit(app, "down")

self.camera_page.previous page.load _memories()
self.camera_page.previous page.load home()

def retake(self, app):
os.remove(self.path)
self.post_to_camera(app)

def post_to camera(self, app, direction="right"):
app.set_screen(self.camera_page.name, direction)
self.ids.image_area.remove_widget(self.image)
app.sm.remove_widget(self)

def exit(self, app, direction="down"):
app.set_screen("HomePageScreen", "down")
if not self.camera_page.previous page.post_made:

os.remove(self.path)
app.sm.remove_widget(self.camera_page)
app.sm.remove_widget(self)
Window.size = (800, 1000)
Post END

Acccount START
class ProfileInfo(TwolLineAvatarIconListItem):

444

def

def

def

def

__init__ (self, account_page=None, info_type=None, **kwargs):
super().__init__ (**kwargs)

self.info_type = info_type

self.account_page = account_page

set_title(self, text):
if text and type(text) == str:

text = (text.replace("_",)).capitalize()
self.text = text

set_content(self, text):
if text and type(text) == str:
self.secondary_text = text

make_editable(self):
button = InfoEditButton(self.account_page, self.info_type)
self.add_widget(button)

Jack Leverett 7714 50639

class InfoEditButton(IconRightWidget):
def __init__ (self, account_page obj=None, info_type=None, **kwargs):
super().__init__ (**kwargs)
self.info_type = info_type
self.account_page_obj = account_page obj
self.account_page _obj.currently editing = None

def change_info(self):

if self.icon == "pencil":
if self.account_page obj.currently editing:
self.account_page obj.currently editing.icon = "pencil”

self.account_page obj.currently editing = self

self.account_page obj.picture to textbox(self.info type)
else:

self.account_page obj.textbox to picture()

class BioEditButton(MDIconButton):
def _init (self, account_page obj=None, info_ type="biography", **kwargs):
super().__init__ (**kwargs)
self.info_type = info_type
self.account_page obj = account _page obj
self.account_page_obj.currently_editing = None

def change_info(self):

if self.icon == "pencil":
if self.account_page obj.currently editing:
self.account_page _obj.currently editing.icon = "pencil”

self.account_page_obj.currently editing = self

self.account_page_obj.picture_to_textbox(self.info_type)
else:

self.account_page_obj.textbox_to_picture()

class ProfilePicture(FitImage):
pass

class InfoChangeBox(MDBoxLayout):
def __init_ (self, page, info_type, username=session.username, **kwargs):
super().__init__ (**kwargs)
self.username = username
self.info_type = info_type
self.page = page

self.load_content()

def load_content(self):
self.text_field.text = self.page.info[self.info_type]

445

Jack Leverett 7714 50639

def save(self):
new_value = self.text_field.text
self.page.info[self.info_type] = new_value
account_page(sio).set profile(self.info_type, new_value, self.username)
self.page.textbox _to picture()

class OccupationChange(MDBoxLayout):
def __init__ (self, page=None, **kwargs):
super().__init__ (**kwargs)
self.occupations = request(sio, session).emit('occupation_get all')
self.current_selection = None
self.occupations_info = []
self.menu = None
if page:
self.page = page

def selection_menu(self):
if dict_key verify(self.occupations, 'occupations'):
self.occupations_info = self.occupations['occupations’]

items = []
for i, occupation in enumerate(self.occupations_info):
item = {'text': occupation['name’'], 'viewclass': "OnelLinelListItem",

'on_release': lambda x=i: self.selection(x)}
items.append(item)

self.menu = MDDropdownMenu(caller=self.occupation_select, items=items,
width_mult=2)

self.menu.open()

else:
message = "No occupations”
Snackbar (text=message).open()

def selection(self, item_num):
self.occupation select.text = self.occupations_info[item num]['name"']
self.occupation _description.text = self.occupations_info[item num]['de-
scription']
self.current_selection = item_num
self.menu.dismiss()

class UserOccupationChange(OccupationChange):
def __init_ (self, page=None, **kwargs):
super().__init_ (page, **kwargs)
self.load_content()

def cancel(self):

request(sio, session).emit('occupation_delete_request', {}, None)
message = f"{session.status['level']}: {session.status['message’']}"

446

Jack Leverett 7714 50639

Snackbar (text=message).open()
self.load_content()
self.page.textbox_to_picture()

def submit(self):
if self.current_selection or self.current_selection ==
data = {'occupation_id': self.occupations_info[self.current_selec-
tion]['occupation_id"']}
request(sio, session).emit('occupation_set request', data, None)
else:
message = "No selection made"
Snackbar (text=message).open()
self.load content()
self.occupation_select.text = "Select an occupation”
self.occupation_description.text = ""
self.page.textbox to picture()

def load _content(self):
occupation_request = request(sio, session).emit('occupation get request')
if dict_key verify(occupation request, 'occupation_id'):
occupation = request(sio, session).emit('occupation get', {'occupa-
tion_id': occupation_request['occupation _id']})

if occupation:
self.request_occupation.text = occupation['name’]

if occupation_request['approved']:

request_status = "Approved"
else:
request_status = "Pending"
self.request status.text = "Status: "+request status

else:
Snackbar(text=session.status).open()

class ManagementOccupationChange(OccupationChange):
def __init_ (self, page, **kwargs):
super().__init__ (**kwargs)
self.page = page

def submit(self):
if self.occupations_info:
data = {'occupation_id': self.occupations_info[self.current_selec-
tion]['occupation_id']}
request(sio, session).emit('occupation_set', data, None)
message = f"{session.status['message']}"
self.occupation_select.text = "Select an occupation”

447

Jack Leverett 7714 50639
self.occupation_description.text = ""
else:
message = f"No occupation selected”
Snackbar (text=message).open()

if self.occupations_info:
self.page.textbox_to picture()

class AccountPage(MDScreen):
def __init__ (self, username=session.username, previous_page=None, re-
move_on_exit=True, **kwargs):
super(AccountPage, self). init__ (**kwargs)
self.username = username
self.info_objs = []
self.bio_edit button = None
self.load content()
self.friend page screen = None
self.remove_on_exit = remove_on_exit
if previous_page == None:
self.previous page
else:
self.previous_page

"HomePageScreen"

previous_page.name

def load content(self):
self.above_info.clear_widgets()
self.profile_info_view.clear_widgets()
if self.bio _edit button:
self.profile_bio_view.remove_widget(self.bio_edit_button)

req = request(sio, session)
data = {'username': self.username}
self.info = req.emit("profile_get", data)

permissions_data
self.username}
self.permissions

{'username': session.username, 'target_username’:

req.emit("profile_get_permissions", permissions_data)

if self.username != session.username:
self.toolbar.title = self.username+"'s Profile"

level = req.emit('auth_get')['level']
if level == "member":
self.toolbar.left_action_items = []

if dict_key_verify(self.info, "occupation_id"):

team_data = {'occupation_id': self.info['occupation_id'], 'items':
[Ilnamell]}

448

Jack Leverett 7714 50639
self.info['team'] = req.emit("team_get", team_data)['name']

occupation_data = {'occupation_id': self.info['occupation_id'],
"items': ["name"]}
self.info['occupation’]
tion_data)['name’']
else:
self.info['team'] =
self.info['occupation'] =
del self.info['occupation_id"]

req.emit("occupation_get", occupa-

self.info['username'] = self.username
order = ['username', 'name', 'role', 'occupation', 'team']

self.bio_edit_button = BioEditButton(self)
if self.info['biography’]:
self.biography content.text
else:
self.biography content.text =
self.info['biography'] = ""
if self.permissions['edit’']:
self.profile_bio_view.add_widget(self.bio_edit_button)

self.info['biography']

for key in order:

if not self.info[key]:

self.info[key] = ""
profile info = ProfileInfo(self, key)
if self.permissions['edit’'] and key in ['name', 'role', 'occupation’,

"team']:

profile info.make editable()
profile_info.set_title(key)
profile_info.set_content(self.info[key])
self.profile_info_view.add_widget(profile_info)
self.info_objs.append(profile_info)

self.profile_picture = ProfilePicture()
self.above_info.add_widget(self.profile_picture)

if not setting_info("Help boxes").value:
for i, option in enumerate(self.toolbar.right_action_items):
if option[@].lower() == "help":

self.toolbar.right_action_items.pop(i)

def open_help(self, app):
open_help(app, self, "Profile")

def refresh_content(self):

449

Jack Leverett 7714 50639

def

def

def

self.load_content()

picture_to_textbox(self, info_type):

self.currently editing.icon = "close"
self.above_info.clear widgets()

level = request(sio, session).emit('auth_get')['level']

if info_type == 'occupation' or info_type == 'team':
if level == "member":
self.change = UserOccupationChange(self)
else:

self.change = ManagementOccupationChange(self)
else:
self.change = InfoChangeBox(self, info type, self.username)
self.above_info.add widget(self.change)

textbox_to picture(self):
self.above_info.clear_widgets()
self.above_info.add widget(self.profile picture)
self.currently_editing.icon = "pencil”
self.refresh_content()

switch to friend(self, app, direction="right"):
friend_page_screen_name = "FriendPageScreen_" + self.username
friend_page_screen = FriendPage(self, self.username,

name=friend_page_screen_name)

def

app.sm.add_widget(friend_page_screen)
app.set_screen(friend_page_screen_name, direction)

back(self, app, direction="left"):

app.set_screen(self.previous_page, direction)

if self.remove_on _exit:
app.sm.remove_widget(self)

Acccount END

Settings START
class SettingRoot(MDBoxLayout):

def

def

450

__init_ (self, title, page, **kwargs):

super().__init__ (**kwargs)
self.title = title
self.page = page
self.load_content()

load_content(self):

self.setting = setting info(self.title)
self.set_title(self.setting.title)
self.set_description(self.setting.description)

Jack Leverett 7714 50639

self.setting icon.icon = self.setting.icon

def set_title(self, text):
if text and type(text) == str:
self.setting title.text = text

def set description(self, text):
if text and type(text) == str:
self.setting description.text = text

class SettingSwitch(SettingRoot):
def load_content(self):
super().load content()
self.toggle.active = self.setting.value

def on_toggle(self, app):
self.page.help_tool = ["help"”, lambda app: self.page.open_help(app)]
self.setting.change value(self.toggle.active)
self.page.load toolbar()
app.homepage screen.load toolbar()

class SettingTextField(SettingRoot):
def __init_ (self, title, **kwargs):
super().__init_ (title, **kwargs)
self.submission func = self.submit url

def load content(self):
super().load content()
self.input_field.text = self.setting.value

def submit_ func(self):
self.setting.change_value(self.input_field.text)
self.submission func()
self.page.load_toolbar()
app.homepage_screen.load_toolbar()

def submit_url(self):
self.error = True

try:
result = urlopen(self.text)
except HTTPError as e:

pass
except URLError as e:
pass
except ValueError as e:
pass

451

Jack Leverett 7714

else:
self.error = False

class ShutdownButton(MDRaisedButton):
def init (self, page, **kwargs):
super().__init__ (**kwargs)
self.page = page

def shutdown(self, app):
request(sio, session).emit("shutdown", None, None)
#tapp.disconnected()

class SettingsPage(MDScreen):
def _init_ (self, previous_page, **kwargs):
super(SettingsPage, self)._ _init__ (**kwargs)
self.previous page = previous_page

self.load content()

def load _content(self):
self.settings_stack.clear_widgets()
settings = db().execute("SELECT title, state FROM settings")
if settings:
for setting in settings:
if setting[1] != None:
setting_obj = SettingSwitch(setting[@], self)
else:
setting_obj

SettingTextField(setting[@], self)
self.settings_stack.add_widget(setting_obj)

self.level = request(sio, session).emit('auth_get')['level']
if self.level == "admin":
button = ShutdownButton(self)
self.static_buttons.add_widget(button)

self.load_toolbar()

def load_toolbar(self):
if not self.toolbar.right_action_items:
self.toolbar.right_action_items = [self.help_tool]
if not setting_info("Help boxes").value:
for i, option in enumerate(self.toolbar.right_action_items):
if option[@].lower() == "help":
self.toolbar.right_action_items.pop(i)

452

50639

Jack Leverett 7714 50639

def open_help(self, app):
open_help(app, self, "Settings")

def logout(self, app):
clean_directories()
session.clear()
app.switch_to_login()

def back(self, app):
app.sm.remove_widget(self)
self.previous_page.load content()
app.set_screen(self.previous page.name, "right")
Settings END

Notification START
class NotificationItem(TwoLineAvatarIconListItem):
def __init_ (self, page, notification_id, username, **kwargs):

super().__init__ (**kwargs)
self.notification_id = notification_id
self.username = username
self.page = page
self.content = ""

def set title(self, text):
if text and type(text) == str:
self.text = text
self.title = text

def set content(self, text):
if text and type(text) == str:
self.secondary_text = text

self.content = text

def delete(self):
data = {'notification_id': self.notification_id, 'username': self.username}
request(sio, session).emit('notification_remove', data, None)
self.page.notification_stack.remove_widget(self)
self.page.load_content()

def expand(self, app):
expand_page = ExpandPage([self.title, self.content], app)
app.sm.add_widget(expand_page)

class NotificationsPage(MDScreen):

def __init_ (self, username=None, previous_page=None, **kwargs):
super(NotificationsPage, self)._ _init__ (**kwargs)

453

Jack Leverett 7714 50639

session.notification_page = self
self.username = username
self.previous_page = previous_page
self.notifications None
self.load content()

def load_content(self):
self.notifications = request(sio, session).emit('notification_get"',
{'username’': self.username})['notifications’]
self.notification_stack.clear widgets()

if self.notifications:
for notification in self.notifications:
notification_obj = NotificationItem(self, notification['notifica-
tion_id'], self.username)

if dict_key verify(notification, 'title'):
notification obj.set title(notification['title'])
if dict_key verify(notification, 'content'):
content_text = notification['content’']
notification obj.set content(content text)

self.notification_stack.add_widget(notification_obj)
else:
item = OnelLineAvatarIconListItem(text="No notifications")
self.notification_stack.add_widget(item)

if self.username and self.username != session.username:
self.toolbar.title = self.username+"'s Notifications"

if not setting_info("Help boxes").value:
for i, option in enumerate(self.toolbar.right_action_items):
if option[@].lower() == "help":
self.toolbar.right_action_items.pop(i)

def open_help(self, app):
open_help(app, self, "Notifications")

def add_notification(self, notification):
notification_item = NotificationItem(self, notification['notification_id'],
self.username)
content_text = notification['title']
if dict_key_verify(notification, 'content'):
notification_item.set_content(notification['content'])

self.notification_stack.add_widget(notification_item)

454

Jack Leverett 7714

def back(self, app, direction="left"):
app.set_screen(self.previous_page.name, direction)
app.sm.remove_widget(self)
Notification END

Friend START
class BaseFriendItem(OneLineAvatarIconListItem):
def __init__ (self, obj=None, **kwargs):
super().__init__ (**kwargs)
self.page obj = obj
self.friend profile screen_name = None
self.friend profile screen = None

def refresh_content(self):
if self.page obj:
self.page obj.load content()

def profile(self, app):
new_friend_profile_screen_name = self.profile_prefix+"ProfileP-
age"+self.text

if new_friend profile_screen_name != self.friend_profile screen_name:

if self.friend_profile_screen_name:
app.sm.remove_widget(self.friend_profile_screen)
self.friend profile screen_name = new_friend profile_screen_name
self.friend_profile_screen = AccountPage(self.text, self.page_obj,
name=self.friend profile screen_name)
app.sm.add_widget(self.friend_profile_screen)
app.set_screen(self.friend_profile_screen_name, "right")

class IncomingRequestItem(BaseFriendItem):
def __init__ (self, obj=None, **kwargs):
super().__init__ (obj, **kwargs)
self.profile_prefix = "IncomingRequest"

def accept(self):
self.verdict('approve')

def reject(self):
self.verdict('reject')

def verdict(self, verdict):
data = {'friend_username': self.text}
request(sio, session).emit('friend_'+verdict+'_request', data, None)
self.refresh_content()
self.page_obj.friend_page.load_content()

455

50639

Jack Leverett 7714 50639

class OutgoingRequestItem(BaseFriendItem):
def __init__ (self, obj=None, **kwargs):
super().__init__ (obj, **kwargs)
self.profile prefix = "OutgoingRequest"

def cancel(self):
data = {'friend username': self.text}
request(sio, session).emit('friend_remove request', data, None)
self.refresh_content()

class RecomendationItem(BaseFriendItem):
def __init__ (self, obj=None, **kwargs):
super().__init__ (obj, **kwargs)
self.profile_prefix = ""

def add_friend(self):
self.page obj.add friend(self.text)

class FriendItem(BaseFriendItem):
def __init__ (self, obj=None, **kwargs):
super().__init__ (obj, **kwargs)
self.profile prefix = "Friend"

def remove(self):
data = {'friend username': self.text}
request(sio, session).emit('friend remove', data, None)
self.refresh_content()

class FriendPage(MDScreen):
def __init__ (self, account_page, username, **kwargs):
super(FriendPage, self).__init__ (**kwargs)
self.account_page = account_page
self.username = username
self.friend request _screens = []
self.load_content()

def load_content(self):
data = {'username': self.username}
self.friends = request(sio, session).emit("friend_get")['friends']
self.friend_list.clear_widgets()

if self.friends:
for friend in self.friends:
friend_info = FriendItem(self, text=friend['username'])
self.friend_list.add_widget(friend_info)
else:
friend_info = OnelLineAvatarIconListItem(text="No friends")

456

Jack Leverett 7714 50639
self.friend_list.add_widget(friend_info)

if not setting_info("Help boxes").value:
for i, option in enumerate(self.toolbar.left action_items):
if option[@].lower() == "help":
self.toolbar.left_action_items.pop(i)
self.account_page.load_content()

def open_help(self, app):
open_help(app, self, "Friends")

def switch_to friend request(self, app, username=None, direction='right'):
if not username:
username = self.username
friend request_screen_name = "FriendRequestPageScreen_"+username
friend_request_screen = FriendRequestPage(self, username, name=friend re-
quest_screen_name)
app.sm.add widget(friend request_screen)

app.set_screen(friend request_screen_name, direction)

def switch_to account(self, app):
app.set_screen(self.account_page.name, "left")
app.sm.remove_widget(self)

class FriendRequestPage(MDScreen):
def __init_ (self, friend_page, username, **kwargs):
super(FriendRequestPage, self).__init__ (**kwargs)
self.username = username
self.friend_page = friend_page
self.load content()

def _get_request(self, mode="incoming", username=None):
requests_data = request(sio, session).emit("friend_get_requests"”,
{'username': username, 'mode': mode})
if dict_key_verify(requests_data, "requests"):
requests = requests_data['requests’]
else:
requests = []
return requests

def load_content(self):
self.incoming_requests.clear_widgets()
self.outgoing requests.clear_widgets()

self.recomendations.clear_widgets()

self.incoming = self. get request("incoming", self.username)

457

Jack Leverett 7714 50639

if not self.incoming:
self.incoming = []
self.incoming_requests.add widget(OneLineAvatarIconListItem(text="No
incoming requests"))

self.outgoing = self. get request("outgoing"”, self.username)
if not self.outgoing:
self.outgoing = []
self.outgoing requests.add widget(OneLineAvatarIconListItem(text="No
outgoing requests"))

for incoming in self.incoming:
self.incoming requests.add widget(IncomingRequestItem(self, text=incom-
ing))
for outgoing in self.outgoing:
self.outgoing requests.add widget(OutgoingRequestItem(self, text=out-

going))

data = {'amount': 5}
self.friend recomends = request(sio, session).emit('friend_get recomenda-
tions', data)
if dict_key verify(self.friend recomends, "recomended"):
self.friend recomends = self.friend_recomends["recomended"]
else:
self.friend recomends = []
self.recomendations.add_widget(OneLineAvatarIconListItem(text="No rec-
ommendations sorry"))

for recomend in self.friend recomends:
self.recomendations.add_widget (RecomendationItem(self,
text=recomend['username']))

def add_friend search(self):
message = "No username entered"
if self.username_select.text:
self.add_friend(self.username_select.text)
if session.status['level'].lower() != "info":
self.username_select.error = True
else:
self.username_select.text = ""

else:
self.username_select.error = True

def add_friend(self, username):
data = {'friend_username': username}
request(sio, session).emit('friend_add_request', data, None)
message = f"{session.status['level']}: {session.status['message’']}"

458

Jack Leverett 7714 50639

Snackbar (text=message).open()
self.load_content()

def switch_to_friend(self, app, username=None, direction='left'):
app.set_screen(self.friend page.name, direction)
app.sm.remove_widget(self)
Friend END

OCCUPATION START
class ManageOccupationChange(OccupationChange):
def submit(self):
if self.current_selection:
data = {'occupation_id': occupations[i]['occupation_id'], 'username’:
self.username_select.text}
request(sio, session).emit('occupation_set', data)
message = f"{session.status['level']}: {session.status['message’']}"
Snackbar (text=message).open()
if session.status['level'].lower() != "info":
self.username_select.error = True
else:
message = "No selection made"
Snackbar (text=message).open()

class BaseOccupationItem(ThreelLineAvatarIconListItem):
def __init_ (self, occupation_id, obj=None, **kwargs):
super().__init__ (**kwargs)
self.occupation_id = occupation_id
self.page_obj = obj
data = {'occupation_id': self.occupation_id}

class OccupationItem(BaseOccupationItem):
def edit(self):
self.page_obj.occupation_edit(self.occupation_id, self.text, self.second-
ary_text)

def delete(self):
self.page_obj.occupation_delete(self.occupation_id)
self.page_obj.load_content()

class OccupationRequestItem(BaseOccupationItem):
def refresh_content(self):
self.page_obj.load_content()

def accept(self):
self.verdict("approve")

459

Jack Leverett 7714

def reject(self):
self.verdict("reject")

def verdict(self, verdict):
data = {'username’: self.text}

50639

request(sio, session).emit('occupation_'+verdict+' request', data, None)

self.refresh_content()

class OccupationEdit(MDBoxLayout):
def init (self, page, occupation_id, name, description, **kwargs):

super().__init__ (**kwargs)
self.name = name
self.description = description
self.occupation_id = occupation_id
self.page = page
self.load content()

def load _content(self):
self.ids.name.text = self.name
self.ids.description.text = self.description

def submit(self):
data = {'name': self.ids.name.text, 'description': self.ids.descrip-
tion.text, 'occupation_id': self.occupation_id}
request(sio, session).emit('occupation edit', data, None)
self.page.load_content()
self.page.edit_area.clear_widgets()
self.page.edit_area.add_widget(OccupationCreate(self))

class OccupationCreate(MDBoxLayout):
def __init_ (self, page, **kwargs):
super().__init__ (**kwargs)
self.page = page

def create(self):

data = {'name': self.ids.name.text, 'description': self.ids.descrip-

tion.text}
request(sio, session).emit('occupation_create', data, None)
message = f"{session.status['level']}: {session.status['message’']}"
Snackbar (text=message).open()
self.ids.name.text = ""
self.ids.description.text =
self.page.load_content()

class OccupationPage(MDScreen):
def __init_ (self, previous_page, **kwargs):
super(OccupationPage, self)._ init__ (**kwargs)

460

Jack Leverett 7714 50639

self.previous_page = previous_page
self.load_content()

def load content(self):
occupations = request(sio, session).emit('occupation_get_all')['occupa-
tions']
self.occupations.clear widgets()

if occupations:
for occupation in occupations:
item = OccupationItem(occupation['occupation_id'], self, text=occu-
pation['name'], secondary text=occupation['description'])
self.occupations.add_widget(item)
else:
item = OnelLineAvatarIconListItem(text="No occupations™)
self.occupations.add_widget(item)

self.edit_area.clear_widgets()
self.edit_area.add widget(OccupationCreate(self))

if not setting info("Help boxes").value:
for i, option in enumerate(self.toolbar.right_action_items):
if option[@].lower() == "help":
self.toolbar.right_action_items.pop(i)
self.previous_page.load_toolbar()

def open_help(self, app):
open_help(app, self, "Occupation™)

def occupation_edit(self, occupation_id, name, description):
edit space = OccupationEdit(self, occupation_id, name, description)
self.edit_area.clear_widgets()
self.edit_area.add_widget(edit_space)

def occupation_delete(self, occupation_id):
data = {'occupation_id': occupation_id}
request(sio, session).emit('occupation_delete_occupation', data, None)
Snackbar (text="0Occupation deleted").open()

def switch_to_occupation_request(self, app, direction='left'):
occupation_request_screen_name = "OccupationRequestPageScreen"
occupation_request_screen = OccupationRequestPage(self, name=occupation_re-
quest_screen_name)
app.sm.add_widget(occupation_request_screen)
app.set_screen(occupation_request_screen_name, direction)

def back(self, app, direction="right"):

461

Jack Leverett 7714 50639

app.set_screen("HomePageScreen", direction)
app.sm.remove_widget(self)

class OccupationRequestPage(MDScreen):
def init (self, previous_page, **kwargs):
super(OccupationRequestPage, self). init__ (**kwargs)
self.previous_page = previous_page
self.load content()

def load_content(self):
requests = request(sio, session).emit('occupation_get all requests')['re-
quests']
self.change _requests.clear widgets()

if requests:
for request_info in requests:
data = {'occupation_id': request_info['occupation_id']}
occupation = request(sio, session).emit('occupation get', data)
occupation_request = OccupationRequestItem(request_info['occupa-
tion_id'], self, text=request_info['username'], secondary text = occupa-
tion['name'], tertiary text=occupation['description’'])
self.change_requests.add_widget(occupation_request)
else:
self.change_requests.add_widget(OneLineAvatarIconListItem(text="No re-
quests"))

def back(self, app, direction="right'):
app.set_screen(self.previous_page.name, direction)
app.sm.remove_widget(self)
OCCUPATION END

TEAM START
class LeaderItem(OneLineAvatarIconListItem):
def __init_ (self, leader_username, page=None, **kwargs):
super().__init__ (**kwargs)
self.page = page
self.leader_username = leader_username
self.text = leader_username

def delete(self):
data = {'leaders': [{'username': self.leader_username}]}
request(sio, session).emit('team_delete_leaders', data, None)
self.page.load_content()

class AddLeaderButton(MDRaisedButton):
def __init_ (self, page=None, **kwargs):

462

Jack Leverett 7714

super().__init__ (**kwargs)
self.page = page

def add_leader(self):
self.page.button_to add()

class ChangeNameButton(MDRaisedButton):
def __init__ (self, page=None, **kwargs):
super().__init__ (**kwargs)
self.page = page

def change name(self):
self.page.button_to_add("name")

class AddLeader(MDBoxLayout):
def __init__ (self, page=None, **kwargs):
super().__init__ (**kwargs)
self.page = page

def submit(self):

data = {'leaders': [{'username': self.ids.username.text}]}
request(sio, session).emit('team_set', data, None)

self.page.add_to_button()

class ChangeName(MDBoxLayout):
def __init_ (self, page=None, **kwargs):
super().__init__ (**kwargs)
self.page = page

def submit(self):

team _data = {'name’': self.ids.name.text}
request(sio, session).emit('team_set', team data, None)

self.page.add_to_button()

class TeamPage(MDScreen):

def __init_ (self, previous_page, username, **kwargs):
super(TeamPage, self)._ _init__ (**kwargs)

self.previous_page = previous_page
self.username = username
self.load_content()

def load_content(self):
server = request(sio, session)
leaders []
members []

leaders_info = server.emit('team_get_ leaders')

463

50639

Jack Leverett 7714 50639

464

if dict_key verify(leaders_info, 'leaders'):
leaders = leaders_info['leaders’]

members_info = server.emit('team_get members"')

if dict_key verify(members_info, 'members'):
members = members_info['members']

team = server.emit('team_get")

self.members.clear_widgets()
self.leaders.clear_widgets()
self.edit_area.clear_widgets()

if leaders:
for leader in leaders:
item = LeaderItem(leader['username'], self)
self.leaders.add_widget(item)
else:
item = OnelLineAvatarIconListItem(text="No members")
self.leaders.add_widget(item)

self.level = server.emit('auth get')['level']
if self.level != "member" or self.username in leaders:
if members:
self.edit_area.add_widget(ChangeNameButton(self))
self.edit_area.add_widget(AddLeaderButton(self))

if members:
self.team_name.text = team['name’]
for member in members:
item = OnelLineAvatarIconListItem(text=member['username'])
self.members.add_widget(item)
if not self.members:
item = OnelLineAvatarIconListItem(text="No members")
self.members.add_widget(item)
else:
item = OnelLineAvatarIconListItem(text="No members")
self.members.add_widget(item)
if self.team_name.text == "":
self.team_name.text = "No team"

if not setting_info("Help boxes").value:
for i, option in enumerate(self.toolbar.right_action_items):
if option[@].lower() == "help":
self.toolbar.right_action_items.pop(i)
self.previous_page.load_toolbar()

def button_to_add(self, input_mode="leader"):

Jack Leverett 7714

self.edit_area.clear_widgets()

if input_mode == "leader":
add_widget = AddLeader(self)
elif input_mode == "name":

add_widget = ChangeName(self)
self.edit_area.add _widget(add widget)

def add_to button(self):
self.load content()

def open_help(self, app):
open_help(app, self, "Team")

def back(self, app, direction="right"):
app.set_screen("HomePageScreen", direction)
app.sm.remove widget(self)
TEAM END

Auth START
class Auth():
def load_content(self, obj, obj_id):
for field in obj.fields:
if "password" in field.lower():
auth_field = PasswordField(info_type=field)
else:
auth _field = AuthField(info_type=field)
obj_id.add_widget(auth_field)
obj.auth_field_objs.append(auth_field)

class PasswordField(MDRelativelayout):
def __init_ (self, info_type=None, **kwargs):
super().__init__ (**kwargs)
self.info_type = info_type.lower()
self.load_content()

def load_content(self):
self.ids.password_field.hint_text = self.info_type.capitalize()

class AuthField(MDTextField):
def __init_ (self, info_type=None, **kwargs):
super().__init__ (**kwargs)
self.info_type = info_type.lower()
self.load_content()

def load_content(self):
self.hint_text = self.info_type.capitalize()

465

50639

Jack Leverett

def change_hint(self, text):
self.hint_text = text

class AuthButton(MDRaisedButton):

def init (self, function=None, text=None,

super().__init__ (**kwargs)
self.function = function
self.text = text

def action(self, app):
self.function(app)

def change text(self, text):
self.text = text

class LoginPage(MDScreen):
def init (self, app, **kwargs):

super(LoginPage, self).__init__ (**kwargs)

self.app = app

self.fields = ["Username", "Password"]

self.auth_field_objs = []
self.register_page = None
self.logged_in = False
self.load content()
self.login_token()

def load _content(self):

7714

**kwargs):

Auth().load_content(self, self.login_view)
self.login_view.add_widget(AuthButton(self.login, 'Login'))

self.login_view.add_widget(AuthButton(self.register,

def login_token(self):

results = db().execute("SELECT * FROM tokens")

data = {'logged_in': False}

if results:
for result in results:
token = result[0]

expire = float(result[2])
if timestamp().now > float(expire):
db().execute("DELETE FROM tokens WHERE token =

else:
info
data

if data['logged in']:

466

{'token': token}
request(sio, session).emit("login", info)

'Register'))

50639

*", (token,))

Jack Leverett 7714 50639

username = request(sio, session).emit("auth_get", {'items':

['username']})['username’]

def

def

def

self.login_confirmation(self.app, data, username)

login(self, app):
username = self.auth_field objs[0].text
password = self.auth field objs[1].text
if not username and not password:
username = "user"
password = "pass"
info = {'username': username, 'password': password}
data = request(sio, session).emit('login', info)
self.login_confirmation(app, data, username)

login_confirmation(self, app, data, username):
message = f"{session.status['level']}: {session.status['message’']}"
if data['logged in'] == True:
app.switch _to homepage("down", username)
session.username = username
session.level = request(sio, session).emit('auth_get')['level']
self.logged in = True
else:
for field in self.auth_field_objs:
field.error = True
self.logged_in = False
Snackbar (text=message).open()

register(self, app):

register_page = RegisterPage(name='RegisterPageScreen')
app.sm.add_widget(register_page)
app.set_screen('RegisterPageScreen’, 'left')

class RegisterPage(MDScreen):

def

Code"]

def

467

__init_ (self, **kwargs):
super(RegisterPage, self)._ _init__ (**kwargs)
self.fields = ["Username", "Password", "Re-enter Password", "Registration

self.auth_field _objs = []
self.load_content()
self.mode = "member"

load_content(self):

Auth().load_content(self, self.register_view)
self.register_view.add_widget(AuthButton(self.register, 'Register'))
self.mode_button = AuthButton(self.mode, 'Admin Register')
self.register_view.add_widget(self.mode_button)

Jack Leverett 7714 50639

def register(self, app):
info_points = ['username’, ‘'password', 'repassword', ‘key']
info = {point: self.auth_field_objs[i].text for i, point in enumer-
ate(info_points)}

if self.mode == "member":
event = "register”

else:
event = "admin_register"

data = request(sio, session).emit(event, info)
self.register confirmation(data, app)

def register_confirmation(self, data, app):
message = f"{session.status['level']}: {session.status['message’']}"
if data['is_registered'] == True:
app.set_screen("LoginPageScreen", "right")
app.sm.remove widget(self)
else:
Snackbar (text=message).open()
for field in self.auth_field objs:
field.error = True
Snackbar (text=message).open()

def mode(self, app):

for field in self.auth_field_objs:

if "code" in field.info_type:
break

if self.mode == "member":
self.mode_button.change_text("Member Register™)
field.hint_text = "Admin Registration Code"
self.mode = "admin"

else:
self.mode_button.change_text("Admin Register™)
field.hint_text = "Registration Code"
self.mode = "member"

class ServerPage(MDScreen):
def __init_ (self, **kwargs):
super(ServerPage, self).__init__ (**kwargs)

def get_server_code(self):

response = request(sio, session).emit("server_code get")

if dict_key_verify(response, 'server_code'):
session.server_code = response['server_code']

else:
message = "WARNING: Badly behaving server, please contact administra-

tor

Snackbar (text=message).open()

468

Jack Leverett 7714 50639

def connect(self, app):

connected = start_client(sio, self.url.text)
if not connected:

self.url.error = True

message = "Unsuccessful connection”
else:

self.get_server_code()

app.switch_to _decrypt()

message = "Successful connection™
Snackbar (text=message).open()

class ShareInput(MDBoxLayout):
pass

class DecryptPage(MDScreen):
def __init_ (self, app, **kwargs):
super(DecryptPage, self)._ init__ (**kwargs)
self.share_inputs = []
self.min_shares = None
self.app = app
self.load content()

def load content(self):
mode_info = request(sio, session).emit("get mode")
self.sss_enabled = mode_info['sss']
if self.sss_enabled:
self.min_shares = int(mode_info['min_shares'])
for i in range(self.min_shares):
share_input = SharelInput()
self.share_inputs.append(share_input)
self.input_area.add_widget(share_input)

def submit(self):
encrypt_data = {'shares': None, 'password': None}
data = {'success': False}
if self.en_password.text:
encrypt_data['password'] = self.en_password.text
data = request(sio, session).emit("decrypt", encrypt_data)
elif self.sss_enabled:
encrypt_data['shares'] = []
for share in self.share_inputs:
try:
share_num = int(share.share_num.text)
share_secret = int(share.share_secret.text)
except:
share.share_num.error = True

469

Jack Leverett 7714 50639

share.share_secret.error = True
continue

encrypt_data['shares'].append({'num': share_num, 'secret':
share_secret})

if len(encrypt_data['shares']) >= self.min_shares:
data = request(sio, session).emit("decrypt", encrypt_data)
if data['success']:
self.app.sm.remove widget(self)
self.app.switch_to_login()
else:
self.en_password.error = True
if encrypt_data['shares']:
for share in self.share_inputs:
share.share_num.error = True
share.share_secret.error = True
Auth END

class FirstTimePage(MDScreen):
def __init_ (self, **kwargs):
super(FirstTimePage, self).__init__ (**kwargs)
self.load content()

def load content(self):

data = {'items': ['level']}

level = request(sio, session).emit("auth_get", data)['level']

if level == "member":
occupation_change = UserOccupationChange(self)
occupation_change.ids.new_request_area.remove_widget(occupa-

tion_change.ids.new_request_title)

elif level == "management" or level == "admin":
occupation_change = ManagementOccupationChange(self)

self.ids.step3.add_widget(occupation_change)

ntfy_topic = request(sio, session).emit("get _ntfy topic")['topic']
self.ids.topic_name.text = ntfy_topic

def set_role(self):
if self.role_input.text:
request(sio, session).emit("profile_set", {'role': self.role_in-
put.text}, None)

def set_name(self):
if self.name_input.text:
request(sio, session).emit("profile_set", {'name': self.name_in-
put.text}, None)

470

Jack Leverett 7714 50639

def textbox_to_picture(self):
pass

def done(self, app):
self.set_name()
self.set_role()
app.set_screen("HomePageScreen", "down")
app.sm.remove_widget(self)

class BeOpen(MDApp):
def set_screen(self, screen, trans):
self.sm.current = screen
self.sm.transition.direction = trans

def build(self):
Builder.load file('./modules/ui/beopen.kv")

self.theme cls.material style = "M3"
self.theme cls.theme style = "Light"
self.theme cls.primary palette = "Orange"

self.homepage_screen = None
self.login_screen = None

self.sm = MDScreenManager()
self.sm.add_widget(ServerPage(name="ServerPageScreen'))

Window.size = (800, 1000)
return self.sm

def disconnected(self):
self.sm.clear_widgets()
stop_client(sio)
self.sm.add_widget(ServerPage(name="'ServerPageScreen'))

def switch_to_comments(self, transition='up'):
self.comments_screen = CommentsPage(name='CommentsPageScreen")
self.sm.add_widget(self.comments_screen)
self.set_screen('CommentsPageScreen', transition)

def switch_to_homepage(self, transition=None, username=None):
if self.homepage_screen:
self.sm.remove_widget(self.homepage_screen)
self.homepage_screen = HomePage(username, self, name='HomePageScreen')
self.sm.add_widget(self.homepage_screen)

471

Jack Leverett 7714 50639

if self.first_time_login():
first_time_page_screen_name = "FirstTimePage"
first_time_page screen =
FirstTimePage(name=first_time_ page_screen_name)
self.sm.add widget(first time_page screen)
self.set_screen(first_time_page screen_name, "down")
else:
self.sm.switch_to(self.homepage_screen)

def switch_to decrypt(self):

crypt_data = request(sio, session).emit("get mode")

if crypt_data['mode’'] == "decrypt":
decrypt_screen_name = 'DecryptPageScreen’
decrypt screen = DecryptPage(self, name=decrypt screen_name)
self.sm.add widget(decrypt screen)
self.set_screen(decrypt screen_name, "down")

else:
self.switch_to_login()

def switch_to login(self, transition="up"):
login_screen_name = "LoginPageScreen"
if self.login_screen:
self.sm.remove_widget(self.login_screen)

self.login_screen = LoginPage(self, name=login_screen_name)

if not self.login_screen.logged _in:
self.sm.add_widget(self.login_screen)
self.set_screen(login_screen_name, transition)

def comments_to_homepage(self, transition='down'):
self.set_screen('HomePageScreen', transition)
self.sm.remove_widget(self.comments_screen)

def first_time_login(self):
occupation = request(sio, session).emit("occupation_get")
profile = request(sio, session).emit("profile_get", {'items': ['role’,
"name ']1})
friends = request(sio, session).emit("friend_get")['friends']
if not occupation['occupation_id'] and not friends and not profile['role']
and not profile['name']:
return True
else:
return False
first_time_page_screen_name = "FirstTimePage"
first_time_page_screen =
FirstTimePage(name=first_time_page_screen_name)

472

Jack Leverett 7714 50639

self.sm.add_widget(first_time_page screen)
self.set_screen(first_time_page_screen_name, "down")
#:::::::::::::::::: kivy END oSS ======

def create_settings():
settings = [{'title': "Help boxes",
"description': "Turn of the help buttons that appear as clicka-
ble question marks",
"default_value': True,
"icon': "help"}]

settings _db = db()
saved_settings = settings db.execute("SELECT title FROM settings")

for setting in settings:
if saved settings:
if (setting['title'],) in saved_settings:
continue

if isinstance(setting['default value'], bool):
settings db.execute("INSERT INTO settings (title, description,
state, icon) VALUES (?, ?, ?, ?)", (setting['title'], setting['description'], set-
ting['default_value'], setting['icon']))
else:
settings_db.execute("INSERT INTO settings (title, description,
value, icon) VALUES (?, ?, ?, ?)", (setting['title'], setting['description’], set-
ting['default_value'], setting['icon']))

def create_directories():
paths = ["data", "data/images"]
for path in paths:
if not os.path.exists(path):
os.mkdir(path)

def clean_directories():
paths = ["data/images"]
for path in paths:
for file in os.listdir(path):
os.remove(os.path.join(path, file))

def setup():
create_directories()
clean_directories()
create_settings()

def post_login():
db().execute("DELETE FROM tokens WHERE username != ?", (session.username,))

473

Jack Leverett 7714 50639

def main():
setup()
BeOpen().run()
stop_client(sio)

modules/handler/info.py

from PIL import Image
import io

class profile():
def _init (self):
pass

def username():
pass

def name(self, first name=None, last name=None):
if first_name:
self.first _name
if last_name:
self.last name

if first _name and last _name:
pass

class image():
def init (self, post id):
self.post _id = post id
self.path = None

def load(self, image_bytes):
image_formats = ['png', 'jpg']
for form in image_formats:

try:
self.path = f"data/images/{self.post_id}.{form}"
with Image.open(io.BytesIO(image _bytes)) as recieved:
recieved.save(self.path)
break
except:

self.path = None

474

Jack Leverett 7714

def delete(self):
os.remove(self.path)

modules/handler/request.py

MODULES
from modules.session.session import wait

def dict_key verify(dictionary, keys, mode="and", *args,

if mode != "and" and mode != "or":
mode = "and"

if type(keys) != list:
keys = [keys]

verified = []
if type(keys) != list:
keys = [keys]

for key in keys:

if type(dictionary) != dict or key not in dictionary or not diction-

ary[key]:

verified.append(False)
else:
verified.append(True)

if mode == "and":
if all(verified) == True:
return True
if mode == "or":
if True in verified:
return True
return False

MODULES
class request():

475

def __init_ (self, sio,

self.sio = sio
self.session = session
self.username = username

def callback(self, callback, data):

self.session.transfer = data

if callback_func == "self.callback":
callback_func = self.callback
if callback_func == None:

self.sio.emit(event, info)

session=None, username=None):

**kwargs):

def emit(self, event, info=None, callback_func="self.callback"):

50639

Jack Leverett 7714 50639

return
else:

self.sio.emit(event, info, callback=callback_func)
wait(self.session).wait()
return self.session.transfer

class account_page(request):
def refresh(self):
info = self.get_profile()
return info

def get profile(self):
info = {'username': self.username, 'name': self.username, 'role': "", 'oc-

cupation_name': , 'team_name': , 'biography': ""}

profile data

raphy "]}
profile_info

{'username': self.username, 'items': ['name', 'role', 'biog-

self.emit('profile get', profile data)

occupation_data = {'username': self.username, 'items': ['name']}
occupation_info = self.emit('occupation get', occupation_data)
if dict_key verify(occupation_info, 'name'):

info['occupation name'] = occupation_info['name’]

team_data = {'username': self.username, 'items': ['name']}
team_info = self.emit('team get', team_data)
if dict_key verify(team_info, 'name'):

info['team_name'] = team_info['name’]

team_leader_info = self.emit('team_get_ leaders')
if dict_key_verify(team_leader_info, 'leaders'):
if self.username in team_leader info['leaders']:
info['team_name'] += " (team lead)"

for key in profile_info.keys():
if dict_key_verify(profile_info, key):
info[key] = profile_info[key]

return info

def set_profile(self, item, new_value, username=None):
profile = ['name', 'role', 'biography']
occupation = ['occupation_name']

team = ['team_name']

if item in profile:
event = 'profile_set’

476

Jack Leverett 7714 50639

if item == 'name’:
new_values = new_value.split(" ")
if len(new_values) ==
items = ['first_name', 'last_name']
if item in occupation:

event = 'occupation_set’
item = 'name’
if item in team:
event = 'team_set'
item = 'name’

if type(item) != list:
items = [item]

if type(new_value) != list:
new_values = [new_value]

for value, item in zip(new_values, items):
data = {'username': None,'items': [item], item: value}
if username:
data['username'] = username
self.emit('profile set', data, None)

modules/session/session.py

import time
import sqlite3

class session_info():
def init (self):

self. logged_in = False
self.username = None
self.server _code = None
self.cycle_count = 0
self.auth_tokens []
self.transfer = None
self.status = None

@property

def logged _in(self):
return self._logged_in

@logged_in.setter

def logged in(self, value):
self. logged_in = value
self.cycle_count += 1

477

Jack Leverett 7714

@property

def transfer(self):
return self._transfer

@transfer.setter

def transfer(self, value):
self. transfer = value
self.cycle count += 1

def clear(self):
db().execute("DELETE FROM tokens™)
self. init_ ()

class wait():

def init (self, session):
self.session = session
self.update()

def update(self):
self.last = self.session.cycle count

self.current = self.session.cycle count

def current_update(self):

self.current = self.session.cycle count

def wait(self, status=None):
while self.last == self.current:
time.sleep(0.05)
self.current_update()
return

def wait_username(self):
while not self.session.username:
time.sleep(0.05)
return

class db():

478

def __init_ (self):
self.path = "./data/database.db"
self. create()

def _create(self):
con, cur = self._connect()

cur.execute("""CREATE TABLE IF NOT EXISTS tokens (
token TEXT NOT NULL PRIMARY KEY,

username TEXT NOT NULL,
expire TEXT NOT NULL

50639

Jack Leverett 7714 50639

)"

cur.execute("""CREATE TABLE IF NOT EXISTS settings (
title TEXT NOT NULL PRIMARY KEY,
description TEXT,
state BOOL,
value TEXT,
icon TEXT

)"

self. close(con)

def _connect(self):
con = sqlite3.connect(self.path)
cur = con.cursor()
return con, cur

def execute(self, command, values=None):
rez = None
con, cur = self. connect()

if values:

cur.execute(command, values)
else:

cur.execute(command)

if "SELECT" in command:
rez = cur.fetchall()

self. close(con)
if rez:
return rez

def commit(self, con):
con.commit()

def _close(self, con):
con.commit()
con.close()

class setting():
def __init_ (self, title):
self.title = title
self.db = db()
self. fetch()

def _ fetch(self):

479

Jack Leverett 7714 50639

setting data = self.db.execute("SELECT * FROM settings WHERE title = ?",
(self.title,))
if setting data:
self.title = setting_data[0][0]
self.description = setting_data[@][1]
if not self.description:
self.description = ""

if setting_data[@][3] != None:
self.value = setting_data[0][3]
self.type = "text field"

else:
self.value = setting_data[0][2]
self.type = "swtich"

if setting data[©][4] != None:
self.icon = setting_data[0][4]
else:
self.icon = "cog"

def change value(self, new_value):

if self.type == "swtich" and isinstance(new_value, bool):
self.db.execute("UPDATE settings SET state = ?", (new_value,))
elif self.type == "text field" and isinstance(new_value, str):

self.db.execute("UPDATE settings SET value = ?", (new_value,))

modules/session/time.py

from datetime import date, timedelta, datetime

class timestamp():

@property

def start(self):
value = self.get_date_timestamp()
self._start = value
return self._start

@start.setter

def start(self, value):
value = self.get_date_timestamp()
self._start = value

@property

def end(self):
value = self.get_date_timestamp(day_mod=1) - 1
self. _end = value

480

Jack Leverett 7714 50639

return self._end

@end.setter

def end(self, value):
value = self.get_date_timestamp(day_mod=1) - 1
self. end = value

@property

def now(self):
value = self.get_timestamp()
self. now = value
return value

@now. setter

def now(self, value):
value = self.get_timestamp()
self. now = value

@property
def date(self):
date = str(datetime.now().date())
self. date = date
return self. date
@date.setter
def date(self, value):
self. date = value

def get_date_timestamp(self, year_mod=0, month_mod=0, day_mod=0, *args,
**kwargs):
modifier = [year_mod, month_mod, day_mod]

now_mod = (datetime.now()+timedelta(days=day_mod))
date = (str(now_mod.date()).replace("-0", "-")).split("-")
date = [int(string) for string in date]
timestamp = datetime(date[@], date[1l], date[2]).timestamp()
return timestamp
def get_timestamp(self):
now = (float(datetime.now().timestamp()))
return now
def get_date(self, timestamp):
date = datetime.utcfromtimestamp(timestamp).strftime('%Y-%m-%d")

return date

def get_days_month(self, month, year):
pass

481

Jack Leverett 7714

modules/ui/beopen.kv

#UTILITY Widgets
<ScrollingView@MDScrollView>
do_scroll_y: True
do_scroll_x: False

<ScrollArea@MDFloatLayout>
padding: 20
size_hint_y: None

<ScrollAreaGrid@MDGridLayout>
padding: 10
cols: 1
size_hint_y: None

<ScrollAreaBox@ScrollAreaGrid>
MDBoxLayout:
orientation: "vertical"

<ScrollAreaBoxLayout@ ScrollAreaBox>

<HelpDialog>
text: "Help box"
text_color: "Black™"

<ExpandText>
text: "Expanded text"
font_style: "H6"

<ExpandPage>:
toolbar: toolbar
text_area: text_area

MDBoxLayout:
orientation: "vertical"

MDTopAppBar:
id: toolbar
title: ™
anchor _title: "right"

left_action_items: [["arrow-left", lambda x: root.back(app)]]

MDBoxLayout:
orientation: "vertical"
padding: 10

482

50639

Jack Leverett

ScrollingView:
ScrollArea:
id: text_area

<SwiperMagicButton>
opposite_colors: True
icon_size: 35

<MemoriesSwiper>
RelativeLayout:
orientation: "horizontal”

Fitimage:
source:
radius: [20,]

MDBoxLayout:
adaptive_height: True
orientation: "horizontal”
pos_hint: {top": 1}
spacing: 12
padding: 10

MDLabel:
text: "99"
font_style: "H5"
font_size: 20
size_hint_y: None
height: self.texture_size[1]
pos_hint: {"center_y": .5}
opposite_colors: True

<MemoriesMonth>
orientation: "vertical"
spacing: 10

MDLabel:
text: "Month placeholder"
font_style: "H5"
font_size: 40
size_hint_y: 0.1

MDGridLayout:
size_hint_y: 0.9
cols: 5
spacing: 10

row_default_height: root.get_memories_swiper_height()

483

50639

Jack Leverett 7714

<HomeSwiper>
account_button: account_button
profile_area: profile_area
RelativeLayout:
orientation: "horizontal"

Fitimage:
id: content
source: "
radius: [20,]

MDBoxLayout:
adaptive_height: True
orientation: "horizontal”
spacing: 12

MDBoxLayout:
orientation: "horizontal”
adaptive_width: True
adaptive_height: True

SwiperMagicButton:
id: like
icon: "heart-outline”
on_release:
root.like()

MDLabel:
id: like_number
text: "0"
font_style: "H5"
text_color: "white"
theme_text_color: "Custom”
pos_hint: {'center_x": 0.5, ‘center_y'": 0.5}

MDBoxLayout:
adaptive_height: True
orientation: "horizontal"

SwiperMagicButton:
icon: "comment-outline”
on_release:
root.switch_to_comments(app)

MDLabel:

id: caption
text: "Caption placeholder”

484

50639

Jack Leverett 7714 50639

adaptive_height: True

font_style: "H5"

text_color: "white"

theme_text_color: "Custom"

pos_hint: {'center_x": 0.5, ‘center_y'": 0.5}

MDBoxLayout:
id: profile_area
adaptive_height: True
orientation: "horizontal”
pos_hint: {top": 1}
spacing: "12dp"

SwiperMagicButton:
id: account_button
icon: "account-circle"
on_release: root.post_options(app)

MDLabel:
id: username
text: "Name Placeholder”
font_style: "H5"
size_hint_y: None
height: self.texture_size[1]
pos_hint: {"center_y": .5}
opposite_colors: True

<NoPostLabel>
MDBoxLayout:
orientation: "vertical"

MDLabel:
text: "No posts :("
font_style: "H4"
halign: "center"

<HomelLoadButton>
padding: 30

MDRaisedButton:
size_hint_x: 1
pos_hint: {"center_x": .5, "center_y": .95}
text: "Load more"
on_release:
root.load_content()

<OccupationPageButton>
text: "Occupations”

485

Jack Leverett 7714

pos_hint: {'center_x": 0.5}
on_release: root.switch_to_occupation(app)
size_hint_x: 0.8

<OrganisationBottomltem>
occupation_button_area: occupation_button_area
team_button_area: team_button_area
name: "Organisation”
text: "Organisation”
icon: "account-group”
on_tab_press: root.page.on_tab_press(self.name)

MDBoxLayout:
orientation: "vertical"
padding: 20

ScrollingView:
ScrollAreaBoxLayout:
spacing: 50

MDBoxLayout:
id: occupation_button_area

MDBoxLayout:
id: team_button_area

MDRaisedButton:
text: "Teams"
pos_hint: {'center_x": 0.5}
on_release: root.switch_to_team(app)
size_hint_x: 0.8

<MemoryLayout>
post_area: post_area
orientation: "vertical"
spacing: 10

MDlIconButton:
icon: "arrow-up"
on_release: root.day _list.back()

MDBoxLayout:
id: post_area
orientation: "vertical"

<MonthListltem>
on_release: root.day_view()

486

50639

Jack Leverett 7714

<MonthList>
scroll: scroll
orientation: "vertical"
spacing: 10

MDScrollView:
do_scroll_x: False
do_scroll_y: True

MDList:
id: scroll

<DayListltem>
on_release: root.post_open()

<DayList>
scroll: scroll
orientation: "vertical"
spacing: 10

MDlconButton:
icon: "arrow-up"
on_release: root.back()

MDScrollView:
do_scroll_x: False
do_scroll_y: True

MDList:
id: scroll

<HomePage>:
home_swiper_scroll:home_swiper_scroll
home_swiper_grid:home_swiper_grid
bottom_navigation: bottom_navigation
toolbar: toolbar
root_scroll: root_scroll

MDBoxLayout:
orientation: "vertical"

MDTopAppBar:
title: "BeOpen"
id: toolbar
anchor _title: "left"

right_action_items: [['help”, lambda x: root.open_help(app)], ['cog", lambda x:

root.switch_to_settings(app, 'left)]]

487

50639

Jack Leverett 7714 50639

left_action_items: [[*account-circle”, lambda x: root.switch_to_account(app,
direction="right")],["bell", lambda x: root.switch_to_notifications(app, direction="right')]]
md_bg_color: app.theme_cls.primary_color

MDBottomNavigation:
id: bottom_navigation

MDBottomNavigationltem:
name: "Home"
text: "Home"
icon: "home"
on_tab_press: root.on_tab_press(self.name)

MDBoxLayout:
padding: 20
size_hint: 1,1

MDScrollView:
id:home_swiper_scroll
do_scroll_x: False
do_scroll_y: True

MDGridLayout:
id:home_swiper_grid
cols: 1
spacing: 10
adaptive_height: True

MDBottomNavigationltem:
name: "Memories"
text: "Memories"
icon: "image-multiple”
on_tab_press: root.on_tab_press(self.name)

MDBoxLayout:
padding: 20

MDBoxLayout:
id: root_scroll
orientation: "vertical"

MDBottomNavigationltem:
name: "Stats"
text: "Stats"
icon: "poll"
on_tab_press: root.on_tab_press(self.name)

MDLabel:

488

Jack Leverett

text: "Coming Soon!"
font_size: "50sp”
halign: "center"

Comments Widgets
<Comment>
like_button: like_button
profile_button: profile_button
like_count: like_count
container: container
text: "
secondary_text: ™"
on_release: root.expand(app)
on_size:

self.ids._right_container.width = container.width
self.ids._right_container.x = container.width

IconLeftWidget:
id: profile_button
icon: "account”

on_release: root.action_options(app)

CommentContainer:
id: container
adaptive_width: True

MDlIlconButton:
id: like button
icon: "heart-outline"
on_release: root.like()

MDLabel:
id: like_count
text: "3000"
halign: "right"

<CommentsPage>:
comment_stack: comment_stack
comment_field: comment_field

MDBoxLayout:
orientation: "vertical"

MDBoxLayout:
padding: 10
size_hint: 1, 0.15
orientation: "vertical"

489

50639

Jack Leverett 7714

AnchorLayout:
anchor_x: 'center'
anchor_y: 'top'

MDlconButton:
icon: "menu-up"
icon_size: "64sp”
icon_color: app.theme_cls.primary_color
on_release:
root.switch_to_home(app)

MDBoxLayout:
orientation: "vertical"
padding: 10
spacing: 20

ScrollingView:
MDList:
id: comment_stack

MDRelativeLayout:
size_hint_y: None
height: comment_field.height
pos_hint: {"bottom™: 0.5}

MDTextField:
id: comment_field
hint_text: "Enter your comment here..."
icon_left: "comment"
mode: "rectangle”

MDIconButton:
icon: "send"
post_hint: {"center_y": 0.5}

pos: comment_field.width - self.width + dp(8), O

on_release: root.submit()

account widgets
<ProfilePicture>
size_hint_x: 0.4
pos_hint: {"center_x": .5}
source: "data/assets/profile.png"”

<InfoChangeBox>
pos_hint: {"center_y": .5}
text_field: text_field
spacing: 10

490

50639

Jack Leverett 7714

MDTextField:
id: text_field
hint_text: "Enter a new value"
on_text_validate: root.save()
mode: "rectangle”
size_hint_x: 0.8
pos_hint: {"center_y": .5}

MDRaisedButton:
text: "Save"
on_release: root.save()
size_hint_x: 0.2
pos_hint: {"center_y": .5}

<InfoChangeBoxOld>
pos_hint: {"center_y": .5}
hint_text: "Enter a new value"
mode: "rectangle”
on_text_validate:
self.submit_func()

<InfoEditButton>
icon: "pencil”
on_release:
self.change_info()

<BioEditButton>
icon: "pencil”
size_hint_x: 0.1
pos_hint: {"center_y": .5}
on_release:
self.change_info()

<ProfileInfo>
text: "
secondary_text: "None"

<UserOccupationChange>
orientation: "vertical"
spacing: 20
occupation_select: occupation_select
request_title: request title
request_occupation: request_occupation
request_status: request_status
request_cancel: request_cancel
request_button: request_button
occupation_description: occupation_description

491

50639

Jack Leverett 7714

MDBoxLayout:
id: new_request_area
orientation: "vertical"

MDLabel:
id: new_request_title
text: "new request"
font_style: 'H5'
pos_hint: {'center_x": .5}
size_hint_y: 0.1

MDBoxLayout:
orientation: "horizontal”
size_hint_y: 0.9
spacing: 10

MDRaisedButton:
id: occupation_select
text: "Select an occupation”
pos_hint: {'center_x': .5, ‘center_y" .5}
on_release: root.selection_menu()

MDLabel:
id: occupation_description
text: ™
font_style: 'H6'
pos_hint: {'center_x': .5, ‘center_y" .5}

MDRaisedButton:
id: request_button
text: "Create request"
pos_hint: {'center_y'": .5}
on_release: root.submit()

MDBoxLayout:
orientation: "horizontal"

MDBoxLayout:
orientation: "vertical"
spacing: 10

MDLabel:
id: request _title
text: "current request”
font_style: 'H5'
MDLabel:
id: request_occupation
text: "

492

50639

Jack Leverett 7714
font_style: 'H5'

MDLabel:
id: request_status
text: "Status: No request"
font_style: 'H6'
pos_hint: {'right": 1}

MDRaisedButton:
id: request_cancel
text: "Cancel"
pos_hint: {"center_y": .5}
on_release: root.cancel()

<ManagementOccupationChange>
orientation: "vertical"
spacing: 20
occupation_select: occupation_select
occupation_description: occupation_description
set_button: set_button

MDBoxLayout:
orientation: "vertical"

MDLabel:
text: "Change occupation”
font_style: 'H5'
pos_hint: {'center_x": .5}
size_hint_y: 0.1

MDBoxLayout:
orientation: "horizontal”
size_hint_y: 0.9
spacing: 10

MDRaisedButton:
id: occupation_select
text: "Select an occupation”
pos_hint: {'center_x': .5, ‘center_y" .5}
on_release: root.selection_menu()

MDLabel:
id: occupation_description
text: "Occupation description”
font_style: 'H6'
pos_hint: {'center_x': .5, ‘center_y" .5}

MDRaisedButton:

493

50639

Jack Leverett 7714

id: set_button

text: "Create request”
pos_hint: {'center_y'": .5}
on_release: root.submit()

<AccountPage>:
name: 'account_page_screen'

toolbar: toolbar

profile_info_view: profile_info_view
profile_bio_view: profile_bio_view
biography_content: biography_content
above_info: above_info

MDBoxLayout:
orientation: "vertical"
spacing: 10

MDTopAppBar:
id: toolbar
title: "Profile"
anchor_title: "center"”

left_action_items: [[*account-multiple”, lambda x: root.switch_to_friend(app)]]

50639

right_action_items: [['help”, lambda x: root.open_help(app)], ['arrow-right", lambda x:

root.back(app, "left")]]
md_bg_color: app.theme_cls.primary_color

MDBoxLayout:
orientation: "vertical"
size_hint_y: 0.8

MDBoxLayout:
orientation: "vertical"
size_hint_y: 0.70
padding: 15
spacing: 10

MDBoxLayout:
id: above_info
size_hint_y: 0.3

MDScrollView:
size_hint_y: 0.45

MDList:
id: profile_info_view

MDBoxLayout:

494

Jack Leverett 7714 50639

size_hint_y: 0.25
orientation: "vertical"
spacing: 10

MDLabel:
size_hint_y: 0.1
text: "Biography"
font_style: "H5"

MDBoxLayout:
id: profile_bio_view
orientation: "horizontal"
size_hint_y: 0.9

ScrollView:
size_hint_x: 0.9
do_scroll_x: False
do_scroll_y: True

MDLabel:
id: biography_content
size_hint_y: None
size: self.texture_size
text: "
font_style: "H6"

Settings widgets

<SettingSwitch>
setting_title: setting_title
setting_description: setting_description
toggle: toggle
setting_icon: setting_icon

AnchorLayout:
anchor_x: 'right'
anchor_y: 'center’
padding: 20

MDBoxLayout:
orientation: "horizontal”
adaptive_height: True
spacing: 20

MDlIcon:
id: setting_icon
icon: "language-python"

MDBoxLayout:

495

Jack Leverett 7714

orientation: "vertical"
spacing: 20

MDLabel:
id: setting_title
text: "switch 1"
font_size: "30sp”
text color:0,1,1,1

MDLabel:
id: setting_description
text: "description text"
text color:0,0,1, 1

MDSwitch:
id: toggle
on_active: root.on_toggle(app)

<SettingTextField>
setting_title: setting_title
setting_description: setting_description
input_field: input_field
setting_icon: setting_icon

AnchorLayout:
anchor_x: 'right'
anchor_y: 'center’
padding: 20

MDBoxLayout:
orientation: "horizontal”
adaptive_height: True
spacing: 20

MDlIcon:
id: setting_icon
icon: "language-python"

MDBoxLayout:
orientation: "vertical"
spacing: 20

MDLabel:
id: setting_title
text: "switch 1"
font_size: "30sp”
text _color: 0,1,1,1

496

50639

Jack Leverett 7714

MDLabel:
id: setting_description
text: "description text"
text color:0,0,1, 1

MDTextField:
id: input_field
hint_text: "default hint text"
helper_text mode: "on_error"
helper_text: "default helper text"
on_text_validate: root.submit_func()

<SettingTextFieldOld>
hint_text: "default hint text"
helper_text_mode: "on_error"
helper_text: "default helper text"
on_text_validate: root.submit_func()

<ShutdownButton>
text: "Shutdown server"
size_hint_x: 0.8
pos_hint: {'center_x": 0.5}
on_release: root.shutdown(app)

<SettingsPage>:
settings_stack: settings_stack
static_buttons: static_buttons
toolbar: toolbar

MDBoxLayout:
orientation: "vertical"

MDTopAppBar:
id: toolbar
title: "Settings”
anchor _title: "center"

left_action_items: [["arrow-left", lambda x: root.back(app)]]
right_action_items: [['help”, lambda x: root.open_help(app)]]

md_bg_color: app.theme_cls.primary_color

MDBoxLayout:
orientation: "vertical"
padding: 20
spacing: 10

MDBoxLayout:

id: settings_stack
orientation: "vertical"

497

50639

Jack Leverett 7714
spacing: 10

MDBoxLayout:
orientation: "vertical"
spacing: 10
id: static_buttons

MDRaisedButton:
text: "Log out"
size_hint_x: 0.8
pos_hint: {'center_x": 0.5}
on_release: root.logout(app)

notification widgets
<Notificationltem>
text: "
secondary_text: "™
on_release:
root.expand()

IconRightWidget:
icon: "close"
on_release:

root.delete()

<NotificationsPage>:
toolbar: toolbar
notification_layout: notification_layout
notification_stack: notification_stack

MDBoxLayout:
orientation: "vertical"
spacing: 10

MDTopAppBar:
id: toolbar
title: "Notifications"
anchor _title: "center"

left_action_items: [["refresh”, lambda x: root.load_content()]]

50639

right_action_items: [['help”, lambda x: root.open_help(app)], ['arrow-right", lambda x:

root.back(app)]]
MDBoxLayout:
id: notification_layout
orientation: "vertical"
size_hint_y: 0.9

MDScrollView:

498

Jack Leverett 7714

size_hint_y: 1
do_scroll_y: True

MDList:
id: notification_stack

friends widgets
<Friendltem>

text: "Friend"

on_release: root.profile(app)

IconRightWidget:
icon: "account-remove"
on_release:
root.remove()

<FriendPage>:
toolbar: toolbar
friend_list: friend_list

MDBoxLayout:
orientation: "vertical"
spacing: 10

MDTopAppBar:
id: toolbar
title: "Friends”
anchor_title: "center"”

left_action_items: [[*help"”, lambda x: root.open_help(app)]]
right_action_items: [["arrow-right", lambda x: root.switch_to_account(app)]]

MDBoxLayout:
orientation: "vertical"

MDRaisedButton:
text: "Requests"

on_release: root.switch_to_friend_request(app)

size_hint_x: 0.9
pos_hint: {'center_x': 0.5}

ScrollingView:
MDList:
id: friend_list

<IncomingRequestltem>

text: "Incoming Request"
on_release: root.profile(app)

499

50639

Jack Leverett 7714

IconLeftWidget:
icon: "check"
on_release:

root.accept()

IconRightWidget:
icon: "close"
on_release:

root.reject()

<QutgoingRequestltem>
text: "Outgoing Request”
on_release: root.profile(app)

IconRightWidget:
icon: "close"
on_release:

root.cancel()

<Recomendationltem>
text: "Recomended friend"
on_release: root.profile(app)

IconRightWidget:
icon: "account-plus”
on_release:

root.add_friend()

<FriendRequestPage>:
toolbar: toolbar
incoming_requests: incoming_requests
outgoing_requests: outgoing_requests
recomendations: recomendations
username_select: username_select

MDBoxLayout:
orientation: "vertical"

MDTopAppBar:
id: toolbar
title: "Requests”
anchor _title: "center"

left_action_items: [["refresh”, lambda x: root.load_content()]]
right_action_items: [["arrow-right", lambda x: root.switch_to_friend(app)]]

MDBoxLayout:
size_hint_y: 0.1
orientation: "horizontal”
spacing: 10

500

50639

Jack Leverett 7714
padding: 10

MDTextField:
id: username_select
mode: "rectangle”
hint_text: "Enter a username”
pos_hint: {'center_y'": 0.5}

MDRaisedButton:
text: "Request”
on_release: root.add_friend_search()
pos_hint: {'center_y": 0.5}

MDBoxLayout:
orientation: "vertical"
size_hint_y: 0.2

MDBoxLayout:
orientation: "vertical"
padding: 10
MDLabel:

text: "Recomendations"
font_style: "H5"
size_hint_y: 0.1

MDBoxLayout:
size_hint_y: 0.9
padding: 10
ScrollingView:

MDList:
id: recomendations

MDBoxLayout:
orientation: "vertical"
padding: 10
size_hint_y: 0.7

MDBoxLayout:
orientation: "vertical"
MDLabel:
text: "Incoming Requests”
font_style: "H5"
size_hint_y: 0.1

MDBoxLayout:
size_hint_y: 0.9
padding: 10
ScrollingView:

501

50639

Jack Leverett 7714

MDList:
id: incoming_requests

MDBoxLayout:
orientation: "vertical"
MDLabel:
text: "Outgoing Requests”
font_style: "H5"
size_hint_y: 0.1

MDBoxLayout:
size_hint_y: 0.9
padding: 10
ScrollingView:

MDList:
id: outgoing_requests

management widgets
<ManageOccupationChange>
orientation: "vertical"
change_button: change_button
occupation_select: occupation_select
occupation_description: occupation_description
username_select: username_select

MDLabel:

text: "Change a users occupation (this will change their team)”

font_style: 'H5'
pos_hint: {'center_x". .5}
size_hint_y: 0.1

MDBoxLayout:
orientation: "horizontal"
size_hint_y: 0.9

MDTextField:
id: username_select
hint_text: "Enter a username”

MDRaisedButton:
id: occupation_select
text: "Select an occupation”
pos_hint: {'center_x': .5, ‘center_y". .5}
on_release: root.selection_menu()

MDLabel:

id: occupation_description
text: "Occupation description”

502

50639

Jack Leverett 7714

font_style: 'H6'
pos_hint: {'center_x": .5, 'center_y": .5}

MDRaisedButton:
id: change_button
text: "Change occupation”
pos_hint: {'center_y": .5}
on_release: root.submit()

<Occupationltem>
text: "Occupation name"
secondary_text: "Description”

IconLeftWidget:
icon: "close"
on_release:

root.delete()

IconRightWidget:
icon: "pencil”
on_release:

root.edit()

<OccupationRequestitem>
text: "Username”
secondary_text: "Occupation name"
tirtiary _text: "Description”

IconRightWidget:
icon: "check"
on_release:

root.accept()

IconLeftWidget:
icon: "close"
on_release:

root.reject()

<OccupationEdit>
orientation: "vertical"
spacing: 10

MDLabel:
text: "Edit occupation”
font_style: "H5"
size_hint_y: 0.1
MDTextField:
id: name
mode: "rectangle”

503

50639

Jack Leverett 7714

hint_text: "Name"

size_hint_x: 1

size_hint_y: 0.35
MDTextField:

id: description

mode: "rectangle”

hint_text: "Description”

size_hint_x: 1

size_hint_y: 0.35
MDRaisedButton:

text: "Done"

size_hint_x: 1

on_release: root.submit()

size_hint_y: 0.2

<OccupationCreate>
orientation: "vertical"
spacing: 10

MDLabel:
text: "Create an occupation”
font_style: "H5"
size_hint_y: 0.1
MDTextField:
id: name
mode: "rectangle”
hint_text: "Name"
size_hint_x: 1
size_hint_y: 0.35
MDTextField:
id: description
mode: "rectangle”
hint_text: "Description”
size_hint_x: 1
size_hint_y: 0.35
MDRaisedButton:
text: "Done"
size_hint_x: 1
on_release: root.create()
size_hint_y: 0.2

<OccupationPage>:
toolbar: toolbar
occupations: occupations
edit_area: edit_area

MDBoxLayout:
orientation: "vertical"

504

50639

Jack Leverett 7714 50639
spacing: 10

MDTopAppBar:
id: toolbar
title: "Occupation”
anchor_title: "center"
left_action_items: [["arrow-left", lambda x: root.back(app)]]
right_action_items: [['help”, lambda x: root.open_help(app)]]

MDRaisedButton:
text: "Requests"
on_release: root.switch_to_occupation_request(app)
size_hint_x: 0.9
pos_hint: {'center_x'": 0.5, 'center_y". 0.5}

MDBoxLayout:
id: edit_area
orientation: "vertical"
padding: 15

MDBoxLayout:
orientation: "vertical"
padding: 15

MDLabel:
text: "Occupations”
font_style: "H5"
size_hint_y: 0.1

MDBoxLayout:
size_hint_y: 0.9
padding: 10
ScrollingView:

MDList:
id: occupations

<OccupationRequestPage>:
toolbar: toolbar
change_requests: change_requests

MDBoxLayout:
orientation: "vertical"
spacing: 10

MDTopAppBar:
id: toolbar
title: "Requests”
anchor_title: "center"

505

Jack Leverett 7714 50639

left_action_items: [["arrow-left", lambda x: root.back(app)]]
right_action_items: [['refresh", lambda x: root.load_content()]]

MDBoxLayout:
orientation: "vertical"
padding: 10

MDLabel:
text: "Occupation change requests”
font_style: "H5"
size_hint_y: 0.1

MDBoxLayout:
size_hint_y: 0.9
padding: 10
ScrollingView:

MDList:
id: change_requests

<Leaderltem>
IconRightWidget:
icon: "close"
on_release: root.delete()

<AddLeaderButton>
text: "Add leader”
size_hint_x: 0.8
on_release: root.add_leader()
pos_hint: {'center_x": 0.5}

<AddLeader>
orientation: "vertical"
spacing: 10

MDLabel:
text: "Add a leader"
font_style: "H5"
size_hint_y: 0.2

MDTextField:
id: username
mode: "rectangle”
hint_text: "Name"
size_hint_y: 0.5

MDRaisedButton:
text: "Done"
on_release: root.submit()
size_hint_y: 0.3
size_hint_x: 1

506

Jack Leverett 7714

<ChangeNameButton>
text: "Change team name"
size_hint_x: 0.8
on_release: root.change_name()
pos_hint: {'center_x": 0.5}

<ChangeName>
orientation: "vertical"
spacing: 10

MDLabel:
text: "Change team name"
font_style: "H5"
size_hint_y: 0.2
MDTextField:
id: name
mode: "rectangle”
hint_text: "Name"
size_hint_y: 0.5
MDRaisedButton:
text: "Done"
on_release: root.submit()
size_hint_y: 0.3
size_hint_x: 1

<TeamPage>:
toolbar: toolbar
members: members
leaders: leaders
team_name: team_name
edit_area: edit_area

MDBoxLayout:
orientation: "vertical"
spacing: 10

MDTopAppBar:
id: toolbar
title: "Team"
anchor _title: "center"

left_action_items: [["arrow-left", lambda x: root.back(app)]]
right_action_items: [['help”, lambda x: root.open_help(app)], ['refresh”, lambda x:

root.load_content()]]
MDBoxLayout:

orientation: "vertical"
padding: 10

507

50639

Jack Leverett 7714
spacing: 10

MDBoxLayout:
orientation: "vertical"

MDLabel:
id: team_name
text: "
font_style: "H5"
font_size: 30
pos_hint: {'center_x": 0.93}
size_hint_y: 0.1

MDBoxLayout:
id: edit_area
orientation: "vertical"
size_hint_y: 0.9
spacing: 10

MDBoxLayout:
orientation: "vertical"
MDLabel:

text: "Leader"
font_style: "H5"
size_hint_y: 0.1

MDBoxLayout:
size_hint_y: 0.9
padding: 10
ScrollingView:

MDList:
id: leaders

MDBoxLayout:
orientation: "vertical"
MDLabel:

text: "Members"
font_style: "H5"
size_hint_y: 0.1

MDBoxLayout:
size_hint_y: 0.9
padding: 10
ScrollingView:

MDList:
id: members

auth widgets

508

50639

Jack Leverett 7714

<PasswordField>
size_hint_y: None
height: password_field.height
text: password_field.text

MDTextField:
id: password_field
hint_text: "Password"
text: "
password: True
mode: "rectangle”
icon_left: "key-variant"

MDlconButton:

icon: "eye-off"

pos_hint: {"center_y": 0.45}

pos: password_field.width - self.width + dp(8), O

theme_text_color: "Hint"

on_release:
self.icon = "eye" if self.icon == "eye-off" else "eye-off"
password_field.password = False if password_field.password is True else True

<AuthField>
adaptive_height: True
mode: "rectangle”
hint_text: "™

<AuthButton>
text: "auth”
pos_hint: {'center_x": 0.5}
size_hint_x: 0.5
on_release:
self.action(app)

<LoginPage>:
login_view: login_view

MDBoxLayout:
orientation: "vertical"
spacing: 10

MDTopAppBar:
title: "Login"
anchor _title: "center

MDGridLayout:
id: login_view
padding: 20

509

50639

Jack Leverett 7714

spacing: 10
row_default_height: 50
cols: 1

rows: 4

<RegisterPage>:
register_view: register_view

MDBoxLayout:
orientation: "vertical"
spacing: 10

MDTopAppBar:
title: "Register"
anchor_title: "center"”

left_action_items: [["arrow-left", lambda x: app.set_screen("LoginPageScreen”,

"right”)]]

MDGridLayout:
id: register_view
padding: 20
spacing: 10
row_default_height: 50
cols: 1
rows: 6

<ServerPage>:
url: url
MDBoxLayout:
orientation: "vertical"
spacing: 10

MDTopAppBar:
title: "Select Server"
anchor _title: "center"

MDGridLayout:
padding: 20
spacing: 10
row_default_height: 50
cols: 1
rows: 2

MDTextField:
id: url
adaptive_height: True
mode: "rectangle"
hint_text: "Server URL"

510

50639

Jack Leverett 7714
helper_text: "Remember to start with http:// or https://"

MDRaisedButton:
text: "Connect"
pos_hint: {'center_x": 0.5}
size_hint_x: 0.5
on_release:
root.connect(app)

<Sharelnput>
pos_hint: {'center_y'": 0.5}
spacing: 10
share_num: share_num
share_secret: share_secret

MDTextField:
id: share_num
mode: "rectangle”
hint_text: "Share Number"
size_hint_x: 0.2

MDTextField:
id: share_secret
password: True
mode: "rectangle”
hint_text: "Share Secret"
helper_text: "This is the secret provided by the admin”
size_hint_x: 0.8

<DecryptPage>:
input_area: input_area
en_password: en_password
MDBoxLayout:
orientation: "vertical"
spacing: 10

MDTopAppBar:
title: "Decrypt Server Database"
anchor _title: "center"

MDBoxLayout:
orientation: "vertical"
padding: 20
spacing: 20

MDTextField:

id: en_password
password: True

511

50639

Jack Leverett 7714 50639

mode: "rectangle"

hint_text: "Master password"

helper_text: "This can still be used even if Shamir Secret Sharing is enabled”
size_hint_x: 0.8

pos_hint: {'center_x": 0.5}

MDBoxLayout:
id: input_area
orientation: "vertical"

MDRaisedButton:
text: "Submit"
pos_hint: {'center_x": 0.5}
size_hint_x: 0.8
on_release: root.submit()

<CameraPage>:
camera_area: camera_area
toolbar: toolbar

MDBoxLayout:
orientation: "vertical"
spacing: 10

MDTopAppBar:
id: toolbar
title: "Time left: "
anchor_title: "center"”
left_action_items: [[*arrow-up”, lambda x: root.exit(app)]]
right_action_items: [['help”, lambda x: root.open_help(app)]]

MDBoxLayout:
id: camera_area
orientation: "vertical"
size_hint_y: 0.7
padding: 10

MDBoxLayout:
orientation: "vertical"
size_hint_y: 0.2
padding: 10
MDIconButton:
icon: "camera"
on_release: root.capture(app)
pos_hint: {'center_x": 0.5, 'center_y'": 0.5}

<PostReviewPage>:

512

Jack Leverett 7714

image: image
caption: caption
toolbar: toolbar

MDBoxLayout:
orientation: "vertical"
spacing: 10

MDTopAppBar:
id: toolbar
title: "Time left: "
anchor_title: "center"”
left_action_items: [[*arrow-up”, lambda x: root.exit(app)]]
right_action_items: [['help”, lambda x: root.open_help(app)]]

MDBoxLayout:
orientation: "vertical"
size_hint_y: 0.1
padding: 10

MDRaisedButton:
text: "Retake photo?"
on_release: root.retake(app)
size_hint_x: 1
pos_hint: {'center_y": 0.5}

MDBoxLayout:
id: image_area
orientation: "vertical"
size_hint_y: 0.5
padding: 10

Fitimage:
id: image
source: ™

MDBoxLayout:
orientation: "vertical"
size_hint_y: 0.3
padding: 15
spacing:10

MDTextField:
id: caption
hint_text: "Caption”
helper_text: "This text will appear alongside your photo"
size_hint_x: 1

513

50639

Jack Leverett 7714

MDRaisedButton:
text: "Post"
size_hint_x: 1
on_release: root.post(app)

<FirstTimePage>:
name_input: name_input
role_input: role_input

MDBoxLayout:
orientation: "vertical"
spacing: 10
padding: 20

MDBoxLayout:
id: stepO
orientation: "vertical"
size_hint_y: 0.1

MDLabel:

50639

text: "Before doing anything else, please download the ntfy app or navigate to your

organisations ntfy site. Then subscribe to the topic:"

font_style: "H6"

MDLabel:
id: topic_name
text: "Could not fetch topic name"
font_style: "H5"

MDBoxLayout:
id: stepl
orientation: "vertical"
size_hint_y: 0.15

MDLabel:
text: "Step 1: Tell us your name"

MDTextField:
id: name_input
hint_text: "Name"

MDBoxLayout:
id: step2
orientation: "vertical"
size_hint_y: 0.15

MDLabel:

text: "Step 2: Let everyone know your role in the organisation”

514

Jack Leverett 7714 50639

MDTextField:
id: role_input
hint_text: "Role"

MDBoxLayout:
id: step3
orientation: "vertical"
size_hint_y: 0.3

MDLabel:
text: "Step 3: Request to set your occupation, people with the same occupation will be
grouped together into the same team. People in the same team will be able to see
eachothers posts”

MDBoxLayout:
id: summary
orientation: "vertical"
size_hint_y: 0.3

MDLabel:
text: "Management or an admin will approve your request soon!\nFor now head over
to the friends page and send some friend requests”
MDLabel:
text: "To get there click the profile button in the top left hand corner the homepage,
and then click the friends button in the top left hand corner on the profile page”

MDRaisedButton:
text: "Done"
size_hint_x: 0.8
pos_hint: {'center_x': 0.5}
on_release: root.done(app)

data/assets/help.txt

[Home:START]
(title:START)
Home page
(title:END)

(body:START)
This is your home page, below you will is where you will see your friends posts.
In the top left corner is your "profile” there you will be able to see all about you, and find
friends
Next to that is yout notifications to keep you up-to-date with your colleges
Your settings panel is in the top left and additional areas are available in the navigation
panel at the bottom of the page
(body:END)

515

Jack Leverett 7714 50639
[Home:END]

[Memories:START]
(title:START)
Memories page
(title:END)

(body:START)
Here is where you will see your own historical posts. This means posts from previous
days.
Just select a month and then the day of the month and you will see your old post. You
can still like
and comment on it but others will not be able to see these interactions.
(body:END)
[Memories:END]

[Organisation:START]
(title:START)
Organisation page
(title:END)

(body:START)
Here you will see the navigation to your teams panel, and soon some infomation about
your organisations
Your teams panel is where you will be able to see all about your team.

You can only be part of one organisation, since your account is specifically tied to it.
(body:END)
[Organisation:END]

[Organisation-admin:START]
(title:START)
Organisation page
(title:END)

(body:START)

Here you will see the navigation to your teams panel, and soon some infomation about
your organisations

Your teams panel is where you will be able to see all about your team.

Additionally since your are management/admin staff you can see the occupation area
here you can accept and reject occupation change requests, create new occupations and
edit or delete current ones.

(body:END)
[Organisation-admin:END]

[Profile:START]

(title:START)
Profile page

516

Jack Leverett 7714 50639
(title:END)

(body:START)
This page you can see all the infomation about the profile your viewing. For your own
profile you should see edit buttons next to some of infomation this means you can change
or request to change this info.

Your role is simply how you describe your role in your team for instance "assistant”
Your occupation determines what team you are put into, you can only be part of 1 team
at a time.
(body:END)
[Profile:END]

[Notifications:START]
(title:START)
Notifications page
(title:END)

(body:START)

Here you will see notifications from your organisations admins and management, as
well notifications about people interacting with your posts and when its time to make your
post.

(body:END)
[Notifications:END]

[Settings:START]
(title:START)
Settings page
(title:END)

(body:START)
This is where you can configure some options, for instance to stop seeing these help
buttons toggle "Help Dialogs".
(body:END)
[Settings:END]

[Team:START]

(title:START)

Teams page
(title:END)

(body:START)
Your sorted into a team via your occupation, each occupation will have a team
associated with it.
People in the same team as you will see your posts and you will see theres. This means
you will see posts from
your team alongside posts from your friends.

517

Jack Leverett 7714 50639

Team leaders act as the moderator for the team. This means they can delete your posts
and comments even if your
commenting on your friends posts.
(body:END)
[Team:END]

[Occupation:START]
(title:START)
Occupations page
(title:END)

(body:START)

Here you can change edit and delete the occupations in your organisation, this panel is
only available for management and admins.

You can also approve and deny occupation change requests here. For a member to
change their occupation they have to submit an occupation change request including what
occupation they want to switch to. This request must be approved by management or
above. Once approved the member is switched to their new team.

(body:END)
[Occupation:END]

[Friends:START]
(title:START)
Friends page
(title:END)

(body:START)

In BeOpen you dont follow people but friend people, this means both people accepted
to be friends with eachother. Meaning you both see eachothers posts in your feed.

On this page you will be able to see your current friends and remove them if wanted. On
the requests page (button below) you can send new friend requests, and approve or deny
current friend requests. On that page is also a list of recomended friends based on mutal
friends.

To send a friend request to someone (who isnt in the recomended) type their username
into the request box, their username has to match exactly.
(body:END)
[Friends:END]

[Camera:START]
(title:START)
Making a post
(title:END)

(body:START)
You will be able to make one of these posts once a day, you will see the countdown at
the top this is how long you have to post. After this time has run out you will not be able to
post for that day.

518

Jack Leverett 7714 50639

To make a post just take a picture of whatever your doing right now and head onto the
next screen.
(body:END)
[Camera:END]

[PostReview:START]
(title:START)
Making a post
(title:END)

(body:START)

Here you can review the image you just took and retake it if needed.

You can also add a caption to your post, note that you cannot edit a post after its been
created you can however delete it. So be sure this is what you want to post today since
deleting means you will have to wait till tomorrow to post again.

When your ready just hit post!

(body:END)
[PostReview:END]

org.flatpak.BeOpen.yml

id: org.flatpak.BeOpen
runtime: org.freedesktop.Platform
runtime-version: '23.08'
sdk: org.freedesktop.Sdk
command: runner.sh
modules:
- python3-requirements.json
- name: cpython
sources:
- type: archive
url: https://www.python.org/ftp/python/3.6.5/Python-3.6.5.tar.xz
sha256: f434053balb5c8a5cc597e966ead3c5143012af8271d310697d21450bb8d87a6
- name: runner
buildsystem: simple
build-commands:
- install -D main.py /app/main.py
- install -D modules /app/modules
- install -D runner.sh /app/bin/runner.sh
sources:
- type: file
path: ../runner.sh
- type: file
path: ../main.py
- type: dir
path: ../modules

519

Jack Leverett 7714 50639

python3-requirements.json
{

"name": "python3-requirements"”,
"pbuildsystem": "simple",
"build-commands": [],
"modules": [
{
"name": "python3-python-socketio",
"pbuildsystem": "simple",
"build-commands": [
"pip3 install --verbose --exists-action=i --no-index --find-
links=\"file://${PWD}\" --prefix=${FLATPAK DEST} \"python-socketio==5.8.0\" --no-
build-isolation™

1,

"sources": [
{
"type": "file",
"url": "https://files.pythonhosted.org/pack-
ages/b5/82/ce@b6380f35f49d3fe687979a324c342cta358838023213801db9dd62f9%e/bidict-
0.22.1-py3-none-any.whl",

"sha256":
"6e1212238eb884b6641f28da76f3311d28b260f665Ffc737b413b287d5487d1e7b"
s
{

"type": "file",

"url": "https://files.pythonhosted.org/pack-
ages/95/04/ff642e65ad6b90db43e668d70ffb6736436c7cedlfcc54914e9472234127/h11-0.14.0-
py3-none-any.whl",

"sha256":
"e3fed4ac4b851c468cc8363d500db52c2eadd36020723024a109d37346efaa761"
s
{

"type": "file",

"url": "https://files.pythonhosted.org/pack-
ages/4f/ca/bl4136484c9a10230abbf44a89041ccd2c696d0cb425e53f48ca@de@dle? /python_en-
gineio-4.8.2-py3-none-any.whl",

"sha256":
"a357f0aba275c311b66122181472ed5b174bbc541742eealdl6feae2falatabd”
s
{

"type": "file",

"url": "https://files.pythonhosted.org/pack-
ages/5d/e9/1296186e2a9111472b9da74346163411196dc1bl7f425acf088f293b32cc/py-
thon_socketio-5.8.0-py3-none-any.whl",

520

Jack Leverett 7714 50639

"sha256":
"7adb8867aac1c2929b9c1429f1c02el2cadc36b67c807967393e367dfbbo1441"
s
{

"type": "file",

"url": "https://files.pythonhosted.org/pack-
ages/6d/ea/288a8ac1d9551354488ff60cPac6a76acc3b6b60f0460acl944c75e240da/simple_web-
socket-1.0.0-py3-none-any.whl",

"sha256":
"1d5bf585e415eaa2083e2bcf02a3ecf91f9712e7b3e6b9fadb461ado4e0837bc"
s
{

"type": "file",

"url": "https://files.pythonhosted.org/pack-
ages/78/58/e860788190eba3bcce367f74d29c4675466ce8dddfba85f7827588416101/wsproto-
1.2.0-py3-none-any.whl",

"sha256": "b9ac-
ddd652b585d75b20477888c56642fdade28bdfd3579aa24a4d2c037dd736"

¥
]
¥
{
"name": "python3-eventlet",
"pbuildsystem": "simple",

"build-commands": [

"pip3 install --verbose --exists-action=i --no-index --find-
links=\"file://${PWD}\" --prefix=${FLATPAK_DEST} \"eventlet==0.33.3\" --no-build-
isolation"

1,
"sources": [

{

"type": "file",

"url": "https://files.pythonhosted.org/pack-
ages/f6/b4/0a9%bee52c50f226a3cbfb54263d02bb421c7f2adc136520729c2¢c689cle5/dnspython-
2.4.2-py3-none-any.whl",

"sha256": "57c6fbaae-
2af39c891292012060beb141791735dbb4004798328fc2c467402d8"

}s
{
"type": "file",
"url": "https://files.pythonhosted.org/pack-
ages/90/97/928b89de2e23cc67136eccccflcl22adf74ffdb65bbf7d2964b937cedd4f/eventlet-
0.33.3-py2.py3-none-any.whl",

"sha256":
"e43b9ae05badbb477a10307699c9aff7ff86121b264019184d29059f5a687df8"
s
{

521

Jack Leverett 7714 50639

lltypell: ll_Filell’

"url": "https://files.pythonhosted.org/pack-
ages/17/14/3bddb1298b9a6786539ac609badb7c9c0842el12aa73aaad4d8d73ec8f8185/greenlet-
3.0.3.tar.gz",

"sha256":
"43374442353259554ce33599da8b692d5aa96f8976d567d4badf263371fbed91™
¥
]
s
{

"name": "python3-pathlib",
"pbuildsystem": "simple",
"build-commands": [
"pip3 install --verbose --exists-action=i --no-index --find-
links=\"file://${PWD}\" --prefix=${FLATPAK DEST} \"pathlib==1.0.1\" --no-build-iso-
lation"

1,

"sources": [
{

"type": "file",

"url": "https://files.pythonhosted.org/pack-
ages/78/19/690a8600b93c332de3ab4a344a4ac34f00c81104917061f779db6a918ed6/pathlib-
1.0.1-py3-none-any.whl",

"sha256": "f35f95ab8b0f59e6d354090350b44280a80635d22ef-
dedfa84c7adlcf0a74147"

}
]
}s
{
"name": "python3-configparser",
"buildsystem": "simple",

"build-commands": [

"pip3 install --verbose --exists-action=i --no-index --find-
links=\"file://${PWD}\" --prefix=${FLATPAK_DEST} \"configparser\" --no-build-isola-
tion"

1,
"sources": [

{

"type": "file",

"url": "https://files.pythonhosted.org/pack-
ages/81/a3/0e5ed11da4b7770c15f61319abf053f46b5a06c7d4273c48469b7899bd89/con-
figparser-6.0.0-py3-none-any.whl",

"sha256":
"900ea2bb01b2540blab44ad3d5351e9b961a4a012d47321619375fb8f641eel9”

}
}s

522

Jack Leverett 7714 50639

"name": "python3-datetime”,
"buildsystem": "simple",
"build-commands": [
"pip3 install --verbose --exists-action=1i --no-index --find-
links=\"file://${PWD}\" --prefix=${FLATPAK_DEST} \"datetime\" --no-build-isolation"
1
"sources": [
{
"type": "file",
"url": "https://files.pythonhosted.org/pack-
ages/ff/d5/f508192a563ab7415d1lefbbe8d39cb9f0e510alfb6aaee3dca7d4ffed2al94 /DateTime-
5.4-py3-none-any.whl",

"sha256":
"88caf4d2441fe479038f4740a1071953686F7cled6c9e8c7df9ebe84e592f0c6"
s
{

"type": "file",

"url": "https://files.pythonhosted.org/pack-
ages/32/4d/aaf7eff5deb402fd9a24a1449a8119f00d74ae9c2eta79f8ef9994261fc2/pytz-
2023.3.postl-py2.py3-none-any.whl",

"sha256":
"ce42d816b81b68506614c11e8937d3aa9%9e41007ceb50bfdcb0749b921bf646C7"
s
{

"type": "file",

"url": "https://files.pythonhosted.org/pack-
ages/87/03/6b85cldf2dcalb9acca38b423d1le226d8ffdf30ebd78bcb398c511de8b54/zope.inter-
face-6.1.tar.gz",

"sha256":
"2fdc7ccbd6ebb6b7df5353012fbed6c3c5d04ceacaP038f75e601060e95345309"
}
]
s
{

"name": "python3-pillow",
"buildsystem": "simple",
"build-commands": [
"pip3 install --verbose --exists-action=i --no-index --find-
links=\"file://${PWD}\" --prefix=${FLATPAK_DEST} \"pillow==10.0.1\" --no-build-iso-
lation"

1s

"sources": [

{
"type": ll_FilellJ

523

Jack Leverett 7714 50639

"url": "https://files.pythonhosted.org/pack-
ages/64/9e/7e638579cce7dc3466321020914141a164a872be813481f058883ee8d421/Pillow-
10.0.1.tar.gz",

"sha256":
"d72967b06be9300fed5cfbc8b5bafceecd8bf7cdc7dab66b1d2549035287191d"
¥
]
s
{

"name": "python3-python-dotenv",
"pbuildsystem": "simple",
"build-commands": [
"pip3 install --verbose --exists-action=i --no-index --find-
links=\"file://${PWD}\" --prefix=${FLATPAK DEST} \"python-dotenv==1.0.0\" --no-
build-isolation™

1,

"sources": [
{

"type": "file",

"url": "https://files.pythonhosted.org/pack-
ages/44/2f/62ealc8b59314e093cc1a776810d46112107e790c3e478532329e434100b/py-
thon_dotenv-1.0.0-py3-none-any.whl",

"sha256":
"£5971a9226b701070a4bf2c38c89e5a3f0d64de8debda981d1db98583009122a"

}

524

Jack Leverett 7714 50639

Appendix

SocketlO (python-socketio) — Networking and WebSocket library - documentation -
https://python-socketio.readthedocs.io/en/stable/

Eventlet — Socketio deployment method — Documentation - https://eventlet.net/doc/
ConfigParser — For parsing the server-side configuration file — Documentation -
https://docs.python.org/3/library/configparser.html/

Kivy - Client Ul library - documentation — https://kivy.org/doc/stable/

KivyMD - Extension onto the Kivy Ul library for material themed widgets -

https://kivymd.readthedocs.io/en/1.1.1/

Shamir Secret Sharing — Paypal - https://max.levch.in/post/724289457144070144/shamir-

secret-sharing-its-3am-paul-the-head-of
Shamir Secret Sharing — Basics - https://www.youtube.com/watch?v=K54ildEW9-Q

Federation — Mastodon a federated social media - https://joinmastodon.org/
Federation — Basics and dominant protocol - https://activitypub.rocks/

525

https://python-socketio.readthedocs.io/en/stable/
https://eventlet.net/doc/
https://docs.python.org/3/library/configparser.html
https://kivy.org/doc/stable/
https://kivymd.readthedocs.io/en/1.1.1/
https://max.levch.in/post/724289457144070144/shamir-secret-sharing-its-3am-paul-the-head-of
https://max.levch.in/post/724289457144070144/shamir-secret-sharing-its-3am-paul-the-head-of
https://www.youtube.com/watch?v=K54ildEW9-Q
https://joinmastodon.org/

Jack Leverett 7714 50639

Glossary

BeOpen — The name of the system

Instance — An instance of BeOpen is a single deployment of the server software. One
organisation should have one instance of BeOpen

Federation — The act of 2 social platform instances “federating” means that the 2
instances trust each other and work together to share/server each of their user’s data.
From the user’s point of view it would seem everyone is on the same instance even if it
technically 2 separate servers.

Occupation — A type of job or generalisation of roles in the organisation. An occupation is
made by an admin or management on BeOpen. Users can assign themselves an
occupation and this determines which team they are in.

Team — A group or department of members managed by a manager or head of
department. Users in the same team will be able to see each other’s posts

Levels — Different types of users and employees such as Admins, managers, and
members

Registration key — A secret phrase provided by an organisation to users to allow them to
register an account on the organisation’s BeOpen instance.

Shamir Secret Sharing — An method for sharing a secret in a set of “shares” only a
combination of a set number of these shares can be used to find out what the secret is

Encryption — The process of using a “key” to scramble some data, this data can only then
be unscrambled through use of that same key (in AES encryption).

526

