
Jack Leverett 7714 50639

1

Computer Science NEA
Jack Leverett

Candidate Number: 7714
Centre Number: 50639

Jack Leverett 7714 50639

2

Table of Contents

Analysis ... 7

Background to the project .. 7
What is BeReal? ... 7

Why do companies need a social media platform? .. 7
Current System .. 8

BeReal.. 8
Yammer .. 8

The Problem with BeReal ... 8
Control.. 8

Shut Down.. 9
Features ... 9

Security .. 9
The Problem with Yammer ... 10

System admins response ... 10
Prospective Users ... 11

Organisation members .. 11
Who are they? .. 11

How will they use the system? ... 11
Managers/Heads of departments .. 11

Who are they? .. 11
How will they use the system? ... 11

Admins ... 12
Who are they? .. 12

How will they use the system? ... 12
Questionnaire / Interviews ... 12

Diagrams ... 14
BeReal flow diagram .. 14

Yammer flow diagram ... 15
Yammer level 0 DFD .. 16

 .. 16
Yammer level 1 DFD .. 16

Yammer level 2 DFD .. 17
User Requirements .. 18

Must.. 18
Should .. 18

Could .. 19
Won’t .. 19

SMART Objectives .. 20
Design.. 21

Overview .. 21
Friends ... 21

Teams and Occupations ... 21
Posts and comments .. 21

Memories .. 22
Client-Server .. 22

Connection ... 22

Jack Leverett 7714 50639

3

Server ... 22
Configuration .. 22

Events, logging and development .. 25
Status ... 26

Notifications .. 27
Distribution and Hardware support .. 28

Client .. 28
Android ... 28

Desktop .. 28
IOS ... 28

Server ... 29
Bare-metal deployment .. 29

Docker deployment .. 29
Deployment test ... 30

Security.. 31
Levels ... 31

Team leaders .. 31
Credential storing ... 32

Passwords .. 32
Database encryption .. 32

User Interface .. 35
Design .. 41

System diagrams ... 42
Flow charts ... 42

Login/registration diagram .. 42
Posting ... 43

Data Flow Diagrams ... 43
Posting ... 43

Register .. 45
IPSO Chart Client Side .. 47

IPSO Chart Server Side... 48
Database ... 49

Relationship diagram .. 51
Normalisation ... 51

DDL .. 51
auth_credentials ... 51

auth_tokens .. 52
profile ... 52

friends .. 52
occupations .. 53

occupation_requests .. 53
teams ... 54

team_leaders ... 54
posts... 55
comments... 55

post_impressions ... 56
comment_impressions ... 56

time_slots ... 57

Jack Leverett 7714 50639

4

notifications .. 57
notifications_sent ... 57

SQL .. 58
SELECT ... 58

INSERT .. 60
UPDATE ... 60

DELETE ... 61
Class structure and diagrams .. 62

Table classes .. 62
Class handlers .. 63

Auth classes ... 64
Database Classes .. 65

Logging classes .. 66
Datetime classes .. 67

Encryption .. 68
Algorithms .. 69

Merge sort .. 69
Pseudo code equivalent ... 69

Generating post list per month ... 71
Pseudo code .. 71

UUID generation ... 71
Pseudo code .. 71

Username hash .. 73
Pseudo code .. 74

Friend recommendation (Graph traversal).. 74
Important attributes .. 75

Breath first search vs depth first search ... 75
Pseudo code .. 76

Shamir Secret Sharing ... 78
Mathematical principles .. 78

Generating shares .. 79
Reconstructing the secret... 80

The language choice .. 81
Pseudo code .. 81

Control flow .. 86
Limitations .. 86

Post scheduling and time slots ... 87
Flowchart.. 87

Data structures .. 89
Recommendation graph ... 89

Recommendation queue .. 90
Recommendation hash map ... 90

Notification queue ... 90
Images.. 91
Database .. 92

Matrices .. 92
Testing ... 93

Server tests ... 93

Jack Leverett 7714 50639

5

End to End tests .. 97
Organisation Tab .. 97

Login and Register ... 102
Profile ... 125

Friends ... 143
Notifications .. 170

Occupation requests .. 185
Homepage and posts ... 209

Posting ... 232
Comments .. 245

Settings .. 257
Database Encryption .. 260

Final product video testing ... 270
Evaluation .. 273

Potential user trials (pre-improvements) .. 273
Finley .. 273

Trial 1 ... 273
Izumi ... 273

Trial 1 ... 273
Trial 2 ... 274

Improvements .. 274
First time login page ... 274

Password fields .. 274
Own post in homefeed.. 274

Profile picture ... 275
Explanations ... 275

If done again .. 275
Client UI.. 275

Status system ... 276
User service ... 277

Code .. 278
File structure diagram .. 278

Server ... 278
Client .. 279

 .. 279
Techniques .. 280

Algorithms .. 280
File descriptions ... 284

Server ... 284
main.py... 284

handler/handler.py .. 284
handler/outgoing.py .. 285

handler/tasks.py ... 285
user/info.py ... 285
user/content.py ... 286

user/generate.py .. 286
start/start.py ... 286

logging/logging.py .. 286

Jack Leverett 7714 50639

6

data/config.py ... 287
data/database.py .. 287

data/datetime.py ... 287
data/sss.cpp ... 287

auth/auth.py ... 287
algorithms/recomend.py ... 287

algorithms/hash.cpp ... 287
algorithms/uuid.py .. 287

Client .. 288
main.py... 288

ui/beopen.kv ... 288
session/session.py ... 288

session/time.py .. 289
handler/info.py .. 289

handler/request.py ... 289
Code .. 290

Server ... 290
main.py... 290

modules/algorithms/hash.cpp ... 301
modules/algorithms/univ.py .. 302

modules/algorithms/uuid.py.. 303
modules/algorithms/recommend.py ... 305

modules/auth/auth.py ... 309
modules/data/config.py .. 316

modules/data/database.py ... 318
modules/data/datetime.py .. 333

modules/data/sss.cpp .. 336
modules/handler/handler.py ... 344

modules/handler/outgoing.py ... 368
modules/handler/tasks.py... 369

modules/start/start.py ... 371
modules/track/logging.py.. 372

modules/user/content.py .. 374
modules/user/generate.py .. 400

modules/user/info.py .. 402
dockerfile .. 419

Docs/’Guide to encrypting the database.md’ .. 419
Client .. 421

main.py... 421
modules/handler/info.py ... 474

modules/handler/request.py ... 475
modules/session/session.py ... 477

modules/session/time.py .. 480
modules/ui/beopen.kv .. 482
data/assets/help.txt .. 515

Appendix .. 525
Glossary ... 526

Jack Leverett 7714 50639

7

Analysis

Background to the project

What is BeReal?

BeReal is a new social media platform based around the idea of taking a single picture a

day. You can be prompted to take the picture at any random point. It is supposed to give a

real insight into what someone is doing day-to-day. This presents a very different kind of

social media that gives people an un-altered view into their friends’ lives.

It’s considered to be a healthier kind of social media; it doesn’t allow fabrication and stops

users from so called “doom scrolling”. Doom scrolling is where users endlessly scroll

without purpose through seemingly endless content. BeReal doesn’t allow this since there

is only 1 post per person. This has also made it a fairly distraction free social media, most

people will only look at it once a day for a brief amount of time at most.

Why do companies need a social media platform?

In the modern-day companies are constantly striving for a more engaged workforce. With

the rise of technology and in recent times AI many jobs are being made obsolete. The

workforce now has to be more connected and creative than ever; good communication

and positive workplace relationships enable this.

Having a platform that acts similarly to BeReal, would promote friendly communication in

the modern workplace, which intern allows for better collaboration and overall better work

from all employees. Big players have noticed this too, Microsoft now include a social

media platform in their office 365 suite. This productivity suite is the most popular in the

world and its adoption of a sovereign social media platform shows there is a market for a

better way to engage employees.

Modern companies also face the challenge of maintaining a workplace culture while many

employees work from home. For these employees all their interactions will happen entirely

over video platforms such as teams, and since these meetings are often set-up with a

purpose in mind, have almost no time to connect with their co-workers. A system similar to

BeReal could inspire conversation and communication between these work from home

employees and their co-workers. This can vastly improve communication and so lead to

better teamwork.

The BeReal model is ideal for companies since it can inspire this conversation and

connection while keeping distractions to a minimum. An employee can’t get distracted for

hours when there is only a handful of posts to see.

Jack Leverett 7714 50639

8

Current System

BeReal

As explained above BeReal involves everyone getting a randomised notification once per

day to take a picture. You are given a 2-minute interval to take this picture in, however, if

missed, you don’t lose out on the post instead your post is simply marked as being late.

After a post has been created users can comment and react on their friends’ posts, as they

appear in the users’ feed. A user’s post will remain public until the next day when a new

one is created. Old posts are put into a different section and only viewable to the user

themselves, here they can see the date each photo was taken as well as a preview.

Friend requests must be sent by one person and then accepted by the other. This means

the only posts that appear on your feed will be posts from friends rather than people you

“follow” or from “recommended posts”.

Yammer

This is currently one of the few (if not only) intra-organisational social media solution. It

acts like other forum or “community” based social media (reddit etc). Users from within the

organisation can create “communities” and invite or allow other users from the

organisation to join. From within the community, they can create posts, polls and

announcements.

Whoever created the community has complete control over it as the community

“administrator”. They can also promote and remove members from the community. A user

can join as many communities as they want and add friends from across their

organisation.

The Problem with BeReal

For a company to have its own BeReal-like social platform, typically, they would have to

rely on 3rd party-hosting, support, and moderation in the form of BeReal. Relying on a 3rd

party for a service such as this has several implications.

Control

A company using the BeReal platform would likely be worried about the possibility of

confidential data accidentally being posted by a user. Or one of their employees posting

something that violated the companies code of conduct. This could result in the company

wanting to take actions to remove said post to stop further damages both monetary and to

the company’s reputation.

However, all moderation and rules are created and enforced by BeReal themselves. If the

company needs to remove a post from one of its employees, they would have to raise an

Jack Leverett 7714 50639

9

appeal with BeReal, but there is good chance that a certain post could breach the

companies code of conduct but not BeReal’s and in this situation the company has no

power and the post will remain up.

Shut Down

In the case BeReal shuts down, the organisation using their social media loses all access

to the service. So due to forces outside of their control they lose access to a platform that

could become essential to their workplace culture. BeReal shutting down seems like an

unlikely scenario but as BeReal currently has no monetisation, and there has been large

recession within the technology market since the peak of COVID-19 it’s not entirely

outlandish to see BeReal having a short lifespan.

Features

BeReal also lacks a few features and settings that would be essential for a platform like

this to work within a company. For instance, a company would likely want to make sure the

daily post goes off within certain times of the day to not disturb employees during

weekends or the evening. Larger organisations will also have a number of large teams,

departments and even sites. In cases like this, employees likely don’t want to see posts

from someone who they never have or ever will meet. BeReal only has a simplistic friend

system meaning employees can’t be organised into their teams without each user

manually friending and un-friending people as departments grow/shrink. This also doesn’t

allow users to switch their feed to be from a specific team, some employees may play a

role in a number of departments and so not being able to organise their feed into separate

teams could make their feeds completely irrelevant to them.

Security

Additionally due to organisations having no way to remove posts quickly and effectively,

members who unwittingly capture confidential or sensitive information in the background of

one of their posts could put company and individual security at risk. This has already been

occurring as stated in this article:

https://www.worklife.news/technology/bereal-workplace/

To summarise, security experts have warned of the privacy implications that BeReal brings

to the employee and customers of a business. If an image is shared that contains

confidential information it could lead to potential data breaches and security incidents.

Beyond security it could put the innocent employees at risk if they don’t want themselves

posted on social media without proper consent.

Once something has been put out on a platform it is out of the control of the people who

use it, content becomes almost impossible to remove.

https://www.worklife.news/technology/bereal-workplace/

Jack Leverett 7714 50639

10

The Problem with Yammer

Currently an organisation looking for a social media platform is only left with the choice of

yammer (viva engage). However, many system administrators have reported several

moderation problems. For instance members have been “treating the platform like their

personal Facebook”. Many organisations (including our school) have had to disable it

entirely due to these moderation issues.

Bored employees given access to a mandated social media are likely to make multiple

posts a day, wasting huge amounts of time and energy. Yammer being connected with

Microsoft 365 also means communities generate huge amounts of notifications for every

user. This can fill someone’s inbox and get in the way of actual work.

System admins response

One system admin commenting on this Reddit post:

https://www.reddit.com/r/sysadmin/comments/7ymxwg/anyone_using_yammer/

“within two days was people sharing memes, posting gifs, and basically shitposting all over

the place... One month in, people are still using it like Facebook. We have a bit of a joke in

IT, a bet if you will, on how long Yammer will last in our organization. I'm guessing 8

months before they pull the plug.”

This highlights how Yammer’s no limit approach to content creation from each user has

sent IT personal to the frontlines of content moderation. Unable to fully tackle the tide of

content that just a few users can post. Another admin said their small organisation had to

designate:

“two or three admins (usually site HR being one) that are keepers of the page”

Another said:

“And no one wants to hire someone just to be the full time Yammer police”

All this shows how the no limit approach is overwhelming for small organisations.

Additionally, only having Admin staff able moderate and remove content puts great load on

a small subset of people. If the responsibility was shared among mangers to handle their

own teams, then the content would be moderated more diligently.

Many organisations have subsequently had to turn off the feature of office 365 and settle

for nothing. The small social organisation market has no practical platform to both engage

employees and provides the tools to properly moderate the content. This has left a huge

hole in the market, which has yet to be addressed.

https://www.reddit.com/r/sysadmin/comments/7ymxwg/anyone_using_yammer/

Jack Leverett 7714 50639

11

Prospective Users

Organisation members

Who are they?

This is the main user base of the platform. These people expect the platform to run

smoothly without a hitch. They also expect the system to be configured and moderated

correctly by managers and admins.

How will they use the system?

Creating posts: Upon receiving their once-a-day notification these users will be

encouraged to capture whatever they are doing in the moment.

Viewing and interacting with their team’s posts: Once they have made (or missed)

their post, team members will be able to like and interact with posts within their team. The

number of likes will be viewable while comments give members the chance to engage with

each other.

Editing their profile: Users will be able to choose what information they have displayed

on their profile. This can be email, name, phone number, job role etc. This information may

need to be changed and altered as time goes on and so its essential users are given the

ability to change all of this.

Managers/Heads of departments

Who are they?

These are the heads of departments and managers of groups of employees. These people

are liable for the actions of their team, this means they will be responsible for their team’s

content and use of the platform.

How will they use the system?

Moderating user content: They will need to be able to remove posts, comments and

other content. They will also need to enforce their workplaces codes of conduct and

resolve disputes. The key part here is they should only be able to enforce these powers

within their team.

Managing different “departments”: These users will also want to be able to manage

who is in their team removing and adding employees as departments change size.

Jack Leverett 7714 50639

12

Admins

Who are they?

These are the people who set-up the software. They will be in charge of keeping the

system working as well as modifying the different settings to suit the organisation needs. In

most organisation this role will be taken on by an IT specialist or system administrator.

How will they use the system?

User “roles” and team creation: Admins will oversee assigning the powers and initial

creation of teams. They will assign a team leader role to each one and from their allow the

person fulfilling this role to take over.

Instance settings: Every organisation will have different needs and wants of BeOpen.

Admins will have control over a number of server settings such as the time of day that

notifications will be sent out.

Security settings: Certain organisations require higher levels of security; these admins

will also be in charge of configuring that. For instance, how long until users will have to re-

login? How secure should passwords be? Should users require a special code to register?

Questionnaire / Interviews

1) What is your organizations current way of communicating/maintaining relationships
with work from home employees?

Prospective user 1:

“Currently, Teams - How ever it is seldom used and is incredibly one sided as organisers

have majority of the control and i have even been in teams were messages from lower

ranked people were only able to reply to the higher-ups”

Prospective user 2:

“Bright HR, whatsapp”

2) What benefits and problems are there with your organizations current system?

Prospective user 1:

“The file sharing elements of Teams is really inconsistent and often breaks/doesn't save.

Benefit, a (slightly) more casual comms method than email and is easier to include

multiple people”

Prospective user 2:

Jack Leverett 7714 50639

13

“Benefits: Its an app that almost everyone has anyway, I can use it for more than just work,

Its simple. Problems: Lots of bugs, Boring”

3) What functions would a social media for organizations need to make it

sustainable/usable?

Prospective user 1:

“Open 2 way comms Easy direct comms if needed Casual atmosphere - important things

are harder to bring up if everyone is tense”

Prospective user 2:

“It would need to function as a benefit to the workplace environment, and hopefully

increase workplace productivity.”

4) What problems could arise out of a work place social media and how could they be

addressed?

Prospective user 1:

“Social media becomes a distraction if it lets people use it to often so a way of limiting that

would benefit productivity”

Prospective user 2:

“HR Problems with inappropriate workplace posts. Would need a moderator/team of

moderators.”

5) What do you feel could be the best way of limiting distractions from a social media

platform like this?

Prospective user 1:

“You could make it so there is a limited amount of comments or screentime. Another way

would be limiting people to only being able to follow people in their department”

Prospective user 2:

“Screentime”

Jack Leverett 7714 50639

14

Diagrams

BeReal flow diagram

Jack Leverett 7714 50639

15

Yammer flow diagram

Jack Leverett 7714 50639

16

Yammer level 0 DFD

Yammer level 1 DFD

Shows simplistic insight into the yammer system itself how posts are submitted and added

to the database as well as how home feeds are created and presented to the user

Jack Leverett 7714 50639

17

Yammer level 2 DFD

More detail into the “submit post” process and how images are saved and fetched for

home-feed generation. Shows how images attached to text posts are actually saved and

assigned a URL and that URL is then kept in a database along with other data about the

post. It also shows a more in-depth look at how Admins can create filters and limit users.

Jack Leverett 7714 50639

18

User Requirements

Must

• Limit the number of posts a user can create within a day for instance limit it to one

post a day.

• Send out a single notification at a random point in a day, to prompt all users to

create a post.

• Place a time constraint on the users post, if a post is not created within 5 minutes of

the notification remove that user’s ability to post for the day.

• Allows users to log into existing accounts and register new accounts as needed.

• The assigning of different user levels based on the users position in the

organisation. These different levels can give users access to functions and

moderation tools.

• The creation of different teams and appointing of team leaders who will have

superior management tools, to moderate their team’s posts.

• Implement a friend system, where people can send friend requests and the

recipient can either accept or reject said friend request.

• Each user has a profile with a number of different fields that can be edited by them,

like bio, name, contact information, team role, etc

• Provide an easy to use and accessible mobile GUI for android as well as allowing

user to take pictures via the app for their post.

Should

• Utilise a custom hash and UUID algorithm to reduce risk of malicious code being

side loaded from 3rd party dependencies.

• Have a settings page with a number of options that should be saved to a local

database.

• Have a team and organisation page where managers and administrators can create

new occupations and view other teams.

• Create an algorithm for friend recommendations to users, these recommendations

could use a form of searching algorithm and point system to try and gather relevant

people on a number of factors and recommend friend requests to such users.

Jack Leverett 7714 50639

19

• Implement a notification service like Unified push (ntfy) or other API to allow real

time notifications.

Could

• Create an algorithm to allow sorting home-feeds by relevance to the user. This

could be dictated by matching up factors such as common friends, likes, comments

and average number of post interactions

• Allow the organisation to customize a number of security features and rules.

• Allow database encryption for extra security including a Shamir secret sharing

backup method for the encryption key

• Provide a section of the app dedicated to different stats about the users’ teams.

Providing leader boards and graphs of consistency.

• Limit screen time for users and make the amount of time customizable by Admins.

Won’t

• Create an app for IOS devices or MacOS devices.

• Integrate multiple different notification APIs or services.

• Allows users to attach posts from an external source (like their camera roll)

• Allow users to create or add a profile picture.

Jack Leverett 7714 50639

20

Objectives

1) Each of a user’s posts will contain an image taken using the BeOpen app which

they took within the time frame provided by the service, along with an optional

caption.

2) The system will prompt users to create a new post within a given time frame once

per day. They will be prompted with a notification through the app, notifying them

when they can first create a post and when they missed the time window.

3) Allow administrators to change several different security settings, such as the how

long authentication tokens are valid for.

4) Creation of teams and the sorting of members into teams relevant to the member.

This sorting is done by associating all people with the same occupation into a single

team.

5) Teams should have an appointed “team leader” this person will have the access to

tools to allowing them to moderate content and users (delete posts, comments or

remove users) within their team.

6) Users should be able to accept and send friend requests to allow them to see posts

from individual users who can be both internal or external to the users team.

7) Users should be able to like and comment on other user’s posts. These other posts

can originate from their team or from a friend. Comments should also be able to be

liked, by other users. There should be a total likes counter displayed on posts and

comments.

8) The BeOpen server should maintain well detailed logs of both user activity and

server functionality. These logs should be accessible via any deployment method

including container systems like docker.

9) Users should be able to customize certain features of their profile, for instance their

legal name and role in the company. This information will be visible to anyone who

clicks on their username.

10) Each user should have a username and password combination that they can use

to login to their organization BeOpen instance. The client should also have the

ability to store login tokens which can be used for automatic authentication.

Jack Leverett 7714 50639

21

Design

Overview

Friends

The system has 2 main ways for a user to make social connections, through their team

and their friends. A friend connection is formed when a user sends a “friend request” to

one user and it is accepted. Friends will be able to see each other’s posts on their home

feed.

Teams and Occupations

A user joins a team by setting their occupation. A users occupation connects them to a
team which is managed by assigned “team leaders” who have special permissions to
delete content made by the members of that team. Users can change their occupation by
creating an “occupation change request” via their profile page. Then management or an
admin can accept or reject a change request.

For example, a school might setup a few occupations 2 of which are “maths teacher” and
“computing teacher” each of these occupations will have an associated team named
“maths teacher’s” and “computing teacher’s” by default (the name of a team can be
changed and therefor different to the name of the occupation associated with it). If Mrs
Nolan was currently a maths teacher but is changing profession and becoming a
computing teacher, she can make an occupation change request to “computing teacher”.
Once approved by management, for instance the headteacher, Mrs Nolan will change
occupation and her new team would be “computing teacher’s” and so would start receiving
posts from said team, as well as Mrs Nolan’s posts being received by all others in said
team.

Posts and comments

A user can post once per day within the timeslot. The time slot for any given day is
generated at the start of the day, it will pick a (by default) 5-minute slot at a random point in
the day to allow users to post. Users are sent a notification of when this is using the “ntfy”
implementation of “unified push” a push notification protocol that works across all devices.
It also uses an internal notification system for when you’re on the app itself.

Posts contain 2 pieces of content an image taken within the given 5 minutes, and a caption
also written in these 5 minutes. The user on the client will be prompted to take a picture
using their devices camera, they are allowed to retake the photo if it is within the time limit.
Then they can add a caption and click the “post” button. Once the post is on the server it
cannot be edited, however it can be deleted by the user.

Once posted the users friends and team will be able to see their post in their own home
feeds. From there each user can like and comment on the post.

Comments can be submitted to a post at any time. Each comment can also be liked itself.

The rules for who is privileged to delete a piece of content:

Jack Leverett 7714 50639

22

• If the content was made by the user themselves

• The user attempting to delete the content is the team leader of the user who
created the content.

• The user attempting to delete the content is management or an admin.

Memories

A user can view all their previous posts from the “memories” page. Here they can select a
year, month and a day, which will then show them the post made on that day. If a post
wasn’t made on a particular day the date won’t appear in the list.

When viewing an old post, you are still able to delete, and view comments from said post.
You are also able to still like both the post and comments underneath.

Client-Server

The system uses a client-server model, the idea is, each organisation would run their own
server for maximum sovereignty. The server will be designed to do most of the heavy
processing and all data storage, for the clients who will act as thin clients only really
managing how the data fetched from the server is displayed on the UI.

Connection

The server and client use the web-socket protocol to exchange information, this can utilise
HTTP or HTTPS and can run on all modern devices. This protocol was chosen since it
allows for the server to issue real time updates to the client without the client having to
setup background tasks to update its UI.

Server

Configuration

The server auto-generates a configuration file that is stored in the server’s “data” directory.
It utilises an INI format for ease of use even by inexperienced admins. This configuration
file allows organisation admins to adjust security features, post time constrains and
database adjustments (a full list of configurations is below). Overall, the configuration file
makes adjusting settings on the server easy for any semi-competent admin.

Configuration options list

Authorisation

Name Default
value

Description

AdminKey Randomly
generated
string

The secret used to allow admin registration (generally
only used to add the first admin to the server)

RegistrationKey Randomly
generated
string

The secret used to restrict registration to people within
the organisation, if publicly known anyone (even outside
the organisation) could make an account

Jack Leverett 7714 50639

23

UsernameMaxLeng
th

20 The maximum string length of a username

UsernameMinLengt
h

5 The minimum string length of a username

PasswordMaxLeng
th

30 The maximum string length of a password

PasswordMinLengt
h

5 The minimum string length of a password

TokenExpiryTime 2592000
(30 days)

The time to expire on a authorisation token in seconds

Database

Name Default value Description

Path data/database.db The file path to the database from the

main.py file

Encrypt false Whether to encrypt the database or

not. Can be enabled even after initial

creation of the database.

ShamirSecretSharing false Can only be enabled if the encrpt is

enabled. This enables the creation of

shamir secret shares, their use is

explained the in configuration and

administration documentation and in

the security section of this write up.

NumberOfShares 5 This is the number of shares that will

be generated if ShamirSecretSharing is

enabled.

MinimumShares 3 This is the minimum number of shares

needed to decrypt the database and

deconstruct the master key if Shamir

secret sharing is enabled.

KeyPath data/key.txt This is the path of the file holding the

actual encryption key used to encrypt

the database, if encrypt is enabled.

EncryptedPath data/.cryptdatabase.db The path of the encrypted database, if

database encryption is enabled.

Jack Leverett 7714 50639

24

EncryptionConfigPath data/encrpytconfig.txt The path for the encryption

configuration file used when database

encryption is first set up. Currently this

file only contains the master password

to be used. Only relevant if encryption

is enabled.

SaltPath data/.salt.txt The salt which is added to the master

password when generating the

encryption key for encryption of the

key.txt file. Only relevant if encryption is

enabled.

SharesPath data/shares/ The directory where the share text files

are placed after they have been

generated. This path must be

accessible to the administrator for

reading and editing. This is only

relevant if Shamir secret sharing is

enabled.

User

Name Default value Description

DefaultLevel Member The default authorisation level of a newly

registered user, So either: Member, Manager or

Admin

DefaultOccupationID Null The default occupation of a newly registered

user, you assign it using the occupation_id of the

occupation

Posts

Name Default value Description

PostTimeLimit 5 The time limit after the post slot starts for users to be

able to post in minutes.

Jack Leverett 7714 50639

25

Notifications

Name Default value Description

DefaultExpireTime 604800 (7 days) The default time that a notification

expires after if not set manually when the

notification is created. The unit is

seconds

ntfyUrl https://ntfy.example.com The URL leading to the organisations ntfy

instance. See the notifications section of

the write up to learn about how ntfy

works.

Miscellaneous

Name Default value Description

ServerCode Randomly

Generated String

A prefix used for certain commands the client can

issue and notifications that the client may receive.

Generally is used in special cases such as for

system notifications that shouldn’t be displayed to

the user.

Events, logging and development

The client communicates with the server and activates certain functions by calling
“events”. These all have a standard naming scheme and have a standard way of both
receiving data and outputting information.

All data in is sent as one dictionary. The key of the dictionary should correspond to input
data such as “username” or “post_id”. The client can also define what data it wishes to
receive back more specificity by specifying an “items” list. Your typical input dictionary may
look like this:

data = {‘username’: “James”, ‘date’: “19-12-22”, ‘items’: [“post_id”, “date”]}

The inputs are managed carefully through use of class properties on the server side.
These act as an interface for user input but validating data is in a non-malicious form then
testing to see if data (such as a username) exists in the database.
The inputs will also assume a few default values even if nothing is provided. For instance,
when getting a post, a client can send no inputs, the server will assume they are referring
to themselves (no need to specify your own username) and that you want today's post (no
need to specify date) it also assumes you want all the available information about said
post (no need to specify what information you want).

https://ntfy.example.com/

Jack Leverett 7714 50639

26

The inputs are setup this way to make for an easy and intuitive developer experience and
make the server resistant to malicious inputs. This means a programmer going to develop
a custom client (perhaps to make it more accessible to those with visual impairments)
don’t have to spend lots of time reading documentation for what inputs they need to
provide to the server to get the needed data.

Another example of this intuitive design is in the team’s information. To get information
(say the name) of a team the server needs a team_id to make the SQL query. So, the
client can either provide the specific team_id, the occupation_id, the username of a user in
said team or no information at all (if the logged in user is in the team wanted). The idea is,
if the data can be correlated to the specific ID needed it will be and so can be used by a
client developer.

The events also follow a standard naming scheme. An event will generally start with what
data you are targeting for instance profile, post, or team. Followed by get, set, or delete.
Often there are additional nuances such as friend_delete_request, to delete a friend
request. Overall, the base get, set and delete can be used with almost all data types and
again make for an easier developer experience, although granted some more nuanced
functions may need to be looked up in the documentation.

The server also uses a system of “status messages” which indicate the success, failure or
potential problem with any event called. Each status message is received by an event on
the client side and contains 3 pieces of information.

• Time – A date and (human readable) timestamp of when the status message was
created.

• Level – Either INFO, WARN or FAIL. Indicates the general idea of the status.

• Message – A more specific message about exactly what went on for instance
“Post(s) successfully fetched” or “Post couldn't be created invalid, or no data
provided”.

Each status message is also recorded in a sever side actionslog.txt file this log records
both the status, event being called and the user_id of the user calling the event. This can
be very helpful at debugging a complex issue caused by scale of users. Status messages
can also be used as messages to the user themselves to assure an action had an effect in
times where the UI can’t provide a clear answer. Status messages will also be used by
client developers to enable them to debug without opening the server log.

Status

To keep active communication with the client as easy as possible, creating status
messages is also easy. The clients access all events through the “handler” classes, these
classes all inherit from a root class and call their private methods through the “root
handler”. This root handler also creates the status message interface object.

The status system is made up of 3 classes, a “log” class which enables the basic
functionality of log messages and formatting and so is the parent class of the other 2. The
next class is called “status_interface”, this acts as an interface which holds some technical

Jack Leverett 7714 50639

27

data about routing the status message and attaching some metadata, it also stores status
messages on a secondary server log called the “actions log”. The 3rd part of the system is
the “status” class, this is the class which status messages are made from. It takes 3
initialisation arguments: The status level, the status message, and the status interface.
This status interface is passed as an object of the status_interface class.

Why I mentioned the structure of the handlers earlier is because the root handler method
defines a status interface and subsequently adds it as an attribute called “statface”. This is
assigned as an attribute of the table class being used as well as an attribute of the handler.
This means at any point in either the table class or the handler’s, creating and sending a
new status message is as simple as:

status(“INFO”, “This is a standard status message”, self.staface)

Everything else is left to be automated by the status class and status interface. Originally
the status class was coded without an interface, and it required 6 init arguments and 2
method calls just to send a status message. This newer system allows for simple status
message creation throughout the entire user facing code.

Notifications

As briefly mentioned before, for client notifications I have used “ntfy” which is an

implementation of Unified push. This is a set of open standards used for push notifications

and is compatible with all devices, see appendix for link. “ntfy” is a server application that I

would recommend running on the same server as the BeOpen instance. Its very easy to

setup through the docker container and can be up and running within a couple minutes.

This keeps to the base objectives of BeOpen the first of them being that its sovereign.

Ntfy was chosen over any other system because of its sovereignty to the organization. If

the organization is already willing to host their own social media platform a lightweight

notification system isn’t much more of a stretch. Its also platform agnostic, it can work

across both desktop and mobile. This has the advantage of not having to collect telemetry

from clients just to send them a notification.

The only downside to using ntfy is the users must (if on mobile) download the ntfy app

alongside BeOpen. The first-time login page instructs a user to do this and displays to

them their “topic” name. A ntfy “topic” is essentially a notification stream, is someone

knows the exact resource location of a topic they can also receive all the notifications. This

is not a security flaw though since obscuring the topic names is easy, in my system topics

are simply called “<username>-<first 8 characters of user_id>”. For example, if your

username is “john” your notification topic is called: “john-a52b2jk8”. The chances of this

topic being guessed and the fact that no sensitive information is enclosed in notifications

means that this security is considered plenty. Element (an open source end-to-end

encrypted messaging app) also uses ntfy for their notifications in this very fashion and

consider it more than secure.

Jack Leverett 7714 50639

28

On desktop these notifications will be received after logging into and allowing notifications

from the organisations respective ntfy site.

So overall for ease of development, security and sovereignty ntfy and the Unified Push

protocol as a whole was an ideal solution for client native notifications. However the “in

app” notifications are still available and use BeOpen’s web sockets for sending and

receiving.

Distribution and Hardware support

Client

Android

On android apps can only be run if coded in Java or Kotlin and are packaged into APKs.

However, it is possible to “translate” python code into an executable APK that can be run

on an android phone. This was the main reason for picking Kivy as the UI library since it

supported all platforms and is a sister project to “Buildozer” and “Pyjanus”. Buildozer is

used to package python into APKs. Pyjanus is a python library for interacting with the

Android API for things like the camera. Luckily, I personally don’t need to interact with

Pyjanus since Kivy handles that. The only thing in the app that does need me to consider

what platform I’m on is accessing the filesystem. This is as simple as importing the app

path from the python android library, and making sure to use this “root path” anytime I

interact with the filesystem.

Desktop

As said before Kivy is cross platform and so the only difference between the desktop and

android client is how they interact with the filesystem. In terms of the UI, they are identical.

This makes for an easier user experience since they won't have to re-learn the UI. The

desktop version can be packaged into a .exe for windows using “auto-py-to-exe”, and into

a flatpack using the “flatpack-builder” for use on (most) modern Linux distributions.

I did successfully package my application using both tools for Windows and Linux. I did not

package a program for MacOS, (despite the python and UI libraries being fully

compatible), since I have no way of testing the package once done. Additionally packaging

for MacOS or IOS is near impossible on a non-apple platform.

IOS

IOS apps can only be compiled using a MacOS system. I do not have access to a MacOS

system and so was unable to compile an application for IOS. Additionally, IOS lacks

sideloading and requires a payment to apple to publish apps on the app store.

Theoretically though the client can be compiled and used for IOS, however I have no way

of testing its performance and I haven’t attempted to implement platform specifics (such as

camera access, image saving, or database storage).

Jack Leverett 7714 50639

29

Server

In both cases the cases below, there should be plenty of storage space available to the

server. Since the server stores images, the server’s data can start to take up a large

amount of room depending on the scale of the organisation it is deployed to.

Bare-metal deployment

The python main file and the modules directory containing the imports can be run on bare

metal. This should work on windows (untested) and works on Linux. Additionally on a

Linux platform you can turn the running of the python scripts into a background systemd

process. It should also be noted that a bare metal deployment could be unstable since it

will have to utilise the host OS python install which (if modified) could cause the server to

break or crash. A requirements.txt is included with the server files but an auto-installer is

not. This means for an admin to set up a bare metal deployment they would have to

manually download all files and folders into a suitable section of the filesystem with the

correct write permissions. They would also have to manually install the correct python

packages and versions. For these reasons a bare metal deployment is not recommended

as its harder to setup, harder to maintain and less secure.

Docker deployment

A docker container is also available for distribution which makes running the server on any

platform relatively simple. This docker container may be Linux exclusive however since the

Windows version of docker is still limited in its capabilities. This was done using a

DockerFile and so can be run using docker-compose, it is supposed to be run with a

shared “./data” volume to allow administrators to configure the config file and have access

to the logs. However, docker also supports the output of the log using

docker container <container-name> log

The docker-compose (or docker run command) should expose the port 9999, or if using a

reverse proxy exposing 9999 as a virtual port. The port to be exposed can be configured

however using the config file.

Docker also provides some security advantages as well, since the server is running in a

containerised section on a slimmed down OS (alpine) there is limited attack surface when

compared to a bare metal server potentially running multiple applications. In these ways

the BeOpen server is at less risk of being compromised but additionally containerising

BeOpen can prevent a server being compromised via BeOpen. Since the attacker first

must compromise BeOpen, then the docker OS and then somehow escape the container

to compromise the host OS.

Overall docker deployment is recommended over bare metal for improved security, ease of

use, stability and re-producibility.

Jack Leverett 7714 50639

30

Deployment test

I tested both a bare-metal deployment and docker deployment on my raspberry-pi 4. Both

times the system was being routed through a nginx reverse proxy that also enabled

HTTPS, receiving certificates via LetsEncrypt. BeOpen was utilising port 9999 in both

cases. I utilised my own domain, in this document ill refer to my domain as

“mydomain.com” for security reasons, so the service was being hosted at

“https://beopen.mydomain.com”. To test the functionality of the server I used a client

running on my laptop.

Below are some screenshots of an SSH session (into a raspberry-pi) showing the logs of

the docker container and a BeOpen client, which is connected.

Jack Leverett 7714 50639

31

Security

Levels

The systems security is mainly managed using “levels”. The 3 levels are listed in the table

below (all levels below presume you are not a team leader):

Name Description

Member The basic level, users are assigned this level by default and most never

change. Permissions allow you to delete your own content and your own

content only. You can view friends posts and team members posts but

not allowed to view any posts from outside your team or friend group.

Additionally, occupation changes must be approved by a manager or

admin. Members can also not view, accept or reject occupation change

requests (they can view and cancel their own however).

Management This level is designed for the upper management of an organisation.

Management has additional privileges for instance they are allowed to

delete any user’s content and can manage occupation change requests.

Consequently, managers do not need to create occupation change

requests but rather can just set their occupation (taking effect

immediately). Management can also edit/delete teams (names,

descriptions, and leaders)

Admin Admins have all the same permissions as management but with a few

additions:

The server supports admin’s ability to edit user profiles, posts and

comments however the client only supports admin’s ability to edit user

profiles.

Any client is allowed to connect to the server and on initial connection a client is given the

level None. Clients with this level only have access to a handful of miscellaneous events

and register. This allows for client-side registration and then once a client is logged in they

are assigned their respective level and from then on have access to all other events.

Team leaders

Any users of any level can be made into a team leader by an admin or management. The

user must be in the team they are being promoted to lead. Team leaders have additional

privileges over the posts and comments created by their team. Team leaders can delete

team members posts, comments, and impressions (however deleting impressions is not

supported on the client side).

Jack Leverett 7714 50639

32

Credential storing

A user is made up of 4 key bits of information:

• User ID – A randomly generated Universally Unique Identifier (UUID) not fully

shared outside of the server.

• Username – A unique identifier (within the server instance) used by clients to

identify users.

• Password – Secret phrase or word kept by the user to keep their account secure.

As mentioned before user IDs are not shared outside of the server this is done to act

as a layer of obfuscation in case of a database leak, since the user ID is used

throughout the server to identify the user. When a client passes a username to the

server the server immediately converts it to a user ID using the “user_id” class.

Additionally, as will be explained next, the user ID is utilized to secure the passwords,

without the addition of corresponding user IDs a leak of all the database password

entries would be useless.

Passwords

A password is setup on account registration, once the registration data has been received

by the server and the data verification checks have taken place the password is first salted

using the freshly and secret (outside the server) user ID, which is appended to the end of

the string. Then using a custom hash algorithm (for additional obfuscation) the string is

hashed for storage and the variable is re-assigned to an empty string (to minimise the

damage of a ram dump attack).

Database encryption

The database itself can be encrypted at rest; this can be configured in the configuration

file. There are many options in the configuration file for changing the paths of certain files

etc, but the main options are “EncryptDatabase” (with can be true of false) and

“ShamirSecretSharing” (also true or false). The “Guide to encrypting the database”

(included as a markdown file) goes into detail about how to set up encryption of the

database, but I’ll give a brief explanation here as well. The administrator provides a master

password in the encryptionconfig.txt (path of file can be changed). This password is then

used to encrypt a key.txt that stores the actual key that the database is encrypted with.

This master password is then deleted automatically from the server’s filesystem. If Shamir

Secret Sharing is also enabled, then using the values specified in the configuration for the

number of shares and minimum shares required the server will create several shares as

individual text files. If the correct number of shares are provided, the server can derive the

master password and decrypt the databases encryption key.

Essentially the administrator can have both a master password which can be used to

decrypt the database, or they can use a combination of the shares to decrypt the

database. Once the database is decrypted all the other events open up for use. But if a

Jack Leverett 7714 50639

33

server has encryption enabled the server will launch in “decrypt” mode where the only

event available is the “decrypt” event. All other event calls will return a status message

saying they are currently not available. Any active client can call the decrypt event even if

not logged in, but they still need to provide the correct credentials to unlock the database.

Additionally, once decrypted the client will still have to log in and by no means has no

further access to the database directly unless they have a terminal session on the server.

The Shamir secret shares can be used to distribute the master password, this system was

implemented as a “backup” method. Say the previous administrator with the master

password left the company or suddenly passed away the organisation would have no

access to the database and lose their social platform. The immediate solution to this many

might give is to simply tell lots of people the secret so that multiple people can use the

master password for decryption, but this simply widens the attack surface for social

engineering. This is the problem PayPal faced back in the early 2000s, I highly

recommend reading the blog post below:

https://max.levch.in/post/724289457144070144/shamir-secret-sharing-its-3am-paul-the-

head-of

Shamir secret sharing solves this problem in a very mathematical way (which I go over in

the algorithms section), here I will just go over how it works for the users. As said before if

enabled the server will generate a series of text files, each text file is a “share”, it is the

admins job to distribute these shares however they please and delete them from the

server. When these shares are generated, the admin can set the minimum amount

required to decrypt the database and the number of shares to be generated. What this

means is that say the minimum amount required to decrypt is set to 3 the administrator

can then generate 10 shares and hand them out to 10 people within the organization. If

any 3 of these people come together and enter their shares into the decrypt event, they

can decrypt the database. The essential idea is that an administrator can have the master

password but if for any reason they lose this password the trusted people who they gave

shares to can come together to decrypt the database and re-construct the master

password.

The database encryption scheme itself uses python’s cryptography library to generate a

“fement” key. Then the database’s raw bytes are read, encrypted and stored in another file

called “.cryptdatabase.db” (by default). This reading of raw bytes and using python’s

cryptography library manually was the preferred method for a few reasons. Firstly,

decreasing dependency on pip packages is a good idea since recently the python package

library has seen a rise in malicious code taking over repositories and being used to

distribute malware. Additionally, there are no good python libraries that support the

encryption of a SQLite database, every library which did exist has been deprecated or not

updated in 5+ years and so is not recommended for use. Thirdly it kept the code overhead

minimal, reading and writing raw bytes keeps the code simple and safe.

https://max.levch.in/post/724289457144070144/shamir-secret-sharing-its-3am-paul-the-head-of
https://max.levch.in/post/724289457144070144/shamir-secret-sharing-its-3am-paul-the-head-of

Jack Leverett 7714 50639

34

The one downside to my method is that 2 versions of the database are kept at any one

time, the encrypted version and (when the server is running) the unencrypted version. This

means that the server must have enough storage to store 2 versions of the database. The

other reason this method is slightly flawed is we are reading raw bytes every time the

database is encrypted. So, it has to re-read and re-encrypt the entire file, even if just one

thing has changed. This means once a deployment becomes large enough the server

could take a couple seconds to shutdown (depending on the hardware). However, neither

of these factors are huge problem simply due to the size of the database. Even for large

deployments, the database remains small. Even serving thousands of clients the database

shouldn’t grow larger than at most a couple GBs and if only serving a few hundred no

larger than a few 100MBs. Additionally reading and writing raw bytes is extremely fast

even low-end hardware can read and write GBs in just a couple seconds.

Overall, it was decided that this encryption method was more than suitable for this

application. The security benefits provided by encrypting the database at rest means even

if an attacker compromises the system all the administrator has to do is shutdown the

BeOpen server (which they can do from a logged in admin client) and then all the attacker

is left with is an encrypted database. Decryption of the database (if set with a correct

password) should be computationally secure especially for this type of data. At the end of

the day this is simply a social media platform and the computation power required to

decrypt the database (by brute force) wouldn’t be worth it even to a state actor.

Jack Leverett 7714 50639

35

User Interface

Jack Leverett 7714 50639

36

Jack Leverett 7714 50639

37

Jack Leverett 7714 50639

38

Jack Leverett 7714 50639

39

Jack Leverett 7714 50639

40

Jack Leverett 7714 50639

41

Design

The Design of the interface is meant to feel familiar to other social medias. The homepage
displays the user a post feed, each post displays the username, a clickable profile
button/picture as well as like and comment buttons at the bottom. It’s very similar to other
social medias. Its utilising the more modern design of “floating” action buttons with the
picture taking up the entire area of the post with the action buttons (like, profile etc) are
displayed as white icons above the photo. This is opposed to having each post have a chin
and a header where such information is displayed. This makes the feed a mix between
Instagram style free scrolling (not locked to seeing one post filling the frame at a time) and
a TikTok style post card. I did want to have a locked scrolling, but I felt this may feel
uncomfortable for the slightly older user base, the system is supposed to be used in
workplaces, people of working age are generally more familiar with platforms like
Facebook. Facebook utilizes a free scrolling method and so I kept this same free scrolling
method, so that these users would easily start using the app.

Its designed this way to feel familiar to any user hopefully allowing anyone to pick up the
app and immediately be able to start engaging with its basic functions.

Buttons (apart from top and bottom navigation buttons) take up the breadth of the screen.
This was done as to keep the layout of the page as linear as possible. This minimises
confusion and makes the app more accessible for one handed use, if you’re either left-
handed person or a right-handed person. The homepage itself consists of 3 main tabs; this
is where the user spends most of their time. If it weren’t for the common design of social
media to have your own profile in the top left it would have been made a main tab along
the bottom. However again like said before I wanted the app to feel familiar so left the
profile page accessible from the top left only.

However other people’s profiles are always accessible by clicking on their username
anywhere in the app. Whether their a fellow team member, team leader, sending you a
friend request, making a comment etc, if you see another user’s username you can click it
and see their profile. This again is very familiar to other social media and makes
interacting and learning about other people in your organisation easier than ever.

Overall, the UI is supposed to be initiative and familiar to anyone who has used any form
of social media before. Preferably the final UI will be using a material design theme to
keep a consistent modern UI. Material design will also easily integrate BeOpen (in terms of
looks) into any android device. Since most android default apps use this theme BeOpen
won’t look out of place compared to the messaging app etc.

Jack Leverett 7714 50639

42

System diagrams

Flow charts

Login/registration diagram

Jack Leverett 7714 50639

43

Posting

Data Flow Diagrams

Posting

Level 0

Level 1

Jack Leverett 7714 50639

44

Level 2

Jack Leverett 7714 50639

45

Register

Level 0

Level 1

Jack Leverett 7714 50639

46

Level 2

Jack Leverett 7714 50639

47

IPSO Chart Client Side

Input Process Storage Output

Creating post by

clicking “post”

button:

- Photo from

camera

- Caption

- Validate that

post was sent

in correct

time frame.

- Validate

caption

length.

- Save picture

to server

Posts table

Time_slots table

(database)

- Status

message

Opening personal

profile page

- Get name,

username,

role,

occupation

and

biography.

- Check the

user’s

permissions

for editing

each

category

Profile table

(database)

Dictionary

(client side, post

fetch)

- Display the

user

information

Clicking the edit

button on a profile

category (for

instance name)

And taking input for

the new value

- Validate input

- Reload

profile page

Profile table

(database)

- Status

message

- Changed

value

Entering the

homepage

- Fetch post

data

- Save the post

images

Array of image

paths, and

dictionary

- The post

image

- Like, profile

and comment

buttons

- The (posters)

username

Jack Leverett 7714 50639

48

IPSO Chart Server Side

Inputs Processes Storage Output

Registration details:

- Username

- Password

- Re-written

password

- Registration

key

- Validate username

and password lengths

- Check passwords

match

- Check for username

uniqueness

- Validate registration

key

- Generate user id

- Hash and salt

password

auth_credentia

ls table

(database)

- Successful

registratio

n

message

Login details:

- Username

- Password

- Hash password

- Fetch correct

password hash

- Compare password

hash with correct

password hash

- Generate

authentication token

auth_credentia

ls table

and

auth_tokens

table

(database)

Tokens

(client_databa

se)

- Authentica

tion token

- Successful

login

status

message

- Boolean to

indicate if

logged in

or not

- Username of

friend

- Verify user exists

- Check for existing

friend request to and

from

- Notify the requested

user

Friends table

Auth_credenti

als table

(database)

- Status

message

for

successful

ly creating

request

- Post id

Or

- Date

- Verify data refers to

real post, user and

date

- Convert post image to

byte data

Post table

Auth_credenti

als table

(database)

- Post

informatio

n (from

one of the

users own

posts)

Jack Leverett 7714 50639

49

- Post id

Or

- Date

- Username

- Validate the user is

Admin, management

or leader of requested

users post

- Convert post image to

byte data

Post table

Auth_credenti

als table

(database)

- Post

informatio

n about

requested

post

- Team id - Verify that the user is

an admin or

management

Post table

Auth

credentials

table

Teams table

(database)

- List of

posts and

their

informatio

n

- Post picture

- Caption

- Validate that post was

sent in correct time

frame

- Validate caption

length

- Save picture to server

Posts table

Time_slots

table

(database)

- Status

message

- Occupation

name

- Description

- Validate name and

description length

- Validate user is

management or

admin

Occupation

table

Auth

credentials

(database)

- Success

status

message

- Updated

occupation

list

Database

Tables and attributes (including primary and foreign keys), refer to key below

Jack Leverett 7714 50639

50

Jack Leverett 7714 50639

51

Relationship diagram

Normalisation

All tables are normalised to 3NF except for “Teams” which has 2 attributes that depend on

the primary key but both columns are never filled in together. The 3 attributes are: team_id,

occupation_id and user_id. Team_id is the primary key, but when creating a team it will use

an occupation_id but a group of friends for each user will be counted as a “friends” team

and is associated with that user through the user_id column.

DDL

auth_credentials

CREATE TABLE IF NOT EXISTS auth_credentials (

 user_id TEXT NOT NULL PRIMARY KEY,

 username TEXT NOT NULL,

 password TEXT NOT NULL,

 level TEXT NOT NULL,

 FOREIGN KEY (user_id)

 REFERENCES profile (user_id)

Jack Leverett 7714 50639

52

 ON UPDATE CASCADE

 ON DELETE CASCADE

)

auth_tokens

CREATE TABLE IF NOT EXISTS auth_tokens(

 user_id TEXT NOT NULL,

 token TEXT NOT NULL PRIMARY KEY,

 token_expire REAL NOT NULL,

 FOREIGN KEY (user_id)

 REFERENCES auth_credentials (user_id)

 ON UPDATE CASCADE

 ON DELETE CASCADE

)

profile

CREATE TABLE IF NOT EXISTS profile (

 user_id TEXT NOT NULL PRIMARY KEY,

 occupation_id TEXT,

 name TEXT,

 picture TEXT,

 biography TEXT,

 role TEXT,

 num_friends INTEGER DEFAULT 0,

 FOREIGN KEY (occupation_id)

 REFERENCES occupations (occupation_id)

 ON UPDATE CASCADE

 ON DELETE SET NULL

)

friends

CREATE TABLE IF NOT EXISTS friends (

 user_id TEXT NOT NULL,

Jack Leverett 7714 50639

53

 friend_id TEXT NOT NULL,

 approved BOOLEAN,

 FOREIGN KEY (user_id)

 REFERENCES profile (user_id)

 ON UPDATE CASCADE

 ON DELETE CASCADE

 FOREIGN KEY (friend_id)

 REFERENCES profile (user_id)

 ON UPDATE CASCADE

 ON DELETE CASCADE

 PRIMARY KEY (user_id, friend_id)

)

occupations

CREATE TABLE IF NOT EXISTS occupations (

 occupation_id TEXT NOT NULL PRIMARY KEY,

 name TEXT NOT NULL,

 description TEXT

)

occupation_requests

CREATE TABLE IF NOT EXISTS occupation_requests (

 user_id TEXT NOT NULL PRIMARY KEY,

 occupation_id TEXT NOT NULL,

 approved BOOLEAN DEFAULT False NOT NULL,

 FOREIGN KEY (user_id)

 REFERENCES profile (user_id)

 ON UPDATE CASCADE

 ON DELETE CASCADE

 FOREIGN KEY (occupation_id)

 REFERENCES occupations (occupation_id)

Jack Leverett 7714 50639

54

 ON UPDATE CASCADE

 ON DELETE CASCADE

)

teams

CREATE TABLE IF NOT EXISTS teams (

 team_id TEXT NOT NULL PRIMARY KEY,

 name TEXT NOT NULL,

 occupation_id TEXT,

 user_id TEXT,

 FOREIGN KEY (occupation_id)

 REFERENCES occupations (occupation_id)

 ON UPDATE CASCADE

 ON DELETE CASCADE

 FOREIGN KEY (user_id)

 REFERENCES profile (user_id)

 ON UPDATE CASCADE

 ON DELETE CASCADE

)

team_leaders

CREATE TABLE IF NOT EXISTS team_leaders (

 user_id TEXT NOT NULL,

 team_id TEXT NOT NULL,

 FOREIGN KEY (user_id)

 REFERENCES profile (user_id)

 ON UPDATE CASCADE

 ON DELETE CASCADE

 FOREIGN KEY (team_id)

 REFERENCES teams (team_id)

 ON UPDATE CASCADE

Jack Leverett 7714 50639

55

 ON DELETE CASCADE

 PRIMARY KEY (user_id, team_id)

)

posts

CREATE TABLE IF NOT EXISTS posts (

 post_id TEXT NOT NULL PRIMARY KEY,

 user_id TEXT NOT NULL,

 content TEXT NOT NULL,

 caption TEXT,

 date TEXT NOT NULL,

 FOREIGN KEY (user_id)

 REFERENCES profile (user_id)

 ON UPDATE CASCADE

 ON DELETE CASCADE

)

comments

CREATE TABLE IF NOT EXISTS comments (

 comment_id TEXT NOT NULL PRIMARY KEY,

 post_id TEXT NOT NULL,

 user_id TEXT NOT NULL,

 content TEXT NOT NULL,

 FOREIGN KEY (post_id)

 REFERENCES posts (post_id)

 ON UPDATE CASCADE

 ON DELETE CASCADE

 FOREIGN KEY (user_id)

 REFERENCES profile (user_id)

 ON UPDATE CASCADE

 ON DELETE CASCADE

Jack Leverett 7714 50639

56

)

post_impressions

CREATE TABLE IF NOT EXISTS post_impressions (

 impression_id TEXT NOT NULL PRIMARY KEY,

 post_id NOT NULL,

 user_id NOT NULL,

 type NOT NULL,

 FOREIGN KEY (post_id)

 REFERENCES posts (post_id)

 ON UPDATE CASCADE

 ON DELETE CASCADE

 FOREIGN KEY (user_id)

 REFERENCES profile (user_id)

 ON UPDATE CASCADE

 ON DELETE CASCADE

)

comment_impressions

CREATE TABLE IF NOT EXISTS comment_impressions (

 impression_id TEXT NOT NULL PRIMARY KEY,

 comment_id NOT NULL,

 user_id NOT NULL,

 type NOT NULL,

 FOREIGN KEY (comment_id)

 REFERENCES comments (comment_id)

 ON UPDATE CASCADE

 ON DELETE CASCADE

 FOREIGN KEY (user_id)

 REFERENCES profile (user_id)

 ON UPDATE CASCADE

Jack Leverett 7714 50639

57

 ON DELETE CASCADE

)

time_slots

CREATE TABLE IF NOT EXISTS time_slots (

 date TEXT NOT NULL PRIMARY KEY,

 start FLOAT NOT NULL,

 end FLOAT NOT NULL

)

notifications

CREATE TABLE IF NOT EXISTS notifications (

 notification_id TEXT NOT NULL PRIMARY KEY,

 target_id TEXT NOT NULL,

 title TEXT NOT NULL,

 content TEXT,

 time_created FLOAT NOT NULL,

 expire_after FLOAT NOT NULL

)

notifications_sent

CREATE TABLE IF NOT EXISTS notifications_sent (

 notification_id TEXT NOT NULL,

 user_id TEXT NOT NULL,

 time_sent FLOAT,

 sent BOOLEAN DEFAULT False NOT NULL,

 PRIMARY KEY (notification_id, user_id)

 FOREIGN KEY (notification_id)

 REFERENCES notifications (notification_id)

 ON UPDATE CASCADE

 ON DELETE CASCADE

 FOREIGN KEY (user_id)

 REFERENCES profile (user_id)

Jack Leverett 7714 50639

58

 ON UPDATE CASCADE

 ON DELETE CASCADE

)

SQL

SELECT

The above SQL and processing around the statement, takes place in the impressions

class. This class is used as a base class for both post_impression and

comment_impression classes. Hence the attr_name (post_id or comment_id) varies as

well as the table name (post_impressions or comment_impressions) changes.

The Statement itself is simply totalling the number of records that meet the requirements.

This is typically used to count the number of likes on a comment or post for instance.

The above SQL command again dynamically uses different tables and column names due

to it being a method of a base class. It gets the impression_id of any impression that

matches the parameters and then uses this impression id to generate a new object of the

same class and perform a get() method to get exact details about the impression.

Jack Leverett 7714 50639

59

The above method contains 2 SQL statements both executed in different circumstances.

This method is intended to fetch details about an occupation, In the event a user has not

provided an occupation ID the method assumes the user is referring to their own

occupation. So using the occupation_id in their profile and an inner join of the occupations

table we get the occupation details.

The above method is from the teams class. It is to be used to get all the usernames of

members in a specific team, when a team ID, occupation ID or user ID is specified by the

user. The class properties convert occupation IDs and user IDs into their corresponding

team ID. The SQL statement first matches up the username with a user ID using an inner

join between profile and auth_credentials. Then using the occupation IDs from the profile

table, we perform a cross join with the teams table. Then filtering the results by matching

the team ID to the user input in the WHERE clause we get all the members usernames of

a specified team. After this statement has been executed a list comprehension is used to

format the output information.

Jack Leverett 7714 50639

60

INSERT

The above statements are used for creating a new occupation and its corresponding team.

Simply creating a record of each in their corresponding tables after generating 2 UUIDs for

each record.

Here 3 SQL statements are executed, the first is used to remove any previous occupation

change requests made, since the new one is replacing it. The 2nd is used to check if the

occupation ID being targeted exists, then the final statement is used to create a new

record, for the occupation_request.

UPDATE

This function is used for updating information about a certain users occupation. There are

2 SQL statements here. The first is used to verify the occupation being referred to exists.

The second is used to updated the users profile to the occupation ID provided.

Jack Leverett 7714 50639

61

The method above is used for editing certain information about an occupation. The user

can decide what is to be edited and does so through an abstracted method of modifying

the self.columns list. This list is looped through in for loop and the SQL statement is

executed separately per column. This allows us to change certain columns without going

through several unreadable if statements. Instead, columns are static and baked into the

statement. The columns list is heavily filtered there’s only a handful of allowed columns

and anything outside of this is excluded from the input. The SQL statement itself is very

simple though just update the selected column with the corresponding value passed by the

user where the occupation_id matches the user input.

DELETE

Here 2 scenarios play out depending on the user input. If the user provided a post ID then

the input that post ID is respected and the required post is delete. If the user doesn’t

however the method will use their user ID and the current date to get their post and their

post ID and use that to delete the post.

Jack Leverett 7714 50639

62

Class structure and diagrams

Table classes

Jack Leverett 7714 50639

63

Class handlers

Jack Leverett 7714 50639

64

Auth classes

Jack Leverett 7714 50639

65

Database Classes

Jack Leverett 7714 50639

66

Logging classes

Jack Leverett 7714 50639

67

Datetime classes

Jack Leverett 7714 50639

68

Encryption

Handler and Table classes

This is a diagram that shows the same classes shown in handler and table diagrams, but
shows there relationship to each other. That is profile handler has a profile table etc.

Jack Leverett 7714 50639

69

Algorithms

Merge sort

A merge sort is used to sort user posts by the number of likes they have, a merge sort is

chosen due to its time complexity (O(n log n)) when sorting large sets of data, depending

on the size of the organisation sorting posts as such could save massively on server-

response times when getting posts.

It uses 2 class methods however in the pseudo code they will be represented as 2

functions.

Pseudo code equivalent

FUNCTION merge(left, right)

 IF LENGTH(left) = 0 THEN

 RETURN right

ENDIF

 IF LENGTH(right) = 0 THEN

 RETURN left

ENDIF

Jack Leverett 7714 50639

70

 result = []

 index_left <- 0

 index_right <- 0

 WHILE LENGTH(result) < LENGTH(left) + LENGTH(right) THEN

 left_item <- left[index_left][‘impression_count’]

 right_item <- right[index_right][‘impression_count’]

 IF left_item <= right_item THEN

 result.APPEND(left[index_left])

 index_left <- index_left + 1

 ELSE THEN

 result.APPEND(right[index_right])

 index_right <- index_right + 1

ENDIF

 IF index_right = LENGTH(left) THEN

 result <- result + left[index_left:]

 BREAK

ENDIF

 IF index_left == LENGTH(right) THEN

 result <- result + right[index_right:]

 BREAK

ENDIF

ENDWHILE

FUNCTION sort (posts)

 FOREACH post IN posts

 num_likes <- post_impressions(post_id=post[‘post_id’]).count()

 post[‘impression_count’] = num_likes

NEXT

 IF LENGTH(post) < 2 THEN

 RETURN posts

ENDIF

Jack Leverett 7714 50639

71

 mid = LENGTH(posts) // 2

 sorted_posts <- merge(left=sort(posts[:mid]), right=sort(posts[mid:]))

 RETURN sorted_posts

Generating post list per month

This occurs when generating the memories page on the client. The client will receive

several posts all with different dates. The client seeks to generate a number a list of

months, then a list of days attached to each month along with their posts.

Pseudo code

post_months = {} #empty dictionary

FOREACH post in posts THEN

 date = post[‘date’]

 date_list = date.SPLIT(“-“) #splits the date into a 3 item list

 IF date IN post_months.KEYS() THEN

 post_months[date].APPEND(post)

 ELSE THEN

 post_months[date] = [post]

ENDIF

NEXT

UUID generation

This UUID generation scheme is used for generating all unique IDs. A custom algorithm

adds to obscuration of the password salts. Its made up of 2 functions, one for generating

the bytes and adding to the hex string. The other for converting binary to hexadecimal

digits.

Pseudo code

FUNCTION bin_to_hex(byte)

 byte_hex <- “”

 total <- 0

 FOR i=1 to LENGTH(byte)

 total <- total + INT(byte[I]) * 2^I

Jack Leverett 7714 50639

72

NEXT

 first_place <- total INTDIV 16

 second_place <- total – first_place * 16

 places = [first_place, second_place]

 FOREACH place IN places

 IF place < 10 THEN

 byte_hex <- byte_hex + STRING(place)

 ELSE THEN

 byte_hex = byte_hex + CHAR(65 + place – 10)

ENDIF

NEXT

RETURN byte_hex

FUNCTION den_to_bin(number)

Byte_string <- “”

FOR i=7 TO 0

bit <- number DIV 2^i

number <- number – bit * 2^i

byte_string <- byte_string + STRING(bit)

NEXT

RETURN byte_string

FUNCTION generate()

 Byte_list = []

 FOR i=1 TO 16

number <- STR(RANDOMINT(0, 255))

byte <- den_to_bin(number)

 byte_list.APPEND(byte)

Jack Leverett 7714 50639

73

byte_list[6] <- byte_list[6][:4] + "0010"

 byte_list[8] <- byte_list[8][:6] + "01"

NEXT

 hex_string = “”

FOR i=1 TO LENGTH(byte_list)

 byte_hex <- bin_to_hex(byte_list[i])

 IF i IN [4, 6, 8, 10] THEN

 hex_string <- hex_string + “-“

ENDIF

 hex_string <- hex_string + byte_hex

NEXT

 RETURN hex_string

Username hash

This function is mainly used in the friend recommendation algorithm (depicted later in the

write up). This function simply takes a username in and converts it into a unique number.

This hash is not full proof, but the chance of a colliding hash is practically impossible.

Especially for deployments on the singular organisation level. The hashes are evenly

distributed throughout the range due to the use of the value “p” (described later),

essentially using this value means that strings will be distributed across the whole 10^7 + 7

hash space. A custom hash function is used to minimise the size of the resulting hash. If

the standard python in built hash was used it would require things like linked lists to be

huge. Large lists can soak up lots of memory and force systems to utilise high swap

space. This can then bring programs running to a screeching halt. So minimising the size

of lists like this is very important for performance.

Originally the hash function was written in python, through some testing I found python

could complete a hash of a string (of 25 characters) in ~0.127 seconds. The same

program written in C took just ~0.001 seconds, (to 3 significant figures). This means for

this huge time saving the hash algorithm was implemented in C and imported as a library

into python.

This hash utilises 2 key numbers:

“m” is are large prime number, its size is considered sufficient here since m essentially

defines are range of hash results. With an m this size we reduce the chances of a colliding

hash. Technically we could make m larger, but m will also define the size of any linked list

and hash map used with these hashes. So I decided that 10^7 + 7 was sufficient to

optimise memory usage.

Jack Leverett 7714 50639

74

“p” is another prime that is as close to the number of string characters that are available for

the string input. 97 allows for most ASCII symbols, all numbers and all characters both

upper and lower case. In reality though usernames can’t include all ASCII characters I

simply included these in the number in case symbol limits were removed in later versions.

Pseudo code

FUNCTION hash(String)

M <- 10^7 + 7

P <- 97

Total <- 0

FOR i=1 TO LENGTH(String)

Total <- Total + (INT(String[i]) - 32) * p^i

NEXT

Result <- Total MOD M

RETURN Result

Friend recommendation (Graph traversal)

The friend recommendation algorithm is made up of 2 classes:

User – Holds information about a user, the number of times they appear and their lowest

depth in the graph. It also has methods for finding and organising its friends into other

User objects.

Graph – This is where the graph is held, constructed, and traversed. It has methods for

generating and traversing the graph as well as adding edges and is geared specifically

towards being a friend graph.

There is also a function which is used as an interface for other parts of the system to

interact with the Graph. This is not included in the below code since it is fairly un-

interesting, just verifying certain parameters.

The code below also does not include the User class since again it is un-interesting and

just made up of the components for getting friends from the database and converting them

into objects which are added to a list attribute. The only thing to note about the User class

is when “hash” is called on one of the objects it utilises a special method that uses the

previously described hash function on the object’s “username” attribute.

Jack Leverett 7714 50639

75

What is included below is the Graph class, so this is made up of the interesting parts of the

algorithm. Below I describe some of the attributes and data structures used in the

algorithm:

Important attributes

graph – A 2D linked list that contains all nodes and there corresponding edges. Each node

is stored as its position as depicted by its hash. At a nodes position there is another array

that contains the hashes of each of its edges. These hashes can then be used to find their

respective nodes in the graph and so on. The graph itself is a directed, unweighted graph.

Technically it could have been represented as an undirected graph since it’s a friend

system, not a follow system. But it’s converted into a directed graph because when a node

is spawned from a previous node that previous node is removed from the adjacency list of

the new nodes.

friend_directory - A hash map used to store User objects. The key for each object is the

hash of the username. So, using a hash from the graph you can find the corresponding

object in the friend_directory. This is used to manipulate attributes like depth while

traversing the graph.

edge_queue – As said by its name this is a queue of the edges to be visited. Since it’s a

queue this means items can only be added on to the bottom and only removed from the

top. So, when a node is visited its corresponding edges (retrieved from graph) are added

onto the bottom of the edge_queue. The node itself is then removed from the top of the

edge_queue and added to visted.

visited – An array of hashes, this is simply used to store the nodes that have already been

visited by the algorithm.

Breath first search vs depth first search

Breadth first search (BFS) starts at an origin point in a graph and then visits each of its

edges, as it visits each edge it adds that nodes edges to the bottom of the queue. This

means it will then search all the edges of these visited nodes.

Depth first search (DFS) starts at the origin point in a graph and chooses its first edge to

visit, this edge then chooses its first edge to visit and so on. Essentially the algorithm will

traverse to the bottom of the graph and then backtrack to previously unvisited nodes. It

does this by utilising a stack instead of a queue. So, when a node is visited its edges are

added to the top of the stack, since you can only remove items from the top of a stack the

next edge to be visited will be one of the edges that had just been added by the visited

node.

Jack Leverett 7714 50639

76

I originally used DFS but on encountering the difficulty of calculating the current depth of

the node being visited I switched to a BFS. Since using BFS I could assign the depth of an

edge as it gets added to the bottom of a queue. I would simply take the origins depth

minus one and assign this to the corresponding edge’s depth attribute. Additionally using

BFS allows for greater optimisations if needed later, for instance it’s easier to cut of the

graph once a certain depth has been reached. This could be done say if 5 friend

recommendations have already been generated.

Converting the DFS to the BFS was incredibly easy though all I had to do was add the

depth assignment as edges were added to the queue and swap out the stack data

structure for a queue.

Pseudo code

CLASS Graph

FUNCTION __init__(self, username)

self.origin_user <- User(username, True)

self.graph <- [[]] * 10^7+7

self.friend_directory <- [NULL] * 10^7+7

self.friend_directory[hash(self.origin_user)] <- self.origin_user

self.exclude <- []

FUNCTION PUBLIC generate(self, depth):

self.origin_user.depth <- depth – 1

self.add_user_friends(self, origin, source, depth)

FUNCTION add_user_friends(self, origin, source, depth)

origin.find_friends(self.exlude.APPEND(source.username))

IF hash(self.origin_user) = hash(origin) THEN

self.exlude = self.exclude + origin.exlude

ENDIF

FOREACH friend IN origin.friend_list

friend_hash = hash(friend)

self.add_edge(hash(origin), friend_hash)

Jack Leverett 7714 50639

77

friend_dir = self.friend_directory[friend_hash]

IF friend_dir != NULL THEN

self.friend_directory[friend_hash].count <- friend_dir.count + 1

ELSE THEN

Self.friend_directory[friend_hash] <- friend

ENDIF

IF depth-1 > 0 THEN

self.add_user_friends(friend, origin, depth-1)

ENDIF

NEXT

FUNCTION add_edge(self, node, edge)

self.graph[node] = self.graph[node].APPEND(edge)

FUNCTION PUBLIC bft(self)

self.visited <- []

self.edge_queue = [hash(self.origin_user)]

self.visit(self.edge_queue[0])

FUNCTION visit(self, origin)

start_pos <- self.graph[origin]

self.on_visit(origin)

self.edge_queue.REMOVE(LENGTH(self.edge_queue) - 1)

self.visited.APPEND(origin)

FOREACH neigbour IN start_pos

neigbour_obj <- self.friend_directory[neigbour]

origin_obj <- self.friend_directory[origin]

in_visited <- neigbour IN self.visited

Jack Leverett 7714 50639

78

in_queue <- neigbour IN self.edge_queue

IF NOT in_visited AND NOT in_queue THEN

neigbour_obj.depth <- origin_obj.depth - 1

self.edge_queue.PREPEND(neigbour)

ENDIF

NEXT

IF LENGTH(self.edge_queue) > 0 THEN

next <- self.edge_queue[LENGTH(self.edge_queue)-1]

self.visit(next)

ENDIF

FUNCTION on_visit(self, origin):

origin_obj <- self.friend_directory[origin]

origin_obj.score = origin_obj.depth * origin_obj.count

Shamir Secret Sharing

Shamir Secret Sharing is a method for sharing a secret in such a way that if any

combination of those shares were put together you can derive the original secret. So,

when the shares are first created you provide the program with 3 parameters:

- The secret – This must be turned into a number somehow, (for instance you can

use an ASCII table to convert a string into a number)

- Minimum number of shares – This is the minimum number of shares needed to be

combined for reconstruction of the secret.

- Number of shares to be generated – The number of shares to be generated this

number must be bigger than the minimum number of shares needed for

reconstruction.

This scheme in our system is used for distribution of the secret database encryption key.

Shamir Secret Sharing has been used by several notable organizations for similar

purposes for instance PayPal used Shamir Secret Sharing to secure their databases in the

early 2000s.

Mathematical principles

This scheme works on a simple mathematical principle: A polynomial of power n can be

found if provided with n+1 points that lie on that polynomial. For instance 2 points on a

cartesian (2D coordinate system) set of axes perfectly define a line, there is no other

Jack Leverett 7714 50639

79

straight line that will go through the points (1, 3) and (-8, 8), there exists just one line. A

straight line can be represented with the polynomial: y = ax + b

You can keep going with this given 3 points on a polynomial with a power of 2 you can find

the values of a, b and c in which construct this polynomial:

y = ax^2 + bx + c

So, if we encoded our secret (which remember has to be converted into a number) as the

y intercept of a polynomial we could use points on this polynomial as our “shares”. Since

say we encoded our secret in a polynomial of power 3 this means that 4 points (aka

shares) could be used to reconstruct that polynomial. Let’s say we generated 10 shares

any 4 of these 10 shares can be used to perfectly reconstruct the polynomial f(x) and then

the secret is equal to f(0).

Generating shares

To generate the shares as said before we need 3 inputs, the secret (we will call s) the

minimum number of shares for reconstruction (we will call m) and the number of shares to

be generated (we will call p). There is no theoretical limit to the size of m as long as m > 1

in the perfect system. However due to the limits of floating-point integers etc the maximum

size of m in my system is 7. The size of p however only has the limit of p > m, since if it

was not, we would never be able to reconstruct the secret. So to generate shares all we do

is create a polynomial of size m-1, so if our m was 3, we generate:

y = ax^2 + bx + c

Since our secret is encoded in the y intercept c will equal our secret for instance lets say

our secret is 520. So now c = 520. a and b have no limitations as to what they can be,

however this system picks a and b randomly between the limits of 2^(n-1) + 1 and 2^(n) –

1. The system sets n to 50 by default but this can be altered in future versions as 50 is

entirely arbitrary. We also generate a random prime number, we then perform prime MOD

random number on each random number generated. This limits the size of the

polynomial’s a and b.

So now we have values for a and b, this means we have a complete polynomial we will

call f(x) and can start generating shares by using different x values. Our system simply

counts linearly (increasing by 1 each time) starting from x = 1 all the way to x = p. The x

values are considered public so using these simplistic x values is no issue.

Once the shares are generated the system outputs them to a set of text files (1 per share)

each share text file contains 3 pieces of information. The “number share” (aka the x value

of the point), the “share secret” (the y value of the point) and the minimum shares needed

to reconstruct the secret. The “number share” and the minimum shares required are

considered public however the share secret is the important part that should be kept secret

Jack Leverett 7714 50639

80

and safe. So someone keeping a share simply needs to keep 2 pieces of information: what

number share they have and what their share secret is.

The math I have walked through is the actual math that the system uses. This part of the

system isn’t particularly interesting as it simply consists of some simple math operations

and substitution of x values into a polynomial. So will not provide any pseudo code.

Reconstructing the secret

This is the interesting part. I will provide a worded step by step here as well as pseudo

code for large segments of this algorithm.

To reconstruct the secret the system needs the number of the minimum number of shares

required to reconstruct the secret (we will call this m) and shares (consisting of their secret

and share number) the number of shares provided should be equal to m.

The first thing we do is construct a set of linear equations, essentially using m we can

determine the power of our resulting polynomial (m – 1) this means we know how many

unknown coefficients we have. For instance if m = 3 we know our polynomial is of power 2

and so has 3 unknown coefficients. y = ax^2 + bx + c where a, b and c are or unknowns.

Since we have an x and y we can substitute these values in for all our points. Continuing

with our m = 3 example lets say our 3 points are (1, 1872), (2, 4266) and (3, 7837). This

means we can construct the following 3 linear simultaneous equations:

1872 = a + b + c

4266 = 4a + 2b + c

7837 = 9a + 3b + c

So, we have 3 simultaneous equations and 3 unknowns (note that c is our secret). Any

GCSE level child could do this (especially this simple example) easy with a bit of time. But

for a computer to reliably find a, b and c with even the most complex values we have to

use matrices.

You can use matrices to solve systems of linear equations of any size and complexity, this

makes them perfect for this application as the program needs a strict set of calculations it

can perform to derive the answer consistently. So we can turn these linear equations into

the following matrix system:

Essentially you take your integer coefficients put them into their own matrix and multiply

this by a matrix of unknows setting this equal to the matrix of known y values (our share

secrets). In this case are m = 3, so our first matrix is of size 3x3 the second of size 3x1 and

Jack Leverett 7714 50639

81

our resulting product of these two matrices is a 3x1. But in general terms (depending on

the size of m you have a m x m matrix multiplied by an m x 1 which equals an m x 1

matrix. This is why matrices are ideal for this application they can scale no matter the size

of the linear equations.

To find a, b and c we simply must multiply our right-hand matrix (the matrix of y values) by

the inverse of our matrix of x results (the m x m) matrix. I will not explain here how the

inverse of a matrix is found but I do show how this is done in the pseudo code below. Once

you find the inverse and multiply it you will get 2 matrices of the same size are equal to

each other. This is the procedure the system goes through to find these unknows. From

there it reconstructs the polynomial equation called f(x) and then finds the result of f(0).

This result is the secret.

The language choice

I chose to use C++ to tackle this algorithm, there are a few reasons it was chosen over

python or any other language. The rest of the system is in python (other than the hash

function) so whatever language I used had to be easily interfaceable with python. Since

python is built on C the native library “ctypes” can be used to interact with C and C++

code. The question now is why C++ over python, simply this was down to speed and

control. This was an intensive math heavy algorithm with numbers that varied widely in

size. If done in python the program would run particularly slow when it started to deal with

large numbers since it must dynamically allocate the memory for the numbers (since its an

interpreted language), meanwhile C++ is a compiled language meaning all the memory

required for the numbers is already assigned and overall, the program can run much

faster. Additionally, the code has to do lots of division and large recursive computations so

to not bog down the server I decide a C based; compiled language was best. C++ was

chosen over C though despite not classes being used in this algorithm due to C++ having

greater quality of life features which objective C still lacks.

Pseudo code

Here I will go over some of the key functions that are used in the processes outlined

above, mainly focusing on how we manipulate the matrices once formed while

reconstructing the secret. The below functions mainly focus on the process for inverting a

matrix I will quickly outline this process to get the inverse of a matrix you:

1) Find the determinant of the matrix

2) Form a matrix of minors

3) Form the matrix of cofactors from the matrix of minors

4) Then multiply this matrix of cofactors by the reciprocal of the determinant

5) This gives you the inverse matrix

Jack Leverett 7714 50639

82

The below function is used to find the determinant of a matrix, it’s a recursive function

since these matrices can be as large as dimension 7. The final ELSE statement uses the

calculations for getting the determinant of a matrix with a dimension above 2. If not done

recursively this function would be huge and would have to contain lots of confusing math

operations for every case of every dimension. This would harm the codes expandability

and maintainability. Additionally in maths matrix determinants are found recursively even

when doing it by hand. This makes the code easy to understand for anyone who

understands the basics of matrices.

FUNCTION findDet(matrix, dimension):

 IF dimension == 0 THEN

 det <- 1

 ELSE IF dimension == 1 THEN

 det <- matrix[0][0]

 ELSE IF dimension == 2 THEN

 det <- matrix[0][0] * matrix[1][1] – matrix[0][1] * matrix[1][0]

 ELSE THEN

 FOR 0 TO dimension-1

 sub_matrix = findMinor(matrix, dimension, i, 0)

 sub_matrix_det = findDet(sub_matrix, dimension-1)

 term <- matrix[0][i] * sub_matrix_det

 IF (i+1) MOD 2 == 0 THEN

 term <- 0 – term

 ENDIF

 det <- det + term

 NEXT

 ENDIF

 RETURN det

The function below is used for finding the minor of a matrix, this is also used when finding

the determinant of any matrix larger than dimension 2. This function simply works by

taking in the row and column that is not to be included in the matrix of minors. So by

simply looping through the matrix and comparing x and y positions with the row and

column that is not to be included in the minor we easily generate the minor of a matrix.

Jack Leverett 7714 50639

83

FUNCTION findMinor(matrix, dimension, pos_x, pos_y)

 # creates an array of size (dimension – 1)

 minor <- [] * (dimension – 1)

 minor_x <- 0

 minor_y <- 0

 FOR i FROM 0 TO (dimension – 1)

 # creates an array of size (dimension – 1)

 Line <- [] * (dimension – 1)

 FOR j FROM 0 TO (dimension – 1)

 IF i != pos_y and j != pos_x THEN

 Line[minor_x] <- matrix[i][j]

 minor_y <- minor_y + 1

 ENDIF

 NEXT

 IF minor_x != 0 THEN

 minor[minor_y] = line

 minor_y <- minor_y + 1

 ENDIF

 minor_x <- 0

 NEXT

RETURN minor

The function below takes in the original matrix as an input and coverts it into the matrix of

cofactors. It uses 2 previous functions to find the minor and the determinant of said minor

in any given section of the given matrix. Using this it constructs a new matrix (a 2D array).

Note that since this is written in C++ originally, the 2D array is in actual fact an array of

pointers. Each pointer leading to a 1D array. This is the same for all matricies throughout

the code and is talked about further in the data structures section of this write up.

FUNCTION formMatrixCofactors(matrix, dimension)

Jack Leverett 7714 50639

84

 # creates an array of size dimension

 cofactors <- []*dimension

 FOR i FROM 0 TO dimension-1

 # creates an array of size dimension

 line <- [] dimension

 sign <- 1

 IF (i+1) MOD 2 == 0 THEN

 sign <- -1

 ENDIF

 FOR j FROM 0 TO dimension

 minor <- findMinor(matrix, dimension, j, i)

 cofactor <- findDet(minor, dimension-1) * sign

 sign <- - sign

 lint[j] <- cofactor

 NEXT

 cofactors[i] <- line

 NEXT

RETURN cofactors

This next function “transposes” the matrix this is the process of turning each row into a

column.

FUNCTION transposeMatrix(matrix, dimension)

 # creates an array of size dimension

 transposed_matrix <- []*dimension

 FOR i FROM 0 TO dimension-1

 # creates an array of size dimension

 line <- []*dimension

 FOR j FROM 0 TO dimension-1

 line[j] <- matrix[j][i]

 NEXT

Jack Leverett 7714 50639

85

 transposed_matrix[i] <- line

 NEXT

 RETURN transposed_matrix

The next function is used in the last stage of the process taking in the determinant and the

transposed matrix. It then multiplies this matrix by the reciprocal of the determinant.

FUNCTION formInverse(matrix, dimension, det)

 # forms an array of size dimesion

inverse <- [] * dimension

FOR I FROM 0 TO dimension-1

 # forms an array of size dimesion

line <- [] * dimension

FOR j FROM 0 TO dimension

 Line[j] <- (1.0/det) * matrix[i][j]

NEXT

inverse[i] <- line

 NEXT

 RETURN inverse

So at this point in the program, we have our inverse now all we do is multiply this inverse

by the matrix of y values (the matrix of the share secret values). The inverse is passed as

matrixA and the matrix of y values as matrixB since they are multiplied in the order inverse

x matrix of y values. Another thing to note is: in the C++ program matrices are passed as

structs containing their x and y dimensions along with their actual matrix. Here though I

have just represented the x and y dimension of matrixA as arguments.

FUNCTION multiplyMatrices(matrixA, matrixB, matrixA_x, matrixA_y)

 # forms an array of size matrixA_y

result_matrix <- [] * matrixA_y

FOR i FROM 0 TO matrixA_y

 # creates an array of length 1

Jack Leverett 7714 50639

86

 line <- []

 result <- 0

 FOR j FROM 0 TO matrixA_x

 result <- result + matrixA[i][j] * matrixB[j][0]

 NEXT

 Line[0] <- result

 result_matrix[i] <-line

NEXT

RETURN result_matrix

Control flow

These functions are all used by a function called solve which simply gets the result of one

function and passes it to the next along with extra data like the dimension of the matrix etc.

This function is very basic and boring all it really does is call this set of functions above. As

for getting the final secret this solve function simply returns the last element of the resulting

matrix as this is equivalent to the y intercept. I will go into detail about the structures and

data types used throughout the C++ program as here the C style arrays, pointers and

structures are turned into a pseudo code style “list” to keep the algorithm easy to

understand.

Limitations

As said before there are limitations on the number of shares that can be generated (must

be less than 20) and the number of shares required for reconstruction (must be less than

7). The reason there is a maximum on the number of shares needed for reconstruction is

because as you increase this number, you increase the size of the matrix and the size of

the determinant. Computers are bad at division and even with C++ largest floating point

number after 7 shares for reconstruction the division becomes to minute and the program

starts to lose accuracy. This loss in accuracy is only by a few decimal points but

reconstruction of a encryption key needs extreme accuracy.

If this module was to be re-written and it needed to support reconstruction with greater

than 7 shares it would need to use a 3rd party library (not included in the standard C++

distribution) to support more accurate numbers with larger bits. The downside to doing

something like this is when the number of bits a number uses becomes larger than the

page size of a CPU programs can start to slow down significantly. So doing this would

likely make the algorithm slower. I consider 6 shares for reconstruction to be plenty for

most use cases, any more than this is an edge case, and the organization can likely spare

Jack Leverett 7714 50639

87

the resources to re-code this one module. Additionally, it’s a very minor change if you

wanted to do this all you have to do is install the header file and change the type definition

of “Lint” (currently long long int) and “Ldouble” (currently long double).

Post scheduling and time slots

A key part of this system is the scheduling of when users can create posts. Users are only

supposed to be able to post within a certain time frame within the day. This is enforced

server side, not client side to prevent the creation of a malicious 3rd party client, however

clients can (and are encouraged to) request the start and end times of the post slot for the

current day. This is done so that clients can schedule a notification on the user’s device.

However, when it is time to post an active client will receive an internal notification from the

server.

On the server the creation and management of posts slots is given to a background

process that runs separate from the main thread. The unit used throughout the process is

seconds since epoch (Unix time). This is used to avoid constant conversion of time and for

exact and globally agreed time across all systems. Its also the easiest to perform math

operations on.

Time slots are stored in the database in the “time_slots” table, this is the only table with no

foreign keys in the entire database. It contains 3 fields, the date in the yyyy-mm-dd format

(this is the primary key) and is stored as a string. Time slot start is stored as a float number

in Unix time, and time slot end stored the same way as time slot start. Another approach to

this would have been storing the start of the time slot and the length of the time slot but

that would require extra compute whenever a process needs the time of the slot end.

Flowchart

The flowchart does not have a stop point since this is an overview of the background

process that runs from server launch until the server itself shuts down. The flowchart

doesn’t include the other functions this background service performs like cleaning expired

notifications, since this is not relevant to the post scheduling.

Jack Leverett 7714 50639

88

Jack Leverett 7714 50639

89

Data structures

Recommendation graph

A graph is used in the friend recommendation algorithm. This graph is used to define the

relationships between users (friends, friends-of-friends, etc) and traversed from an origin

node to generate friend recommendations. The graph is generated on-the-fly, this is done

instead of pre-generating the graph on boot to save on memory usage and enforce certain

user exclusions. Users such as those already with friend requests from the origin user are

excluded from the graph. The graph itself is a directed but unweighted graph, while it

technically could be an undirected graph it is “converted” into a directed graph by removing

the previous nodes from the adjacency list of the node it spawns. This is done to make

traversal easier and prevent double counting of a node.

The graph is made up of “nodes” but essentially boils down to a large 2D array. A nodes

hash (defined by a hash of the user’s username) is also its position in the array. Then at its

position a second list containing the hash of all “edges” (friends of that user) is stored. This

means you visit a node via its hash and from that position you can pull a list of other user

hashes.

Some nodes have no users in their list this is because when generating the graph a certain

depth is defined. A depth of 1 only allows for the users friends to be visited, depth of 2

allows for friends of friends to be visited and so on. This depth parameter is stated to limit

the compute cost of the algorithm.

A graph was chosen for this task since recommending a friend was done based on a

simple calculation:

Number of times a user appears in other friend lists x The “distance” from the origin user

So, the graph is used for calculating the distance from the origin user and calculating the

score as each node is visited. The count for the number of times a single node appears is

assigned to the node’s user object as the graph is generated.

Overall, a graph makes the algorithm way more efficient as there’s no need to hold several

arrays of different users friends in memory instead it can all be handled in a single array or

the “graph”. It also allows for functionality to be added later, since as each node is visited

utilizing the friend directory and their hash you can make any alterations or calculations

about that user’s relationship with other users that’s needed. A slightly modified version of

the algorithm could be used to recommend posts to other users and sort a user’s feed by

relevance.

This graph is found in the “Graph” class in “modules/algorithms/recommend.py

Jack Leverett 7714 50639

90

Recommendation queue

A queue is used in the friend recommendation algorithm. It’s used to organise which nodes

in the graph should be visited next. Nodes are placed at the tail of the queue (index 0) and

the next node to be visited is taken from the head of the queue.

A queue was chosen for this task because I wanted to traverse the graph breadth first, a

queue allowed me to add neighbours of the currently visited node to the end of the queue

meaning once all of the ahead nodes (a layer above the neighbours) had been traversed

these neighbours would be visited next and so on. A stack could have been an alternative

data structure used but this would of forced the use of a depth first search which was

slower and caused greater complexity when working out the distance of each node from

the origin node (a central part of the friend recommendation).

The queue itself simply holds hashes which can be used as references to the hash table

where the user objects are stored and used as positions in the graph. This means that the

hash of each object can be used to point towards 2 different sets of values, in other data

structures.

This queue is found in the “Graph” class in “modules/algorithms/recommend.py

Recommendation hash map

A hash map is used again in the friend recommendation algorithm in the Graph class. The

hash map is used to allow the algorithm to look up a user’s object via the user’s hash

(which is used in the graph, visited and edge queue). So, the key is the hash of the user,

and the stored value is an object of the User class which contains information about the

user like their username as well as methods for generating a list of their friends.

A hash map is used so that we don’t have to convert the hash to a string for lookup in a

python dictionary and so we can pull the raw integer of the key. It allows for more efficient

use of compute however comes at a slight cost of memory usage. The memory usage cost

though is minimal since most of the list is empty it’s just that the list is the size of our

largest hash: 10^7 + 7. But overall, a few kb of memory is worth it for the more readable

and compute efficient code.

It also allows for other languages like C to integrate into the algorithm to manage some

intensive parts. If it was left in a python dictionary C would be almost completely unable to

interact, but as an array C can easily index as it normally would with C style vectors.

Notification queue

A user background service utilises the notifications table object to fetch unsent

notifications. Notifications are only counted as “sent” once the server has sent them via the

clients “notification event”. Each notification is timestamped, and I decided that the older

notifications should get priority in a queue.

Jack Leverett 7714 50639

91

So before hitting the user’s personal notification service the “get_unsent” method queues

the notifications with the oldest being at the front of the queue. Then once passed to the

service it takes the notification of the top of the queue gathers some additional data before

sending it off to the user. Then it loops back around onto the next notification.

A queue was chosen so that in real time new notifications created since the notification

service started could be added to the back of the queue. Say while the notification service

was sending lots of notifications to a user at once another was created, this notification

can be dynamically added to the back of the shared notification queue to be sent while the

service is running.

Images

Pictures and images are integral to the system, the whole idea of the platform stems

around taking these pictures and providing them as posts to other users. As a result, the

way in which images are received, stored, and sent is very important.

Images can be provided by the client in 2 formats, either png or jpg. I chose these formats

since they are the most common formats for bitmap images additionally the libraries used

to interact with the camera for both desktop and android defaulted to outputting png. If the

clients provide any other type of image the post creation process will fail and provide back

a status message saying as such.

Images are not compressed server side or client side; this could be a problem say if a

client provides a particularly large image. However, the size of data is limited by socketIO

which will limit the size of a single data transfer. This limit is high enough to not get in the

way of any normal image, but an image file specifically designed to be maliciously large

would be limited.

On the server side all images are stored in the “data/images/” path. Each image’s name is

stored simply as {post ID}.{format}. So, an example of this would be “2cd80607-5f29-490f-

b666-81b94b6f8378.png”. Using the post ID to identify images works perfectly since the

post ID is unique per post and since there can only be one image per post it works for our

current implementation. The path to the image isn’t just derived from the post ID though

since we could decide in the future to adopt a new naming scheme for images. So, for

future proofing and simplicity of code the “posts” table in the database has a string field

called “content”, this is where the path for the image is stored.

Like I said before we could technically find a post by just using the post ID but a likely

change to the system would be dividing the “data/images/” directory per user. So, the

images directory would have a directory per user. So, in future versions the path to a

user’s post on the 5th of April might look like: “data/images/johnathon/05-04-24.png”.

Currently this sort of change to the pathing logic is unnecessary, modern filesystems can

handle thousands of files per directory and the additional logical overhead of

implementation is not worth the theoretical performance benefit on older systems.

Jack Leverett 7714 50639

92

However, if this change was to be made it could be quickly implemented, due to the

dedicated field in the posts database.

Database

The database on the server side uses several techniques to keep data linked and

organised according to the 3rd normal form standards. Since at large this is a database

heavy application the database must be well maintained and well linked to keep the data

inside it consistent.

For instance, the occupationID of an occupation is the primary key in the occupations

table, it is also a field and foreign key in both the Teams table and Profile table. These

foreign keys then have different properties. Following this same example for the teams and

profile table, on the occupationID being updated in the occupations table the updates

cascade. However, on deletion of occupationID (and its occupation since it’s the primary

key) the teams table will delete any entries with that occupationID (aka, cascade delete).

The profile table however will simply turn that field of the record to NULL. Since we don’t

want to delete the user but just de-associate them with the now deleted occupation.

These kinds of structures are all over the database to keep the data as consistent as

possible. The server already does enough work so the database should do its job and not

leave any “cleanup” tasks to the scripting. Every instance of the same type of values uses

a foreign key pair to maintain this methodology.

Matrices

In the Shamir secret sharing algorithm matrices are heavily used to solve a system of

simultaneous equations. The entire algorithm is written using C style arrays and pointers,

meaning static arrays and memory address pointers had to be used. Especially since

many of these matrices were being returned from functions.

Matrices themselves were represented as a pointer to an array of pointers. This was the

method for representing and passing a 2D array around the program. Since in C you

cannot simply return an array, you must return a pointer to an array created inside a

function. To make a 2D array you must create an array of pointers. Matrices also have

some other important information that is crucial to their use, namely their dimension.

Without explicitly passing the dimensions a function would have no way of knowing the

size of a matrix. Since it’s simply being passed as a pointer there is no operation that can

be performed to get the size of an array.

To tackle this a Matrix structure was used so that the 2D array of the matrix values could

be passed along side its x and y dimensions in one neat package. This meant that all you

had to do was pass matrixA and the function could get all the information needed about

matrixA.

Jack Leverett 7714 50639

93

Testing

Here I describe the testing methodology. The server’s functions are divided up into

classes. Each class has its relevant methods and a client facing handler function. For

example, of these classes could be “posts” we will call this the “post module”. Then “posts”

will have a client facing handler class called “posts_handler”. So, the testing methodology

follows this same structure, first a module is written with all the relevant data then each

method in that class is tested internally by calling it relevant file directly and utilizing a

defined “test” function, with some base case values. Once these tests have passed, I write

the handler and the client-side code to interact with the server events. This code is then

tested together and where we test the edge cases for the original module, since the

handler is built to clean inputs and handle erroneous data. So, there are 2 stages to

testing:

Stage 1: Individual internal test on module (for instance “posts”), simple correct usage of

the methods is tested here (mainly looking for syntax errors and very basic logic errors

here)

Stage 2: “end-to-end” testing using the GUI client, which then goes through the event,

handler, and module itself. Edge cases and wrong inputs are tested here to make sure the

server and client can handle these cases.

Stage 2 testing is the main thing documented in this write up since the Stage 1 testing is

largely uninteresting and the only bugs, I encountered there were small syntax errors or

minor logic bugs, nothing that took more than a minute to solve. Stage 2 testing though is

far more interesting since it still deals with some of these minor bugs but also larger logical

flaws and led to more interesting code dealing with edge cases etc. Stage 2 testing

additionally led me to digging around source code from my python GUI library.

There were some exceptions to this stage 1, stage 2 methodology for instance when

testing more complicated and staged algorithms as well as any C++ code written was

tested more consistently as it was being written (as I am less experienced in this

language). But stage 1 and 2 testing always followed this was also just some pre-liminary

testing that we can call stage 0 testing.

Server tests

Test Number Test Description Expected Observed Action

PST.1A.I Using the

“post_set” event

from the client

including valid

content and

The server

should accept

the post write

the relevant

information to

The server

complains

about there

being no such

This is because

I should be

using

self.obj.content

content is the

Jack Leverett 7714 50639

94

caption. The

client is creating 1

post. Its also

being done in the

valid time slot

the database as

well as save the

post image.

thing as the

attribute image

referance to the

image to make

the code more

flexible for the

future if it was

altered to be a

text post

instead for

instance.

PST.1A.I Using the

“post_set” event

from the client

including valid

content and

caption. The

client is creating 1

post. Its also

being done in the

valid time slot

The server

should accept

the post write

the relevant

information to

the database as

well as save the

post image.

As expected

Test
Number

Image
Numbe
r

Image

PST.1A.I 1

PST.1A.I
I

1

Jack Leverett 7714 50639

95

Test Number Test Description Expected Observed Action

N.1A.I When the

current time is

within the

allocated time

slot defined by

the table

time_slots

entry, the

notification

service should

generate the

post time

notification.

The notification

to be generated

and an entry

added to the

notifications

table of the

database

containing a

unique

notification_id,

a title that uses

the post-

servercode

format, content

stating the time

until post as

configured as

well as its

expiration and

time created.

As expected

N.2A.I After the

notification has

been created in

the notifications

table

load_notificatio

n should be

called just after

creation.

This function

should then

identify the

targets of the

notification and

add their

user_id, the

notification_id

and a status on

whether it has

been sent in the

sent_notificatio

ns table.

The method

that identifies

the

target_group

was returning

None. This

should only

happen if the

notification id or

target id was

not valid.

When a

notification

needs to be

sent to the

entire server

the target_id is

set to None.

But

get_target_grou

p checks if a

target_id exists.

Since the id is

None it believes

target id is

doesn’t exist.

Addressing the

entire server is

now done by a

special code

Jack Leverett 7714 50639

96

“all-{server

code}” this

string is also

made an illegal

username, so

the target_id is

not mistaken.

N.2A.II get_target_grou

p continues to

return None.

Due to a

misuse of the

“is” built in

function

returning False.

The culprit line

was remove

and replaced

with an if/else

statement.

N.2A.III As expected

N.3A.I Testing wether

the

user_notificatio

n_service can

send a queued

notification to a

logged in client

The

user_notificatio

n_service

background

task sends a

emits the

notifiation to a

connected

client and sets

the time_sent to

the current time

and setting the

column set to

True.

As expected

N.4A.I Removal of

notifications

that are over

their expiration

time. By the

server

background

service

The

notifications

from

notifications_se

nt are removed

as to stop the

user_notificatio

n_service

picking them up

and sending

As expected

Jack Leverett 7714 50639

97

expired

notifications.

End to End tests

Organisation Tab

Test Number Test Description Expected Observed Action

ORG.1A.I Checking if the

organisation tab

appears for a

non-

management

(and above) and

non-team leader.

In this case the

user will be of

level member

and not a team

leader

Since the user is

just a member

and not a team

leader the tab

should not

appear

ORG.1B.I Clicking the

organisation tab

at the bottom of

the screen

All users from

here on will be

management or

team leader

Change the

screen to the

“organisation”

screen

The tab for the

organisation

page did not

appear

The function that

adds the tab to

the bottom of the

screen (after

checking the

users level) was

not called in the

homepage init

method

ORG.1B.II Clicking the

organisation tab

at the bottom of

the screen

All users from

here on will be

management or

Change the

screen to the

“organisation”

screen

As expected

Jack Leverett 7714 50639

98

team leader

ORG.1C.I Checking the UI

and the look of

the page

There should be

a top bar

displaying the

app name, a

settings icon, a

profile icon and

an additional

menu for sorting

the homefeed.

The content of

the page itself

should contain 2

buttons teams

and

The 2 buttons

are squished

down in the

bottom corner of

the page

Added some

padding to the

page itself and

gave both

buttons a

position hint to

be centred in the

x direction.

Also added

scrolling

functionality to

the page to keep

the pages

consistent

ORG.1C.II Checking the UI

and the look of

the page

There should be

a top bar

displaying the

app name, a

settings icon, a

profile icon and

an additional

menu for sorting

the homefeed.

The content of

the page itself

should contain 2

buttons teams

and

As expected

ORG.2A.I Pressing the

“occupations”

button

This should

change your

page to the

occupations

management

page

As expected

ORG.2B.I Pressing the

“teams” button

This should

change your

page to the

Jack Leverett 7714 50639

99

occupations

management

page

Test
Number

Image
Number

Image

ORG.1A.I 1

ORG.1B.I 1

Jack Leverett 7714 50639

100

ORG.1B.I
I

1

ORG.1C.I 1

Jack Leverett 7714 50639

101

ORG.1C.I
I

1

ORG.2A.I 1

Jack Leverett 7714 50639

102

Login and Register

Jack Leverett 7714 50639

103

Test Number Test Description Expected Observed Action

U.1A.I The login from

the client ui,

entering a

correct

username and

password

After pressing

login the client

will receive a

status message

(not displayed

on ui) and the

screen will

switch to the

homepage

As expected Added a popup

message at the

bottom of the

screen on

successful login

U.1B.I The login from

the client ui,

entering a

Incorrecct

username and

password

After pressing

the login button

the text field

should go red

indicating an

error

As expected Need to display

what the

problem is to

the user

(incorrect

details or

connection

error)

U.1B.II Implemented a

popup that

displays the

error message

from the server

to the user.

The textfields

should go red

and an error

message

should popup at

the bottom

As expected

U.1C.I The login from

the client ui,

entering a

Incorrecct

username and

a correct

password

The textfields

should go red

and an error

message

should popup at

the bottom

As expected

U.1D.I The login from

the client ui,

entering a

correcct

username and

a incorrect

password

The textfields

should go red

and an error

message

should popup at

the bottom

As expected

U.1E.I The login from The textfields As expected

Jack Leverett 7714 50639

104

the client ui,

entering a

correct

username and

no password

should go red

and an error

message

should popup at

the bottom

U.1F.I The login from

the client ui,

entering a no

username and

a correct

password

The textfields

should go red

and an error

message

should popup at

the bottom

As expected

U.1G.I The login from

the client ui,

entering a no

username and

a no password

The textfields

should go red

and an error

message

should popup at

the bottom

As expected

U.2A.I Clicking the

register button

Changes the

screeen to the

registration

screen with all

the correct

fields

As expected

U.2B.I Clicking the

Admin Register

button

Changes the

text in the

Registration

key field to

display Admin

Registration

key and

changes the

button text to

Member

register

As expected

U.2C.I Member

registration with

valid

credentials

After clicking

register the

page should

change back to

the login and a

As expected

Jack Leverett 7714 50639

105

popup message

indicating a

successful

registration.

U.2D.I For these

following tests

the server is

configured to

accept

usernames

between 3 and

25 characters

long (inclusive).

Member

registration with

a username

thats 3

characters long

After clicking

register the

page should

change back to

the login and a

popup message

indicating a

successful

registration.

As expected

U.2E.I Member

registration with

a username

that is less than

3 characters

long

After clicking

register a

popup message

with a error

stating an

problem with

the length of

the username

As expected

U.2F.I Member

registration with

a username

that is 25

characters long

After clicking

register the

page should

change back to

the login and a

popup message

indicating a

successful

registration.

As expected

U.2G.I Member

registration with

a username

that is more

than 25

After clicking

register a

popup message

with a error

stating an

As expected

Jack Leverett 7714 50639

106

characters long problem with

the length of

the username

U.3A.I Admin

registration with

valid

credentials

On register

click their

should be a

popup for

successful

registration and

the screen

should switch

back to the

login screen.

The server

should also add

corresponding

entries in the

tables

Didnt register

with the correct

label. Reason is

the client is not

emitting the

reg_admin

event

Added a class

attribute to

define the

registration

mode (member

or admin) on

registration

submit, it sets

the event call

based on the

mode

U.3A.II Admin

registration with

valid

credentials

On register

click their

should be a

popup for

successful

registration and

the screen

should switch

back to the

login screen.

The server

should also add

corresponding

entries in the

tables

As expected

U.3B.I Admin

registration with

no credentials

On register

click their

should be a

popup for an

unsuccessful

registration.

The server

As expected

Jack Leverett 7714 50639

107

should not

create any table

entries

U.4A.I Entering a valid

url of the server

(hosted locally)

and clicking

connect

The page

should display

an appropriate

popup message

at the bottom of

the screen and

change the

page to the

login page

The url was

counted as

invalid. This

was because

there was no

way currently

for the

start_client

function to

communicate

whether it was

successful or

not.

Added a try a

return

statement to

start client so it

returns True

when

successfully

connected and

False when

unsuccessful

U.4A.II Entering a valid

url of the server

(hosted locally)

and clicking

connect

The page

should display

an appropriate

popup message

at the bottom of

the screen and

change the

page to the

login page

The url

continues to

count as

invalid. This is

caused by the

urllib error

checking

process which

denys any urls

that point to

localhost.

This package

was remove

and replaced

with a try and

except in the

sio connection

U.4A.III Entering a valid

url of the server

(hosted locally)

and clicking

connect

The page

should display

an appropriate

popup message

at the bottom of

the screen and

change the

page to the

login page

There was no

popup message

at the bottom of

the page.

Add a popup

message for

when both

successful

connection and

unsuccessful

connections

U.4A.IIII Entering a valid

url of the server

(hosted locally)

and clicking

The page

should display

an appropriate

popup message

As expected

Jack Leverett 7714 50639

108

connect at the bottom of

the screen and

change the

page to the

login page

U.4B.I Entering an

invalid url and

clicking connect

The page

should display

an

unsuccessful

connection

message. It

should also

make the

textbox go red

and remind the

user to include

http:// or https://

As expected

Test
Number

Image
Number

Image

U.1A.I 1

Jack Leverett 7714 50639

109

U.1A.I 2

U.1B.I 1

Jack Leverett 7714 50639

110

U.1B.I 2

U.1B.II 1

Jack Leverett 7714 50639

111

U.1C.I 1

U.1D.I 1

Jack Leverett 7714 50639

112

U.1E.I 1

U.1F.I 1

Jack Leverett 7714 50639

113

U.1G.I 1

U.2A.I 1

Jack Leverett 7714 50639

114

U.2B.I 1

U.2C.I 1

Jack Leverett 7714 50639

115

U.2C.I 2

U.2D.I 1

Jack Leverett 7714 50639

116

U.2D.I 2

U.2E.I 1

Jack Leverett 7714 50639

117

U.2E.I 2

U.2F.I 1

Jack Leverett 7714 50639

118

U.2F.I 2

U.2G.I 1

Jack Leverett 7714 50639

119

U.2G.I 2

U.3A.I 1

Jack Leverett 7714 50639

120

U.3A.II 1

U.3B.I 1

U.3B.I 2

Jack Leverett 7714 50639

121

U.4A.I 1

U.4A.I 2

Jack Leverett 7714 50639

122

U.4A.II 1

U.4A.IIII 1

Jack Leverett 7714 50639

123

U.4A.IIII 2

U.4B.I 1

Jack Leverett 7714 50639

124

U.4B.I 2

Jack Leverett 7714 50639

125

Profile

Jack Leverett 7714 50639

126

Test Number Test Description Expected Observed Action

P.1A.I Clicking the top

account/profile

button on the

top bar of the

app. This

button is used

to access the

users own

profile page

where they can

edit certain

parts of their

profile

Clicking the

button changes

the page to the

profile page the

title of the page

should just be

“Profile”

The page

changes to the

profile page but

the title says

“user’s Profile”

(we are logged

in as “user”) it

should only

display the

username in

the title if we

are in another

persons profile.

Setup an if

statement in the

load_content

method of

AccountPage to

check if the

username

being passed is

the same as the

session.useram

e (where the

logged in

username is

stored)

P.1A.II Clicking the top

account/profile

button on the

top bar of the

app. This

button is used

to access the

users own

profile page

where they can

edit certain

parts of their

profile

Clicking the

button changes

the page to the

profile page the

title of the page

should just be

“Profile”

As expected

P.2A.I Checking the

contents of the

profile page

and that the ui

only displays

edit buttons on

the correct

categories. In

this case we

are logged in as

just a member.

Clicking the

button changes

the page to the

profile page the

title of the page

should just be

“Profile” and

edit buttons

should be next

to name, role,

biography and

occupation

As expected

Jack Leverett 7714 50639

127

P.2B.I Checking the

contents of the

profile page

and that the ui

only displays

edit buttons on

the correct

categories. In

this case we

are logged in as

just a

management.

Clicking the

button changes

the page to the

profile page the

title of the page

should just be

“Profile” and

edit buttons

should be next

to name, role,

biography and

occupation

As expected

P.2C.I Checking the

contents of the

profile page

and that the ui

only displays

edit buttons on

the correct

categories. In

this case we

are logged in as

just an admin.

Clicking the

button changes

the page to the

profile page the

title of the page

should just be

“Profile” and

edit buttons

should be next

to name, role,

biography and

occupation

As expected

P.2D.I Checking the

contents of the

profile page

and that the ui

only displays

edit buttons on

the correct

categories. In

this case we

are logged in as

just an team

leader.

Clicking the

button changes

the page to the

profile page the

title of the page

should just be

“Profile” and

edit buttons

should be next

to name, role,

biography, team

name and

occupation

P.3A.I Clicking the edit

button on the

name column

When clicking

the edit button

where the

As expected

Jack Leverett 7714 50639

128

and changing it profile picture

should be

displayed will

be replaced

with an edit

box.

On submit the

UI should

update to

reflect the

change and the

server side

database

should do the

same. The UI

should also

replace the edit

box back with

the profile

picture

P.3B.I Clicking the edit

button on the

role column

and changing it

When clicking

the edit button

where the

profile picture

should be

displayed will

be replaced

with an edit

box.

On submit the

UI should

update to

reflect the

change and the

server side

database

should do the

same. The UI

should also

replace the edit

As expected

Jack Leverett 7714 50639

129

box back with

the profile

picture

P.3C.I Clicking the edit

button on the

biography

column and

changing it

When clicking

the edit button

where the

profile picture

should be

displayed will

be replaced

with an edit

box.

On submit the

UI should

update to

reflect the

change and the

server side

database

should do the

same. The UI

should also

replace the edit

box back with

the profile

picture

As expected

P.3D.I Clicking the edit

button on the

occupation

name column

and creating an

occupation

change

request.

The user is a

member in this

case

After clicking

the edit button

the profile

picture should

be replaced

with an

occupation

request

creation area

(in this case

since the user

is a member).

The occupation

change request

On clicking the

occupation

button an

empty list would

appear

This was a

problem with

how the list was

implemented.

There was

another issue

that would

prevent proper

selection from

the list as well

Jack Leverett 7714 50639

130

should appear

on the server

side database

as well.

P.3D.II Clicking the edit

button on the

occupation

name column

and creating an

occupation

change

request.

The user is a

member in this

case

After clicking

the edit button

the profile

picture should

be replaced

with an

occupation

request

creation area

(in this case

since the user

is a member).

The occupation

change request

should appear

on the server

side database

as well.

On selection of

the first option

in the list and

clicking “create

request” an

error message

would appear

stating “no

selection

made”.

However

picking any

other option

works fine

This came

down to the

check for a

selection being

made.

Since the

selection was

the 0th item the

check would

return false

since in python

“if 0” is false.

P.3D.III Clicking the edit

button on the

occupation

name column

and creating an

occupation

change

request.

The user is a

member in this

case

After clicking

the edit button

the profile

picture should

be replaced

with an

occupation

request

creation area

(in this case

since the user

is a member).

The occupation

change request

should appear

on the server

side database

as well.

Didn’t clean the

text from the

create request

area. It also

didn’t set the

editing area

back to the

profile picture.

There is also no

way to close

the area if your

done.

Jack Leverett 7714 50639

131

P.3D.IIII Clicking the edit

button on the

occupation

name column

and creating an

occupation

change

request.

The user is a

member in this

case

After clicking

the edit button

the profile

picture should

be replaced

with an

occupation

request

creation area

(in this case

since the user

is a member).

The occupation

change request

should appear

on the server

side database

as well.

As expected

P.3E.I Clicking the

cancel button

on a pending

request

This should

change the

request status

to Approved,

this change

should be

reflected in the

database

As expected

Test
Number

Image
Number

Image

Jack Leverett 7714 50639

132

P.1A.I I

Jack Leverett 7714 50639

133

P.2A.I 1

Jack Leverett 7714 50639

134

P.3A.I 1

P.3A.I 2

P.3A.I 3

Jack Leverett 7714 50639

135

P.3B.I 1

P.3B.I 2

P.3B.I 3

Jack Leverett 7714 50639

136

P.3C.I 1

P.3C.I 2

Jack Leverett 7714 50639

137

P.3C.I 3

P.3C.I 4

P.3D.I 1

Jack Leverett 7714 50639

138

P.3D.I 2

P.3D.II 1

Jack Leverett 7714 50639

139

P.3D.II 2

P.3D.II 3

Jack Leverett 7714 50639

140

P.3D.II 4

P.3D.II 5

P.3D.III 1

Jack Leverett 7714 50639

141

P.3D.IIII 1

P.3D.IIII 2

P.3E.I 1

Jack Leverett 7714 50639

142

P.3E.I 2

P.3E.I 3

P.3E.I 4

Jack Leverett 7714 50639

143

Friends

Jack Leverett 7714 50639

144

Test Number Test Description Expected Observed Action

F.1A.I To see if the

basic UI is

displayed

correctly

There should

be a top bar

with a back

button. Then in

the content

area of the

page there

should be a

button with the

text “requests”

and a list of

friends. The

user being

tested here has

no friends.

The screen

should also be

scrollable.

The top button

is being cut off

as the scroll

view seems to

be clipping into

the top bar

I removed the

boxlayout that

was surrounding

the scrollview.

And added the

padding to the

scrollview itself

instead of the

above

boxlayout.

F.1A.II To see if the

basic UI is

displayed

correctly

There should

be a top bar

with a back

button. Then in

the content

area of the

page there

should be a

button with the

text “requests”

and a list of

friends. The

user being

tested here has

3 friends.

The screen

should also be

scrollable.

As expected

F.2A.I Removing a

friend using the

cross button

On release of

the x button the

server

As expected

Jack Leverett 7714 50639

145

displayed next

to their

username

database

should be

updated to

remove this

friend and the

client UI should

also update to

show the friend

has been

removed

F.3A.I Pressing the

back button on

the friends

page

This should

bring you back

to the account

screen

As expected

F.4A.I Pressing the

“requests”

button

This should

bring you to the

friend requests

screen.

As expected

F.4B.I General UI of

the friend

requests screen

There should

be a top bar

with a back

button and 2

scrollable areas

one outgoing

friend requests

each requests

and the other

incoming friend

requests.

The user being

used here has

0 incoming and

0 outgoing

requests

There is

uneeded

padding around

the whole

screen. There

is no space

between the

username text

bar and the add

friend button.

These items

also cant be

interacted with

at all

Remove the

padding and

included the

load_content

method in the

init (this is likely

what was

blocking the

items from

being

intractable)

F.4B.II General UI of

the friend

requests screen

There should

be a top bar

with a back

button and 2

scrollable areas

one outgoing

When the

request button

is pressed the

program

freezes and the

needs to be

This is likely to

do with the

request

functionality

potentially the

server is not

Jack Leverett 7714 50639

146

friend requests

each requests

and the other

incoming friend

requests.

The user being

used here has

0 incoming and

0 outgoing

requests

forced closed returning the

correct callback

code.

Turns out the

client was

calling the

“friend_get_requ

ests” event

instead of

“friend_get_requ

est”

F.4B.III General UI of

the friend

requests screen

There should

be a top bar

with a back

button and 2

scrollable areas

one outgoing

friend requests

each requests

and the other

incoming friend

requests.

The user being

used here has

0 incoming and

0 outgoing

requests

The server

creates an error

saying there is

no

“get_request”

method in

friend

In the friend

class the

method is called

get_requests

then in the

handler it was

called

get_request.

This was

changed in the

handler to

conform with the

info.py

F.4B.III General UI of

the friend

requests screen

There should

be a top bar

with a back

button and 2

scrollable areas

one outgoing

friend requests

each requests

and the other

incoming friend

requests.

The user being

used here has

The server

complains that

there is no such

thing as an

“accepted”

column in the

friends table

The column in

the table is

called

“approved” so

changed the

SQL command

to use this

instead

Jack Leverett 7714 50639

147

0 incoming and

0 outgoing

requests

F.4B.IV General UI of

the friend

requests screen

There should

be a top bar

with a back

button and 2

scrollable areas

one outgoing

friend requests

each requests

and the other

incoming friend

requests.

The user being

used here has

0 incoming and

0 outgoing

requests

Complains that

nonetype object

is not iterable

on the client.

This suggests

the server is

returning None

on incoming

and or outgoing

requets

This is because

I didn’t account

for if the return

on either

requests was

None (for no

requests). So

now if either one

is None they are

respectively set

to [].

Additionally the

for loops were

split up where

they added the

incoming and

outgoing

widgets

F.4B.V General UI of

the friend

requests screen

There should

be a top bar

with a back

button and 2

scrollable areas

one outgoing

friend requests

each requests

and the other

incoming friend

requests.

The user being

used here has

0 incoming and

0 outgoing

requests

The lists are

clipping into the

text field and

button

Seperated the

page into the

making a friend

request area

and 2

individually

scrollable lists.

This solves any

problems with

clipping.

Additionally

centred the title

and fixed the

direction of the

back button

F.4B.VI General UI of

the friend

There should

be a top bar

with a back

As expected

Jack Leverett 7714 50639

148

requests screen button and 2

scrollable areas

one outgoing

friend requests

each requests

and the other

incoming friend

requests.

The user being

used here has

0 incoming and

0 outgoing

requests

F.5A.I Incoming and

outgoing

requests areas

of the page

The user being

used here has

0 incoming and

0 outgoing

requests.

So each area

should instead

show a single

item reading

that there are

no requests

As expected

F.5B.I Incoming and

outgoing

requests areas

of the page

The user being

used here has

2 incoming and

3 outgoing

requests.

The incoming

request area

should display

2 incoming

friend request

each one

should have the

username, an

accept button

and a reject

button

The outgoing

request area

should show 3

outgoing

request along

with each ones

username and

The incoming

items go off the

side of the

screen and the

tick icon is not

displaying

correctly

The icon name

is wrong it

should be called

“check” not

“tick”.

The check icon

is also being

moved to the

left

Jack Leverett 7714 50639

149

a cancel button

next to each.

F.6A.I Clicking the

request itself

(not its buttons)

to get to the

users profile

who is making

the request/is

being

requested

Clicking on a

users request

should switch

screen to the

account page

and clicking the

back button

should then

take you back

to the friend

request page.

It changed to

the page but

the page also

displays the

friends icon this

should only be

accessble to

the user

themselves or

an admin

Validation on

the creation of

the friends icon

and page

F.6A.II Clicking the

request itself

(not its buttons)

to get to the

users profile

who is making

the request/is

being

requested

Clicking on a

users request

should switch

screen to the

account page

and clicking the

back button

should then

take you back

to the friend

request page.

As expected

F.7A.I Clicking the

accept button

on an incoming

friend request

This should

remove the

request from

the list, this

person should

then be added

to the friends

list on the

“friends” page.

And this person

should be listed

as an accepted

friend in the

server

database

The server

errors claiming

that “friend_id”

is never

defined.

This is likely

because this is

meant to read

self.friend_id

Jack Leverett 7714 50639

150

F.7A.II Clicking the

accept button

on an incoming

friend request

This should

remove the

request from

the list, this

person should

then be added

to the friends

list on the

“friends” page.

And this person

should be listed

as an accepted

friend in the

server

database

The object has

no attribute

“friend_id”.

This is a deeper

logical problem.

There is no

friend_id

attribute in the

class ever

created so I

created a new

property for it

which is set

when a friend

username is

assigned.

F.7A.II

Clicking the

accept button

on an incoming

friend request

This should

remove the

request from

the list, this

person should

then be added

to the friends

list on the

“friends” page.

And this person

should be listed

as an accepted

friend in the

server

database

As expected

F.7B.I Clicking the

reject button on

an incoming

friend request

This should

remove the

request from

the list.

And remove the

request from

the server side

database.

No changes

were made

correctly. This

is because the

button was

calling

self.reject

instead of

root.reject

Changes the

self.reject to

root.reject

method

Jack Leverett 7714 50639

151

F.7B.II Clicking the

reject button on

an incoming

friend request

This should

remove the

request from

the list.

And remove the

request from

the server side

database.

On clicking

reject the UI

refreshes

correctly and

doesn’t freeze

but even after

refreshing the

requests

persists

It seams the

request isnt

being correcly

removed from

the table as

shown in the

pictures

This is a server

side issue and

likely a

permissions

issue.

It came down to

a syntax error in

the SQL

command.

F.7B.III Clicking the

reject button on

an incoming

friend request

This should

remove the

request from

the list.

And remove the

request from

the server side

database.

As expected

F.7C.I Clicking the

cancel button

on an outgoing

friend request.

This should

remove the

request from

the list and

remove the

request from

the server side

database

On clicking

cancel the UI

does refresh

but there is no

change to the

list.

The cancel

method wasn’t

sending any

data about

which request to

cancel along

with it. Hence

the server did

nothing

F.7C.II Clicking the

cancel button

on an outgoing

friend request.

This should

remove the

request from

the list and

remove the

request from

the server side

As expected

Jack Leverett 7714 50639

152

database

F.8A.I Entering a valid

username and

pressing

request

The box should

clear and the

request should

be created on

the server side

database

The program

freezes due to

a dictionary key

error

F.8A.II Entering a valid

username and

pressing

request

The box should

clear and the

request should

be created on

the server side

database

Shows the

wrong status

message and

doesn’t clear

the text box

F.8A.III Entering a valid

username and

pressing

request

The box should

clear and the

request should

be created on

the server side

database

As expected

Test
Number

Image
Number

Image

Jack Leverett 7714 50639

153

F.1A.I 1

F.1A.II 1

Jack Leverett 7714 50639

154

F.2A.I 1

F.2A.I 2

Jack Leverett 7714 50639

155

F.3A.I 1

F.FB.I 1

Jack Leverett 7714 50639

156

F.4B.I 1

F.4B.II 1

Jack Leverett 7714 50639

157

F.4B.II 2

Jack Leverett 7714 50639

158

F.4B.III 1

F.4B.V

Jack Leverett 7714 50639

159

F.4B.VI 1

F.5A.I 1

Jack Leverett 7714 50639

160

F.5B.I 1

F.5B.II 1

Jack Leverett 7714 50639

161

F.6A.I 1

F.6A.II 1

F.7A.I 1

Jack Leverett 7714 50639

162

F.7A.II 1

F.7A.III 1

F.7B.I 1

Jack Leverett 7714 50639

163

F.7B.I 2

F.7B.I 3

Jack Leverett 7714 50639

164

F.7B.II 1

F.7B.III 1

Jack Leverett 7714 50639

165

F.7B.III 2

F.7C.I 1

Jack Leverett 7714 50639

166

F.7C.I 2

F.7C.II 1

Jack Leverett 7714 50639

167

F.7C.II 2

F.8A.I 1

F.8A.I 2

Jack Leverett 7714 50639

168

F.8A.II 1

F.8A.III 1

Jack Leverett 7714 50639

169

F.8A.III 2

Jack Leverett 7714 50639

170

Notifications

Test Number Test Description Expected Observed Action

N2.1A.I Entering the

notification

screen. Clicking

the notification

button at the top

of the home

screen

On release of

the button the

screen should

change to the

notification

screen

The app crashed

with no error

messages

displayed on the

app itself or on

the server

This was due to

the client calling

a non-existant

event. This was

fixed

N2.1A.II Entering the

notification

screen. Clicking

the notification

button at the top

of the home

screen

On release of

the button the

screen should

change to the

notification

screen

As expected

N2.1B.I UI elements and

look of the page

There should be

a topbar

displaying

“Notifications” or

“{username}’s

Notifications” if

(for example an

admin) is

viewing another

users

notifications.

As expected

N2.1C.I Scrolling the

notification list

On using the

scroll wheel or

swiping down

the list of

notifications

should shift

downward.

As expected

Jack Leverett 7714 50639

171

N2.1D.I Clicking the back

button at the top

of the notification

page

This should

change the page

back to the

homefeed (if

accessing own

notifications) or

if an admin

accessed the

notifications of

another user it

should return the

admin to the

users profile.

N2.2A.I Displaying the

notifications

themselves.

The user being

used here has 0

notifications

The notification

area should

have a single

item reading “no

notifications”

As expected

N2.2B.I Displaying

notifications on

the notification

screen.

The user being

used here has 5

notifications

There should be

5 notifications

each displaying

a title some

without extra

content. All

should have a

cross button

next to them

The client

crashed after

clicking the

notification

button

No error

message was

displayed so this

was likely a bad

server call or

server error.

Error in the

variable name

for the

notification

information pull.

N2.2B.II Displaying

notifications on

the notification

screen.

The user being

used here has 5

notifications

There should be

5 notifications

each displaying

a title some

without extra

content. All

should have a

cross button

Notifications

appeared with

correct titles but

the content of

the notifications

are is not correct

Jack Leverett 7714 50639

172

next to them

N2.2C.I New notification

being received

by the client and

added to the UI

in real time.

Here a user will

be logged in on

the notification

screen when 5

test notifications

are created,

these

notifications

should then be

put on the UI.

Here the user

should see a

new notification

added to their

already loaded

notification page

The client errors

out complaining

about a

dictionary key

error.

This is because

the

notification_id

isnt sent by the

user notification

service. This is a

server side

service that

provides live

notifications to

logged in users.

I will change this

so the service

also provides the

notification ID to

the client.

N2.2C.II New notification

being received

by the client and

added to the UI

in real time.Here

a user will be

logged in on the

notification

screen when 5

test notifications

are created,

these

notifications

should then be

put on the UI.

Here the user

should see a

new notification

added to their

already loaded

notification page

The client errors,

this time its that

graphics are

trying to be

added outside of

the main thread

of the gui.

This is a

limitation of the

gui framework

but will be

substituted with

a refresh button.

For this reshresh

button to work

the load_content

method was

tweaked to clear

notifications first

before fetching

all again.

And the user will

receive a live

notification from

their OS anyway.

N2.2C.III While the user is

on the

notifications

The newly

created

notifications

As expected

Jack Leverett 7714 50639

173

page another

client will create

test notifications.

The first user will

then click the

refresh button on

their notifications

page

should appear in

the list.

N2.3A.I Pressing the

cross button

next to a

notification, to

remove the

notification

The UI should

update to

remove the

selected

notification and

this change

should also be

reflected on the

server side

database

Minor syntax

error server side,

other than that

as expected.

N2.3B.I Pressing the

cross button

next to a

notification, to

remove the

notification. In

this case it’s the

last notifications

The UI should

update to

remove the

selected

notification, and

display “No

notifications”

and this change

should also be

reflected on the

server side

database

The list goes

blank after

removing the

last notifications

The UI is not

refreshed after

removing a

notification. Now

at the end of the

delete method

the load_content

method is called

again.

N2.4A.I Users of 3

different levels

will be logged

into 3 clients.

There will be a

“member” user,

“management”

user and an

Of the 3 users

only the admin

should receive

the notification.

As expected

Jack Leverett 7714 50639

174

“admin” user.

A notification

directed towards

only admins will

be generated

N2.4B.I Users of 3

different levels

will be logged

into 3 clients.

There will be a

“member” user,

“management”

user and an

“admin” user.

A notification

directed towards

only

management

will be generated

Of the 3 users

only the

management

user should

receive the

notification.

As expected

N2.4C.I Users of 3

different levels

will be logged

into 3 clients.

There will be a

“member” user,

“management”

user and an

“admin” user.

A notification

directed towards

only members

will be generated

Of the 3 users

only the

member user

should receive

the notification.

As expected

N2.5A.I 2 users will be

logged into 2

different clients

one user will be

part of the

“teachers” team

Of the 2 users

only the user

apart of the

“teachers” team

should receive

Jack Leverett 7714 50639

175

and the other

apart of the

“students” team.

A notification will

be generated

intended for

“teachers” team

members only

the notification

N2.6A.I 2 users will be

logged into 2

different clients.

One with

username Adam

and the other

with username

Betty

A notification will

be generated

intended for

Betty

Of the 2 users

only Betty

should receive

the notification.

As expected

N2.7A.I The client will

receive a “post

time” notification.

The title of this

type of

notification is

unique and so

requires some

processing

before displaying

to the user

The title of the

notification

should simply

read “Post time”

not displaying

the server code

(which is

originally sent by

the server in the

title)

Test
Number

Image Number Image

Jack Leverett 7714 50639

176

N2.1A.I 1

N2.1A.II 1

Jack Leverett 7714 50639

177

N2.1B.I 1

N2.2A.I 1

Jack Leverett 7714 50639

178

N2.2B.I 1

N2.2B.II 1

N2.2B.III 1

N2.2C.I 1

N2.2C.II 1

Jack Leverett 7714 50639

179

N2.2C.III 1

N2.2C.III 2

N2.3A.I 1

Jack Leverett 7714 50639

180

N2.3A.I 2

N2.3A.I 3

N2.3A.I 4

Jack Leverett 7714 50639

181

N2.3B.I 1

N2.3B.I 2

Jack Leverett 7714 50639

182

N2.3B.II 1

N2.3B.II 2

Jack Leverett 7714 50639

183

N2.4A.I 1

Order: member, management, admin

N2.4B.I 1

Order: member, management, admin

N2.4C.I 1

Order: member, management, admin

Jack Leverett 7714 50639

184

N2.6A.I 1

Order: Adam, Betty

Jack Leverett 7714 50639

185

Occupation requests

Test Number Test Description Expected Observed Action

O.1A.I Clicking the

occupations

button on the

organisation

page

This should

change the

displayed screen

to the

“occupations

page”

As expected

O.1B.I The page UI,

look and

navigation

functionality.

This involves

scrolling

There should be

a top bar

displaying a

back button the

top bar should

also read the

name of the

page. There

should be a

button at the top

and a area for

the list of

occupations

The content

starts halfway

down the page.

There is also no

padding on the

side of the page.

There is also no

requests button

O.1B.II The page UI,

look and

navigation

functionality.

This involves

scrolling

There should be

a top bar

displaying a

back button the

top bar should

also read the

name of the

page. There

should be a

button at the top

and a area for

the list of

occupations

As expected

O.1C.I Pressing the

back button at

the top of the

This should

bring the user

back to the

As expected

Jack Leverett 7714 50639

186

page management

page

O.2A.I The occupation

list itself

Here the server

instance has no

occupations

The list should

simply display

that there are

“no

occupations”.

As expected

O.2B.I The occupation

list itself.

Here the server

instance has 4

occupations

The list should

display all 4

occupations with

their name,

description

below and an

edit button along

side.

O.3A.I Clicking the edit

button on an

occupation

This should

create a new

“editing area”

above the

occupation list. It

should contain 2

text boxes with

text already

inside displaying

the title in one,

displaying the

description in

the other. There

should also be a

“done” button

O.3B.I Editing an

occupation

name.

Here the title (or

name) of an

occupation will

be changed from

On the client

side the “edit

area” should

disappear after

clicking the done

button and the

relevant

occupation

Nothing changed

on the UI side

and nothing

changed on the

serverside

database.

However neither

The wrong event

was being called

on the client

side. The client

was calling

occupation_set

instead of

Jack Leverett 7714 50639

187

“maths teacher”

to “mathematics

teacher”. Then

the “done”

button will be

pressed

should be

updated in the

displayed list.

On the server

side the

occupation

should be

updated in the

database to

reflect the

change

created an error occupation_edit

O.3B.II Editing an

occupation

name.

Here the title (or

name) of an

occupation will

be changed from

“maths teacher”

to “mathematics

teacher”. Then

the “done”

button will be

pressed

On the client

side the “edit

area” should

disappear after

clicking the done

button and the

relevant

occupation

should be

updated in the

displayed list.

On the server

side the

occupation

should be

updated in the

database to

reflect the

change

As expected

O.3C.I Editing an

occupation

description.

Here the

description of an

occupation will

be changed from

“teachers who

teach maths” to

On the client

side the “edit

area” should

disappear after

clicking the done

button and the

relevant

occupation

should be

As expected

Jack Leverett 7714 50639

188

“teachers who

teach

mathematics”.

Then the “done”

button will be

pressed

updated in the

displayed list.

On the server

side the

occupation

should be

updated in the

database to

reflect the

change

O.3D.I Editing an

occupation

name and

description.

Here the title (or

name) of an

occupation will

be changed from

“maths teacher”

to “mathematics

teacher”. And

the description

of an occupation

will be changed

from “teachers

who teach

maths” to

“teachers who

teach

mathematics”.

Then the “done”

button will be

pressed

On the client

side the “edit

area” should

disappear after

clicking the done

button and the

relevant

occupation

should be

updated in the

displayed list.

On the server

side the

occupation

should be

updated in the

database to

reflect the

change

As expected

O.3E.I Pressing the edit

button not

changing

anything and

clicking done

On the client

side the “edit

area” should

disappear after

clicking the done

button and

As expected

Jack Leverett 7714 50639

189

nothing should

be changed on

server side

database

O.4A.I Creating an

occupation with

a valid name

and description

and clicking

done

This should

clear the text

boxes and add

the new

occupation to

the server side

databse and the

occupations list

should refresh.

As expected

O.5A.I Pressing the

delete button on

an occupation.

This should

update the UI to

remove the

occupation and

the change

should be

reflected in the

server side

database

As expected

O.6A.I Pressing the

“requests” button

This should

change the page

to the

occupation

requests page.

As expected

O.6B.I The UI and look

of the

occupation

requests page

There should be

a top bar with a

back button and

the name of the

page at the top.

There should be

a single

scrollable list of

occupation

requests

Uneeded

padding around

the edges of the

screen

Jack Leverett 7714 50639

190

O.6B.II The UI and look

of the

occupation

requests page

There should be

a top bar with a

back button and

the name of the

page at the top.

There should be

a single

scrollable list of

occupation

requests

As expected

O.6C.I Pressing the

back button

This should

bring us back to

the occupations

screen (the last

screen we were

on)

It brings us back

to the

organisation

screen

Setup a back

method that

uses the

previous pages

obj to move back

to it.

O.6C.II Pressing the

back button

This should

bring us back to

the occupations

screen (the last

screen we were

on)

As expected

O.7A.I Checking to see

if the occupation

requests are

being displayed

correctly.

In this instance

there are no

occupation

change requests

The occupation

requests area

should simply

display “no

occupation

change

requests”

As expected

O.7B.I Checking to see

if the occupation

requests are

being displayed

correctly.

In this instance

Each occupation

requests should

have an accept

and reject button

as well as

display the

username of the

The interaction

buttons go off

the side of the

screen

The accept

button will be

moved to the

right of the

request keep the

reject on the

Jack Leverett 7714 50639

191

there are 3

occupation

change requests

being made

person

requesting the

change and the

occupation

name they wish

to change to.

right

O.7B.II Checking to see

if the occupation

requests are

being displayed

correctly.

In this instance

there are 3

occupation

change requests

being made

Each occupation

requests should

have an accept

and reject button

as well as

display the

username of the

person

requesting the

change and the

occupation

name they wish

to change to.

As expected

O.8A.I Pressing the

approve button

(the tick) on an

occupation

change request

The request

should

disappear from

the list and the

user who made

the request

should have

their occupation

updated on the

server side

database

As expected

O.8B.I Pressing the

reject button (the

cross) on an

occupation

change request

The request

should

disappear from

the list and the

user who made

the request

should see no

change to their

occupation

As expected

Jack Leverett 7714 50639

192

Test
Number

Image
Number

Image

O.1A.I 1

O.1B.I 1

Jack Leverett 7714 50639

193

O.1B.II 1

O.2A.I 1

Jack Leverett 7714 50639

194

O.2B.I 1

O.3A.I 1

Jack Leverett 7714 50639

195

O.3B.I 1

O.3B.I 2

Jack Leverett 7714 50639

196

O.3B.II 1

O.3C.I 1

Jack Leverett 7714 50639

197

O.3C.I 2

O.3D.I 1

Jack Leverett 7714 50639

198

O.3D.I 2

O.3E.I 1

Jack Leverett 7714 50639

199

O.3E.I 2

O.4A.I 1

Jack Leverett 7714 50639

200

O.4A.I 2

O.4A.I 3

O.5A.I 1

Jack Leverett 7714 50639

201

O.5A.I 2

O.5A.I 3

O.5A.I 4

Jack Leverett 7714 50639

202

O.6A.I 1

O.6B.I 1

Jack Leverett 7714 50639

203

O.6B.II 1

O.6C.I 1

Jack Leverett 7714 50639

204

O.6C.II 1

O.7A.I 1

Jack Leverett 7714 50639

205

O.7B.I 1

O.7B.II

1

Jack Leverett 7714 50639

206

O.8A.I 1

O.8A.I 2

O.8A.I 3

Jack Leverett 7714 50639

207

O.8A.I 4

O.8B.I 1

O.8B.I

2

Jack Leverett 7714 50639

208

O.8B.I

3

O.8B.I

4

Jack Leverett 7714 50639

209

Homepage and posts

Test Number Test

Description

Expected Observed Action

H.1A.I From the login

page getting

to the

homepage.

Loading first 5

posts and

displaying

their content

correctly

The page should

load with a top

bar, and in this

case no posts so

it should simply

display “no

posts” to the user

The page

freezes and the

server

complains that

the post object

has no

database

connection

attribute

The attribute is

being created

after its first used

to set up other

attributes in their

setters. Moved

these attributes

H.1A.II From the login

page getting

to the

homepage.

Loading first 5

posts and

displaying

their content

correctly

The page should

load with a top

bar, and in this

case no posts so

it should simply

display “no

posts” to the user

The client

crashes but the

server doesn’t

have an error

this time a

string is being

passed inplace

of a dictiontary

to the post

swiper

The client was

calling post_get

which only returns

a single post

when you supply

a post_id. The

server has

methods for

getting friend

posts and team

posts but nothing

so the server can

construct the

whole feed for the

client. So I

created a new

event that

post_get_feed

that combines

friend posts and

team posts.

H.1A.III From the login

page getting

to the

homepage.

Loading first 5

The page should

load with a top

bar, and in this

case no posts so

it should simply

Again the client

crashes and

the server

complains that

a Nonetype is

Proper checking

on the get_friends

and get_team

methods as well

as additional

Jack Leverett 7714 50639

210

posts and

displaying

their content

correctly

display “no

posts” to the user

not

subscribtable.

This was

because lack

of checking for

if the user is in

a team or not

and/or had any

friends.

checks for

get_feed to

handle no posts

being returned

H.1A.III From the login

page getting

to the

homepage.

Loading first 5

posts and

displaying

their content

correctly

The page should

load with a top

bar, and in this

case no posts so

it should simply

display “no

posts” to the user

As expected

H.1B.I From the login

page getting

to the

homepage.

Loading first 5

posts and

displaying

their content

correctly

The page should

load with a top

bar, and in this

case there are 5

posts on the

server meant for

this user.

The client should

first only load 5

posts, then only

load the next 4

once the “load

more” button is

clicked.

On login the

client crashes.

The post_id is

not being

correclty

passed to the

comments

section of a

post.

Actually comes

down to a server

side error on how

it was passing

data between

class methods.

Now fixed

H.1B.II From the login

page getting

to the

homepage.

Loading first 5

posts and

displaying

The page should

load with a top

bar, and in this

case there are 5

posts on the

server meant for

this user.

The posts are

not displaying

correctly just

showing white

space. The

caption isnt

being set

correctly still

The client was not

calling the

load_content

function would

uses the fetched

information to

display it on each

post.

Jack Leverett 7714 50639

211

their content

correctly

The client should

first only load 5

posts, then only

load the next 4

once the “load

more” button is

clicked.

displaying the

defualt text.

H.1B.III From the login

page getting

to the

homepage.

Loading first 5

posts and

displaying

their content

correctly

The page should

load with a top

bar, and in this

case there are 5

posts on the

server meant for

this user.

The client should

first only load 5

posts, then only

load the next 4

once the “load

more” button is

clicked.

Client cant

iterate over

nonetype. As in

the varaible

post_likes is

supposed to be

a list but is

coming up as a

nonetype

 The client does

not anticipate a

post to have no

impressions on it.

This is now fixed

H.1B.IV From the login

page getting

to the

homepage.

Loading first 5

posts and

displaying

their content

correctly

The page should

load with a top

bar, and in this

case there are 5

posts on the

server meant for

this user.

The client should

first only load 5

posts, then only

load the next 4

once the “load

more” button is

clicked.

The client only

seams to be

showing 3

posts, however

when clicking

load more it

does load the

remaining 2

posts one by

one.

This is due to the

list being use for

the for loop being

the same list that

is being reduced

by the for loop

using .pop()

Simply removing

this .pop() fixes

the issue as

reducing the list

as it is looped

through is no

longer needed.

Jack Leverett 7714 50639

212

H.1C.I From the login

page have the

homepage

load the first 5

posts, one of

them has

been liked

The login page

should switch to

the homepage

with 5 posts

loaded the post

from “user9” has

a like from us on

it already and so

should have a full

heart like icon

The post loads

with the corret

like count but

the heart

button isnt

illuminated.

The username

comparision in the

HomeSwiper

object was using

the posters

username and not

the clients

username.

H.1C.II From the login

page have the

homepage

load the first 5

posts, one of

them has

been liked

The login page

should switch to

the homepage

with 5 posts

loaded the post

from “user9” has

a like from us on

it already and so

should have a full

heart like icon

As expected

H.1D.I Loading a set

of posts of

which all have

long captions,

the server

imposes a

character limit

of 100

The captions

should be

displayed in a

readable and

resizable way

As expected

H.2A.I Clicking the

“load more”

button when

there are no

posts present.

It should simply

set the scroll

back to the top

and keep the

single label “No

posts”

It creates

another “No

posts” label

when clicked

and sets the

scroll of the

screen to this

new label.

Have the button

check for new

posts. And if

posts/text already

exist to consider

every possible

case.

Additionally fixed

issue with the

number of posts

displayed at once

Jack Leverett 7714 50639

213

H.2A.II Clicking the

“load more”

button when

there are no

posts present.

It should simply

set the scroll

back to the top

and keep the

single label “No

posts”

As expected

H.2B.I Clicking the

load more

button when

all available

posts are

already

displayed.

For this test

the user has

only 5 posts

that should be

displayed,

they are

already

loaded.

On clicking the

button a

message should

appear stating

that all available

posts are already

loaded.

Something like

“Sorry, no more

posts”

The warning

message about

there being no

posts doesn’t

appear

The message is

created but forgot

to add a condition

to display the

message so

added an if

statement to

check for if thre

are any more

posts if not it will

display the

message.

H.2B.II Clicking the

load more

button when

all available

posts are

already

displayed.

For this test

the user has

only 5 posts

that should be

displayed,

they are

already

loaded.

On clicking the

button a

message should

appear stating

that all available

posts are already

loaded.

Something like

“Sorry, no more

posts”

As expected

H.2C.I Clicking the

load more

button when

there are 6

The load more

button should

load just 5 more

As expected

Jack Leverett 7714 50639

214

more posts for

the user to

see.

posts, and then

stop.

H.2D.I Clicking the

load more

button when

there is 1

more posts for

the user to

see.

The load more

button should

load the last post

and set the scroll

of the page to

this post.

As expected

H.3A.I Clicking the

like button on

a post

The heart should

turn to be full,

instead of just

the outline and

the server should

save the

impression on its

database. The

like count should

update

As expected

H.3B.I Clicking the

un-like button

on a

previously

liked post

The heart should

turn back to an

outline the like

count should

decrease by 1

and the relevant

impression

should be

removed from

the

post_impressions

table on the

server.

Its seamingly

working in the

moment but

there is no

change

happening on

the server side

The client is

passing the wrong

information for

impression_delete

which requires a

impression_id

H.3B.II Clicking the

un-like button

on a

previously

liked post

The heart should

turn back to an

outline the like

count should

decrease by 1

As expected

Jack Leverett 7714 50639

215

and the relevant

impression

should be

removed from

the

post_impressions

table on the

server.

H.4A.I Clicking the

profile button

as an admin

an admin and

clicking delete

This should

remove the post

from the feed

and the change

should be

reflected on the

server database

As expected

H.4B.I Clicking the

profile button

logged in as

an Admin.

Then clicking

profile

This should take

the user to the

the posters

profile, in this

case its an admin

so they should

have edit buttons

next to role,

name, biography,

As expected

H.4C.I Clicking the

profile button

logged in a

“user” who is a

normal

member level

user

On clikcing the

button it should

just take you

straight to the

profile page of

the poster

As expected

Jack Leverett 7714 50639

216

Test
Number

Image
Number

Image

H.1A.I 1

H.1A.II 1

Jack Leverett 7714 50639

217

H.1A.III 1

H.1B.II 1

H.1B.III 1

Jack Leverett 7714 50639

218

H.1B.IV 1

Jack Leverett 7714 50639

219

H.1B.V 1

H.1C.I 1

Jack Leverett 7714 50639

220

H.1C.II 1

H.1D.I 1

Jack Leverett 7714 50639

221

H.2A.II 1

H.2B.I 1

Jack Leverett 7714 50639

222

H.2B.II 1

H.2C.I 1

Jack Leverett 7714 50639

223

H.2C.I 2

H.1D.I 1

Jack Leverett 7714 50639

224

H.1D.II 1

H.2D.I 1

Jack Leverett 7714 50639

225

H.2D.I 2

Jack Leverett 7714 50639

226

H.2D.I 3

H.3A.I 1

Jack Leverett 7714 50639

227

H.3A.I 2

H.3A.I 3

H.3B.I 1

H.3B.I 2

Jack Leverett 7714 50639

228

H.3B.I 3

H.3B.II 1

H.3B.II 2

Jack Leverett 7714 50639

229

H.4A.I 1

H.4A.I 2

H.4A.I 3

Jack Leverett 7714 50639

230

H.4A.I 4

H.4A.I 5

H.4B.I 1

Jack Leverett 7714 50639

231

H.4C.I 1

Jack Leverett 7714 50639

232

Posting

Test Number Test

Description

Expected Observed Action

PT.1A.I When post

time comes

about in the

day the UI

should add the

camera icon to

the top bar on

the homepage.

For this test I

manually set

the time slot for

the day on the

server to be

now for testing

purposes

The camera

icon should be

added to the

top bar on the

hompage, this

camera icon

when clicked

should lead to

the posting

page

As expected

PT.1B.I Clicking the

camera button

this should

switch the view

to the camera

page where the

user can take a

picture for their

post

This page

should have a

camera view a

capture button

and a

countdown at

the top

The client

errored while

loading the page,

dictionary key

error

Changed how

the client

fetched the day

end and start

times.

PT.1B.II Clicking the

camera button

this should

switch the view

to the camera

page where the

user can take a

picture for their

post

This page

should have a

camera view a

capture button

and a

countdown at

the top

The page has

wrong padding

and the time

countdown

needs to be

converted to

minutes and

hours

Created a

method for

converting the

time into hours,

minutes and

seconds.

As well as

adding a clock.

PT.1B.III Clicking the

camera button

this should

This page

should have a

camera view a

As expected

Jack Leverett 7714 50639

233

switch the view

to the camera

page where the

user can take a

picture for their

post

capture button

and a

countdown at

the top

PT.2A.I Clicking the

capture button

This should

take the user to

the “post

review” page

where they can

add a caption

and look at the

photo they just

took

The client

complains the

screen it tries to

switch to doesn't

exist.

Forgot to add

the page object

to the screen

manager

PT.2A.II Clicking the

capture button

This should

take the user to

the “post

review” page

where they can

add a caption

and look at the

photo they just

took

As expected

PT.3A.I Pressing the

back button

from the

camera page

This should

take the user

back to the

homepage

As expected

PT.3B.I Pressing the

back button on

the post review

page

his should take

the user back

to the

homepage

As expected

PT.3C.I Pressing the

retake photo

button on the

post review

page

This should

take the user

back to the

camera page to

retake a photo

Minor spelling

problem in

variable “self”

(put “sefl”)

Fixed and now

working as

expected

PT.3D.I Pressing the

retake photo

The post

preview photo

As expected

Jack Leverett 7714 50639

234

and taking

another photo

for the post

and seeing if it

changes the

photo on the

post review

page

should change

to the retake

photo

PT.4A.I Opening the

photo page (as

if going to take

the photo)

backing out to

the home page

and then going

back into the

take a photo

page

It should go

back to the

homepage and

then go back

into the camera

page as

expected

The program

crashes and

complains it cant

reactivate the

camera

Instead of

deleting the

camera page on

exit keep it

created and just

switch away

from it.

The camera

even if deleted

remains active

on an OS level.

Need to find a

way to stop it on

an OS level

At the moment

this seams to

be a limitation

of the kivy gui

framework. The

camera is badly

documented.

The

documentation

does list a

stop() method

but when using

this the code

claims the

camera class

has no such

method. Will

need to look

Jack Leverett 7714 50639

235

into Kivy and

OpenCV source

code to find out

how to

accomplish this.

PT.5A.I Taking a photo

for the post,

adding a

caption and

clicking the

post button

This should

send the user

back to the

homepage.

The hompage

top bar should

no longer

display the post

button and the

users post

should appear

on the server

side database

The server could

not make a post

and the status

message

claimed it was

due to

insufficient/wrong

data being

provided.

This ended up

being down to

the server not

being

configured to

accept both,

png and jpg

format images.

The client takes

images in the

png format but

the server could

only do jpg, this

has now been

changed to

allow both.

PT.5A.II Taking a photo

for the post,

adding a

caption and

clicking the

post button

This should

send the user

back to the

homepage.

The hompage

top bar should

no longer

display the post

button and the

users post

should appear

on the server

side database

As expected

Test
Number

Image
Number

Image

Jack Leverett 7714 50639

236

PT.1A.I 1

PT.1B.I 1

PT.1B.II 1

Jack Leverett 7714 50639

237

PT.1B.III 1

PT.2A.I 1

Jack Leverett 7714 50639

238

PT.3A.I 1

PT.3A.I 2

Jack Leverett 7714 50639

239

PT.3B.I 1

PT.3B.II 2

Jack Leverett 7714 50639

240

PT.3C.I 1

PT.3C.I 2

Jack Leverett 7714 50639

241

PT.3D.I 1

PT.3D.I 2

Jack Leverett 7714 50639

242

PT.3D.I 3

PT.4A.I 1

Jack Leverett 7714 50639

243

PT.5A.I 1

Jack Leverett 7714 50639

244

PT.5A.I 2

PT.5A.II 1

PT.5A.II 2

Jack Leverett 7714 50639

245

Comments

Test Number Test

Description

Expected Observed Action

C.1A.I Going into the

comments

page

There should

be an arrow at

the top, this is

the back

button.

In this case

there should be

just 1 comment

in the comment

list, and there

should be

comment box

at the bottom

As expected

C.1B.I Have the

comments

page load a set

of comments in

this case 14

comments from

14 different

users

Each comment

should have a

profile button, a

like count and a

like button

As expected While this

specific function

was as

expected I did

find while

setting up the

test that the

“comment_set”

method never

correctly set the

post_id of the

person

commenting

and defaults to

a user

commenting on

their own post.

This was

subsequently

fixed

C.1C.I Have the

comments

The page

should display

Previously liked

comments

This was due to

the client

Jack Leverett 7714 50639

246

page load

comments but

1 comment has

a like from

another user,

and a liked

comment from

the user

viewing the

comments

14 comments,

1 has a like

count of 1 and

unliked by the

user viewing

the page.

Another

comment as a

like count of 2

and is liked by

the user

viewing the

comments.

werent showing

up as such, the

count would be

1 but the heart

was just an

outline (as if

you had not

liked the

comment yet)

incorrecly

handling the

data passed

back by the

server as well

as using the

wrong

username to

compare

against the

usernames that

had liked the

comment.

C.2A.I Clicking on a

long comment

to expand it to

the “expand

page” and be

able to read the

full comment

On clicking the

comment it

should switch

page to a page

that displays

the full text of

the comment

As expected

C.2B.I Clicking the like

button on a

comment

It should turn

the hear to a

filled in heart

and increase

the like count

by one. This

change should

be reflected on

the server side

database

The client side

UI updated

correctly and

didn’t have any

issues, the

server didn’t

run into any

errors either but

the database

entry was never

added for the

like on user2’s

comment

This is likely a

data verification

issue on the

server side.

Actually turned

out to be the

client not

sending the

comment_id

correctly, it was

left with a

placeholder

value.

C.2B.II Clicking the like

button on a

comment

It should turn

the hear to a

filled in heart

and increase

the like count

by one. This

change should

As expected

Jack Leverett 7714 50639

247

be reflected on

the server side

database

C.2C.I Clicking the

unlike button on

a liked

comment

The comment

should change

the heart to just

the outline of a

heart. The like

count should

also decrease

and then then

the change

should be

reflected in the

server-side

database

As expected

C.3A.I Clicking on the

profile button

on a comment

as an admin.

Then on the

menu that

should appear

clicking view

profile

On clicking the

profile button

initially, a menu

should appear

for the user to

select delete or

view profile.

(here we select

view profile)

this should then

take the user to

the comment

users

As exepected

C.3B.I Clicking on the

profile button

as an admin.

Then selecting

delete

comment.

When initially

clicking the

profile button a

menu should

appear with

options to view

profile or delete

comment. Here

we click delete

comment. This

should remove

As expected

Jack Leverett 7714 50639

248

the selected

comment from

the comment

area, and

removed on the

server-side

database

C.4A.I Typing some

text into the

comment box

at the bottom of

the page. Then

clicking the

send button to

submit the

comment

The comment

should appear

in the comment

list above and

the comment

should appear

in the server-

side database

As expected While there was

no errors or

major issues,

the method for

adding the

comment to the

interface itself

was changed

for performance

reasons. Now

the client

instead of

reloading all the

comments just

loads the new

one in locally

Jack Leverett 7714 50639

249

Test
Number

Image
Number

Image

C.1A.I 1

C.1B.I 1

Jack Leverett 7714 50639

250

C.1C.I 1

C.2A.I 1

Jack Leverett 7714 50639

251

C.2A.I 2

C.2B.I 1

C.2B.I 2

Jack Leverett 7714 50639

252

C.2B.I 3

C.2B.I 4

C.2B.II 1

Jack Leverett 7714 50639

253

C.2C.I 1

C.2C.I 2

C.2C.I 3

Jack Leverett 7714 50639

254

C.2C.I 4

C.3A.I 1

C.3A.I 2

Jack Leverett 7714 50639

255

C.3B.I 1

C.3B.I 2

Jack Leverett 7714 50639

256

C.3B.I 3

There was previously 14 comments present

C.4A.I 1

Jack Leverett 7714 50639

257

C.4A.I 2

Settings

Test Number Test

Description

Expected Observed Action

S.1A.I Clicking the

settings icon at

the top of the

homepage

The page

should switch

to the settings

page. There

should be a top

bar showing a

back button

and a title.

Currently the

only “setting” is

the logout

button so that

should be the

only thing

display. The

logout button

should be at

the bottom of

the screen

As expected

Jack Leverett 7714 50639

258

S.1B.I Clicking the

logout button

This should

take the user

back to the

login screen

and clear the

authentication

tokens from the

client database.

As expected

S.2A.I General use

after loggin out

of Admin and

logging in as

user.

Here im going

to login as

admin and then

logout, next

logging in to

user and do

some general

navigation of

the app on both

accounts

There should

be no errors,

the main thing

im looking out

for is errors

where there is

duplicates of

screens. This

happens when

screens are

named the

same thing in

both sessions

or aren't

properly

deleted when

the other user

logs out

Had small issue

with accounts

pages, they

were using the

old functions for

switching

screens and so

were not

properly

removing

themselves

after use. This

meant there

was some

overlap on the

screens after

users switched

This was

quickly fixed

and now works

as expected

Test
Number

Image
Number

Image

Jack Leverett 7714 50639

259

S.1A.I 1

S.1B.I 1

S.1B.I 2

Jack Leverett 7714 50639

260

S.1B.I 3

Database Encryption

Test Number Test Description Expected Observed Action

E.1A.I Launching the

server with

encryption and

shamir secret

sharing set to

true. Minshares

= 3 and

numberofshares

= 5. The master

password being

set is 520

The server should

generate the shares

into the specified share

folder (via the config

file). There should be 5

shares, 2 combinations

of shares should have

been tested, these

tests should have been

noted in the log. And

the database should be

encrypted stored at

data/.cryptdatabase.db

As expected.

E.1B.I Launching the

server with

encryption and

shamir secret

sharing set to

true. Minshares

= 3 and

numberofshares

= 5. The master

password being

set is

625582934

The server should

generate the shares

into the specified share

folder (via the config

file). There should be 5

shares, 2 combinations

of shares should have

been tested, these

tests should have been

noted in the log. And

the database should be

encrypted stored at

data/.cryptdatabase.db

As expected

E.1C.I Launching the

server with

encryption set

to true. The

The database should

be encrypted stored at

the path

data/.cryptdatabase.db.

Jack Leverett 7714 50639

261

master

password being

set is

625582934

The encrypt config

should also be deleted

and the server should

be in decryption mode.

E.1D.I Launching the

server with

encryption and

shamir secret

sharing set to

true. Minshares

= 3 and

numberofshares

= 5. The master

password being

set is 520.

However not

providing a

encryptconfig

file.

The server should stop

and the logs should

show that the

encryption config file

could not be found at

the specified path

E.1E.I Launching the

server with

encryption and

shamir secret

sharing set to

true. Minshares

= 3 and

numberofshares

= 5. The master

password being

set is 520.

However the

provided string

in the

encryptconfig

path is the word

“hello” (to be

valid the master

password has

to be an

integer).

The server should stop

and the logs should

state that the master

password provided

could not be read.

Jack Leverett 7714 50639

262

E.2A.I Client test.

Server settings:

Encryption:

enabled

Shamir secret

sharing:

enabled

Master

password: 520

From a client

the client after

connecting to

the server

should bring up

the decryption

page. This time

we will use the

CORRECT

master

password

Client side:

It should be successful

and so bring us to the

login page, from here

you can continue to

use the app as normal.

Server side:

The logs should

indicate that the

database has been

decrypted. And the

unencrypted database

should be at the path

“data/database.db”. It

should be openable

(here I use dbrowser to

prove that the

database has been

decrypted). The server

should enter normal

mode

E.2B.I Client test.

Server settings:

Encryption:

enabled

Shamir secret

sharing:

enabled

Master

password: 520

From a client

the client after

connecting to

the server

should bring up

Client side:

The input fields should

error. Indicating

unsuccessful

decryption.

Server side:

The logs should show

an attempt to decrypt

the database had

failed. The database

should remain

encrypted and the

server in decrypt mode.

Jack Leverett 7714 50639

263

the decryption

page. This time

we will use the

INCORRECT

master

password

E.3A.I Client test.

Server settings:

Encryption:

enabled

Shamir secret

sharing:

enabled

Master

password: 520

From a client

the client after

connecting to

the server

should bring up

the decryption

page. This time

we will a

CORRECT set

of shamir secret

shares

Client side:

It should be successful

and so bring us to the

login page, from here

you can continue to

use the app as normal.

Server side:

The logs should

indicate that the

database has been

decrypted. And the

unencrypted database

should be at the path

“data/database.db”. It

should be openable

(here I use dbrowser to

prove that the

database has been

decrypted). The server

should enter normal

mode

E.3B.I Client test.

Server settings:

Encryption:

enabled

Shamir secret

sharing:

enabled

Master

password: 520

Client side:

The input fields should

error. Indicating

unsuccessful

decryption.

Server side:

The logs should show

an attempt to decrypt

the database had

failed. The database

Jack Leverett 7714 50639

264

From a client

the client after

connecting to

the server

should bring up

the decryption

page. This time

we will an

INCORRECT

set of shamir

secret shares

should remain

encrypted and the

server in decrypt mode.

E.4A.I Client test.

Server settings:

Encryption:

enabled

Shamir secret

sharing:

disabled

Master

password: 520

Just testing to

see what inputs

field the client

dispalys. See

previous test for

inputting etc.

The client should only

display the master

password field.

E.4B.I Client test.

Server settings:

Encryption:

enabled

Shamir secret

sharing:

enabled

Minshares: 5

Master

The client should

display 5 input boxes

for the Shamir secret

sharing inputs. As well

as the master

password input box at

the top and a submit

button at the bottom.

Jack Leverett 7714 50639

265

password: 520

Just testing to

see what inputs

field the client

dispalys. See

previous test for

inputting etc.

Test
Numb
er

Image
Numb
er

Image

E.1A.I 1

E.1A.I 2

E.1B.I 1

E.1B.I 2

E.1B.I 3

Jack Leverett 7714 50639

266

E.1C.I 1

E.1D.I 1

E.1E.I 1

E.2A.I 1

Jack Leverett 7714 50639

267

E.2A.I 2

E.2A.I 3

Jack Leverett 7714 50639

268

E.2B.I 1

E.3A.I 1

Jack Leverett 7714 50639

269

E.3B.I

E.4A.I 1

Jack Leverett 7714 50639

270

E.4B.I 1

Final product video testing

Test
number

Name Description Link

1 Admin 1 This clip shows how an Admin
would go about registering their
account, creating a number of
occupations, altering some of
their profile information and even
set a team leader for the IT staff

https://youtu.be/S7qmnO0pqMo

2 Admin 2 This clip shows an Admin:
logging in, accepting some
occupation change requests and
adding some team leaders to the
Students team

https://youtu.be/hx0EX4n52wU

3 Member
1

In this clip a member creates an
account, sets up some basic
information, sends a friend
request and creates an
occupation change request.
They also look at some provided
help boxes

https://youtu.be/iFrqAxIeeTY

Jack Leverett 7714 50639

271

4 Member
2

In this clip a member logs into
an account, changes some
profile information, accepts a
friend request, sends a friend
request to a recommended
friend and looks at their team

https://youtu.be/vvCI4Xd5Rk0

5 Member
3

In this clip a member: logs into
their account, likes, comments
on some other peoples posts.
Then creates their own post with
a caption. They also view some
of their memories from a post
they made a previous day.

https://youtu.be/cwaT_C9WV0I

6 Member
4

In this clip a member: Plays with
the profile page closing info
change panels (attempting to
cause a bug), looks into
someone else’s profile, deletes
and views some notifications,
unlikes some posts and
comments, changes the settings
and the logs out

https://youtu.be/ChVRb_hM6Bg

7 Server 1 In this clip I show how an admin
may go about setting up
encryption on the database. I
first show the guide that’s
available in the "docs" directory.
Then I follow the process,
creating an encryption config
containing the master password,
turning encryption on. I also
show how the new database
cannot be opened by a program
used for viewing SQLite
databases. Proving it is
encrypted. I then unencrypted
the database and again open it
with the same program where it
is successful. I then log in admin
showing that the server is
functioning as formal

https://youtu.be/rYbMYhRXPaw

8 Server 2 In this clip I show how the server
database would be decrypted
using Shamir secret sharing and
how the server would re-create
the master password in the
filesystem. Then I prove the

https://youtu.be/vMhg5U_kdCM

Jack Leverett 7714 50639

272

database is working as usual by
logging in as an admin.

9 Server 3 In this clip I show how the server
database being permanently
decrypted by setting encryption
to false in the config before re-
launching the server and then
decrypting it one last time. I also
show the database is decrypted
and works as usual both using a
program to view SQLite
databases and logging in to the
server.

https://youtu.be/VEp7ruA1FME

In case any links do not work for some reason all the showcase videos are in the playlist
below: https://www.youtube.com/playlist?list=PLKQHu0l6LmP-OwUzidnlO_bxiQ3O1Ux2e

https://www.youtube.com/playlist?list=PLKQHu0l6LmP-OwUzidnlO_bxiQ3O1Ux2e

Jack Leverett 7714 50639

273

Evaluation

Potential user trials (pre-improvements)

Finley

Trial 1

Video of trial: https://youtu.be/bXM083W5ZE8

Finley is a very tech competent person, immediately he had no problem registering his account

however noticed that he could see his password in full view. He would prefer if the password was

hidden as he typed it in (both in the login and registration page) with a button to reveal it if he

wanted to. He then went on to the main homepage since he wasn't part of any teams and had no

friends, he couldn’t see any posts. Finley then immediately went to go make a post and did so with

ease he said that making a post was intuitive and caused no friction. After posting he quickly said,

“How do I see other people’s posts?” and began looking at the other tabs. He found the memories

tab and found his own post again he found no real friction in this process. However, he couldn’t

figure out how to see anyone else’s post and we ended the trial there.

Overall, though due to the application providing no explanation to the user on how to add friends or

join a team he couldn’t engage with the main function of the system, viewing others posts. He also

wanted passwords to be hidden by default when typed.

Things to be added as a result of this test:

• A first-time login page, this should help a first-time user do some basic things like join a

team, set their name, and set their role.

• Password fields will be updated to be hidden by default with a button to show.

Izumi

Since Finley’s trial a first-time login page has been added to guide the user through setting

up some basic information.

Trial 1

Video of trial: https://youtu.be/QOs6MUuFJNQ

Izumi had no problem registering the account however when she asked what the registration key

was, I realised that a note or hint about how a user should get their registration key from their admin

could be useful. Then she easily logged in, and since the Finley trial, a first-time login page had

been added. This then prompted Izumi through setting her name and role. However, there was

minor confusion about what a team was, so a better explanation to the user may need to be added to

this screen. Izumi immediately went to create a new post again this was done with no friction or

confusion. We stopped the trial here due to an interruption.

The main takeaways from this trial:

• A better explanation of teams needs to be added.

• Izumi didn’t like that she couldn’t see her own post in the homefeed

Jack Leverett 7714 50639

274

Trial 2

Video of trial: https://youtu.be/qaA-BGUFL2U

Izumi logged in to the account she created in her first trial and her occupation set request was

accepted by an admin (me). This allowed her to view posts from the other 3 people in her team,

Coops, Dan and santi. But first she clicked on to her account changed her bio and then went on to

accept a friend request from coops. Then she went through liked and commented on the posts she

could see. This time her own post appeared in the feed; however, she said it would have been better

if it appeared at the top of the feed like in other social medias. At the end she went back into her

profile page and attempted to change her profile picture, at which point I informed here this was not

an option currently. The trial ended here.

Main takeaways from this trial:

• A user’s own post for the day should appear at the top of the home feed.

• Izumi wanted to be able to add her own profile picture.

Improvements

Of these trials, 5 possible improvements were suggested. I’m going to go through each of them in

more detail.

First time login page

This is relatively easy to add since it’s just a simple page with a few input boxes. It’s going to

include adding a name, role creating an occupation change request (to join a team). For each of

these things it’s going to include an explanation of what each one is and at the end the user can hit

“done” to go to the homepage. The page also includes an explanation of how to make a friend

request.

Password fields

Hiding the inputs of the password field with a button to reveal is another easy implementation with

huge upside to the user. This requires simply making a new custom text box widget and replacing

the standard password text boxes with this widget.

Own post in homefeed

This is something that was easily added since all I had to do was remove the function that prevented

this happening on the server side. I presumed at the time that this feature would be un-desirable but

like Izumi noted it’s a standard function in all other social media and so was re-added.

Making the post appear at the top of the feed however was more difficult. But was done since it was

still a very low complexity task. It was to be performed on the client side since it was a UI focused

issue. Before adding all other posts, the client now reaches out for the users own post. It adds this

post the top of the post stack, and then carries on as normal.

Jack Leverett 7714 50639

275

Profile picture

This is a feature that is unlikely to be added for several reasons. The first reason is its complexity,

the feature would require additional server-side code, including new profile events and class

methods, and an update to the database tables to allow adding of an image path. It would also

require significant client-side code. To properly receive and save the image as well as take/upload

profile pictures.

The second reason is due to it not adding much to the user experience. These profile pictures would

only be displayed on profile pages, and not at the top of a user’s posts (due to UI library

constraints). Generally, the benefit to the user is easy recognition of other people via their picture

but since you would have to click into their profile to see their picture user’s might as well just read

the username (displayed next to posts, comments etc) or full name of the user (displayed in the

profile page).

Overall, the effort put in to adding this feature would outweigh the benefits to the user.

Explanations

To better explain the system to the user several pages will now have a “?” at the top as a

clickable button. A number of these “help” buttons will be added to some input fields to, for

instance on the registration key input box. This button should help and explain some key

parts of how the platform functions to the user. On clicking this button, a box will pop up

containing an explanation, after being read this box can be dismissed.

These help boxes may even be added as a setting to be turned on and off. So once a user

understands the platform they can go to settings and turn off the help buttons.

If for some reason the video links do not work all Trial videos are also in the playlist linked

here: https://www.youtube.com/playlist?list=PLKQHu0l6LmP_QRCdAfwE0z0nlIFkgVu6W

If done again

If the system was to be designed again from scratch a few parts would be reworked and,

in some cases, done in completely different languages.

Client UI

If I were to start with a clean slate, I would likely build the client utilising native Kotlin or

Flutter. This is because while the python library Kivy does compile to an APK and run on

an android phone (and in theory an iPhone), its not very performant. That is it can take a

while to load and the app can feel sluggish. The python library runs non-native code by

creating a python environment within the running app that allows the python code to run

and then communicate with a java interface that then runs the actual code to generate the

widgets. This means to simply display some text on the screen:

Jack Leverett 7714 50639

276

Python creates widget -> Java interface -> Java creates widgets -> Widget is displayed.

This is manageable on newer devices but when it comes to older devices the app could

border on difficult to use if the user is part of a large organisation.

In my testing I used 3 different devices, I will briefly cover the performance and feel of the

app on each. The first “device” is used was the pixel 13 pro emulator (android 13/14) on

android studio, this was a virtual android device running with roughly the same

specifications the actual phone itself would have. On here the app ran well generally,

except for when generating “pop up lists” these lists are generated on the fly since their

contents can be changed by another user at any time (such as if an admin deleted an

occupation). The Kivy documentation does not recommend this due to this widgets

particularly bad performance but ultimately, I had no choice. Even then to the user this

simply appears as the pressing of a button not being very snappy. I also ran the app on my

own phone a Motorola edge 20 (a low-end, 2020 phone, on android 13) and it also ran fine

again apart from the drop down menus (again). I also ran it on a Samsung galaxy a5, 2017

(low end phone running android 11).

It was also hard to develop for since compiling from python to a native android APK does

take significantly longer than compiling Flutter or Kotlin. So basic things like syntax and

logic errors could be tested on a computer, however the look of the UI on a phone and the

long compile times associated created a huge time sink. Faster UI development could of

allowed for more experimentation and possibly a more intuitive design.

Flutter would probably be preferable for a redesign since like Kivy, flutter supports IOS,

MacOS, Windows, Android, Linux but also additionally web. It also runs at near native

speeds on every platform. This would make the apps a lot snappier and also allow for

deployment of a web application. A downside to using something like flutter is I would likely

have to write the socketio parser custom. Since flutter lacks a package for socketio and so

I would likely have to work with raw HTTP WebSockets and the (poorly written

documentation of python-socketio). But the overall benefits would be huge and once the

parser is written it can simply be placed to work in the background, only having to be

modified slightly if the server is ever updated to later python-socketio packages. Flutter is

also written is a package that utilises the programming language Dart which is very similar

to C syntax.

Status system

The current status system makes full use of WebSockets, while a client is connected, they

can receive status messages, the client always has an open status receiver than handles

and displays these status messages (where necessary) to the user. However, sometimes

after calling an even the client needs to look at the status “level” (INFO, WARN or FAIL) to

be able to determine if the result of the last even call was successful. With the open status

Jack Leverett 7714 50639

277

messages and multiple events and other server processes happening the last, status

message from the last event can get lost. This means that additional checks need to be

put in place.

If the system were to be designed again all events (even those who return no data) would

have a callback that returns the last status message produced from that event. This would

allow a client to perform actions purely based on this last status message as it tends to be

a success or failure. This would allow for a slightly more streamlined client coding

experience. All other features of the status mechanism would be kept the same just with

this additional feature.

User service

The only other server-side part I would re-design is the background user service. Currently

for every logged in client a background service is created, each of these services run on

their own thread. This background service allows for the serving of notifications and

updates without the client having to poll the server. This system works great as it reduces

the clients’ workloads and threads, however as a specific instance gets larger I would

worry about the performance of every client having its own background service thread.

These threads are not intensive as they only check for new notifications ever 5 seconds.

But with enough and just the fact that you must have a thread per active client could soak

up memory and clock cycles.

In a redesign of these background services, I would likely convert these into a singular

background service or a handful. Perhaps having a background service active for every 10

active clients. So, if 30 clients were actively logged in and connected, 3 background

services would be active handling their notifications and other “live” tasks. This would

reduce the number of open threads and actually could be scaled as an option. Since for

every client you have connected to one background service the less performant for the

client while the more performant for the server. So higher grade server hardware could

allow for less clients per background service. The reason this is less performant for the

client is because these background services run on a single thread. So if client A and client

B both needed to receive notifications, but client A has slower internet and is in the queue

before B the background service would have to wait for the transfer to fully complete for A

before moving on to send the notification for B. Basically you can have 29 people

connected to one background service who all have perfect internet but if just 1 person

joins that background service with slow internet notifications become slower for everyone.

However, to put this in perspective notifications generally consist of a timestamp, a title

and a description (essentially the data to be transferred is very small) and so when we say

“less performant” we only mean at most a fraction of a second. So having a background

service handle even a few dozen clients should be completely fine and performance

differences will be unobtrusive.

Jack Leverett 7714 50639

278

Code

File structure diagram

Server

Jack Leverett 7714 50639

279

Client

Jack Leverett 7714 50639

280

Techniques

In this section I will lay out exactly what techniques are used from the top band (group A)

of the AQA NEA mark scheme (technical skills section). Please note that this does not

encompass all techniques used and in many cases these techniques are used on such a

large scale (for instance the class structures) that I might reference many points. I will also

note when the references I’ve given are just examples of the many times the techniques

are used.

Algorithms

Cross-table parameterised SQL

- See SQL and database section of the write up for many examples of this.

- Server/modules/user/info.py and server/modules/user/content.py are the 2 main

files that deal with almost every table in the database. Here you will see many

examples of joins and complex aggregations being used

Aggregate SQL functions

- See SQL and database section of the write up.

- Also see sever/modules/user/content.py, line 979. In the impressions class the

“count” method utilises an SQL count aggregate function.

User/CASE-generated DDL Scripts

- See the DDL section of the SQL and database section of this write up

- Or see server/modules/data/database.py for the code that creates the databases

- Here you will find all the generation scripts for the database. The database is made

up of 15 tables all of them have at least 1 foreign key connection to another, some

tables are almost entirely foreign keys. There is only one table without any sort of

connection that being “time_slots”.

Graph Traversal

- See under the algorithms section “friend recommendation algorithm”. It utilizes a

graph traversal to find common friend of friends and friends of friends of friends etc.

- Or see server/algorithms/recommend.py, lines 47 to 137 is the “Graph” class that

stores the graph and performs the traversal.

Jack Leverett 7714 50639

281

Queue operations

- See under the algorithms section “friend recommendation algorithm”. A queue is

used to facilitate a breadth first search of a graph. This includes queueing and

dequeuing items.

Hashing

- See under the algorithms section “username hash”. This is used in the friend

recommendation algorithm to generate hashes for peoples usernames. This allows

theses data points to be put into the graph and stored in a hash map.

- Or see server/modules/algorithms/hash.cpp, this cpp file performs that actual hash

algorithm itself but to see how this algorithm is put to use see:

server/modules/algorithms/recommend.py, lines: 47-137

Advanced matrix operations and Complex mathematical operations

- See under the algorithms section “Shamir secret sharing”.

- Or see server/modules/data/sss.cpp this file contains all the matrix operations and

polynomial mathematics used to generate polynomials given a y intercept and solve

polynomial y intercept problems by reconstructing the curve of power n-1 using n

points.

Recursive algorithms

- Under the algorithms section: “Shamir secret sharing” specifically the “det” function,

“Friend recommendations” specifically the graph generation and the

“__add_user_friends” function. These are just 2 examples, the Shamir secret

sharing algorithm actually has several instances of recursive algorithms.

- Or see: sever/modules/data/sss.cpp and server/modules/data/recommend.py you

will find the previously mentioned functions in these files along with other

recursions.

Complex user-defined algorithms (scheduling)

- Algorithms section: “post scheduling and time slots”

- Or see: server/modules/data/datetime.py the “timestamp” class deals with the

generation of post time slots, considering the length of days etc. The

server/modules/handler/tasks.py handles reading the current time and comparing it

to the slot.

- The client also has some slot management, it polls the server once for the time slot

and uses a “kivy clock” to schedule a post button appearing. See: client/main.py line

552, and in edition 921 and 977 to see how scheduling is also used to repeatedly

update the time widget on the post creation pages.

Jack Leverett 7714 50639

282

Complex user-defined algorithms and Complex mathematical operations

- UUID generation, see algorithms section: “UUID generation”. It uses binary and hex

string mathematics alongside pre-assigning bits to generate Universally Unique IDs.

- Also see: server/modules/algorithms/uuid.py

Merge sort

- Algorithm section: “merge sort”, its used for post sorting on the server side. Its

implemented to allow for sorting to be done on the server side rather than relying on

a thin client. Posts are sorted by like count.

- Or see: server/modules/user/content.py lines: 691 to 726

Dynamic generation of objects based on a complex user-defined use of OOP model

- The main files containing large use of objects on the server side is:

modules/user/info.py and modules/user/content.py, modules/handler/handler.py

also makes extensive use of objects and passing them as attributes of other

classes. Modules/algorithms/recommend.py also uses objects to generate the

graph and each user generates subsequent user objects and adds them to its

friends list attributes.

- On the server side you should look at main.py, here there is extensive use of

objects due to all UI being handled through objects. This means heavy scripting

how objects are added, passed to children of that object and so on. For instance

page switching in the UI and going “back” is often done by passing the parent object

to the child so they can call switch(parent).

Server-side scripting using request and response objects

- The entire model is a server client. All requests and responses are packaged the

same way.

- Each request from the client contains a dictionary simply called “data”, this

dictionary will contain key value pairs corresponding to data needed by the event

called.

- All responses to client are also very simple, the server always returns: “True, info”.

True being the Boolean value and info being a dictionary as well. This ensures that

the server doesn’t error simply didn’t receive the correct number of items passed.

The True simply states to the callback client function that what it is receiving is a

callback from the server.

- Clients can call events on the server for complicated processes or just when they

need some data or change some information on the system. This is done through a

number of pre-defined server events. For instance instead of the client getting all

Jack Leverett 7714 50639

283

the information about friends and then generating a recommendation client side, it

simply calls the friend_recommend event and the server does the computation.

Model (data structures)

Most data structures are also outlined in the data structures section of this write up.

Complex data model in database

- See database and SQL section for the server database and table structure

- The database structure results in almost every table having foreign keys, there are

also a number of link tables, look at the database diagram to see where these exist.

- The DDL scripts show in the document also dictate where these foreign keys are

how their behaviour varies (on delete cascade, on update set null etc).

Hash map

- Used in the friend recommendation algorithm as “friend directory”, Its searchable

using the hash of a username. Look at the “hash map” section for more information

- Or see server/modules/algorithms/recommend.py lines 47 to 137 for the hash maps

creation and use.

Queue

- See the data structures section or (for the best queue implementation) see

server/modules/algorithms/recommend.py

Graph

- See the algorithms section for how the graph is used and generated for the friend

recommendation algorithm, See the data structures “graph” section for more on the

generation and why its was used.

- Or see: server/modules/algorithms/recommend.py

Files organised for direct access

- On the server and client side images must be saved, for the client side images must

be saved locally before they can be displayed on the UI. While on the server side

images must be saved to allow access to them by clients.

- The data structures section goes in depth about how this is done. Or see

server/modules/user/content.py, lines 461 to 475 and the rest of the “post” class for

how images are read, sent and stored.

Complex user-defined use of object-oriented programming models

Jack Leverett 7714 50639

284

- See the class diagram sections to see how classes are structured, inheritance and

use both composition and aggregation.

- An example of composition is used in the graph and user relationship (users are

part of the graph). An example of aggregation is in the handlers section (handlers

cannot exist independently of their corresponding table classes) but their table

classes can exist independently of the handers. Similarly with logs and status,

status messages can exist separately from the log, the log cannot exist separately

from the status.

- Looking at the class diagrams you will find more examples of this.

- Inheritance is also heavily used throughout, as well as objects being attributes of

other classes, and class references being attributes of objects.

- The main files to look at (all on server side) modules/user/info.py,

modules/user/content.py, modules/handler/handler.py,

modules/algorithms/recommend.py, modules/track/log.py and more.

File descriptions

Server

main.py

This is the so-called “root” of the program, this file mainly just handles interaction with the

web-socket connection and its events. Here event decorators are used to create events

that clients can call. Here data comes in and information (where necessary) is returned to

the client through callback functions.

Almost all events consist of taking 2 defined arguments “sid” as in server ID (an ID used

for the span of a client connection) and “data”. “data” is typically a dictionary and is the

inputs from the client. Then most events defined in this file will call a type of “handler” such

as “post_handler” pass it some basic security arguments, such as the minimum level

needed for access to the function, the event name (for error messages) and user inputs.

Then if the event needs to return some information it will have a return line that always

returns 2 pieces of information the bool “True” and “info” again info is returned from the

handler method and is typically a dictionary, or if an error occurred with the users inputs

“None” will be returned.

handler/handler.py

This file contains all the “handler” classes that inherit from the base class “root_handler”.

All these classes handle user inputs, status messages and security. Inputs are assigned

systematically through use of a verification function to check a certain dictionary key exists

in the inputs, then is assigned to an object. Each assignment also handles its own security

Jack Leverett 7714 50639

285

allowing for more nuanced security through an “authorisation” method inherited from the

root handler.

The root handler also contains the most important method “handle”, this method manages

the immediate assignment of a user_id to the obj as well as managing what data the client

wants returned by managing the obj.columns that exists in every table class. The root

class manages the basic security of what levels have access to which events.

Handlers ultimately filter user input and mange security but all processing and database

modifications is done in other modules.

handler/outgoing.py

This file handles any outgoing data from the server that is not activated from a client even.

Basically a client also has a set of events that can be called by the server for instance for

receiving a notification or status message. Outgoing event calls like this from the server

are done through functions in this file. To minimise the surface area of the system.

handler/tasks.py

This file contains all the background operations on the server that are separate from the

main event loop. When the server first starts a background service starts for managing the

deleting of expired notifications and the notification of post time. It runs every 10 seconds

and is modular so any additional background tasks that need to take place in the future

can be added.

Another main background task is one that is started whenever a new client joins and logs

in. This background service is responsible for serving real time notifications and updates to

the client. This allows real time notifications without the client having to devote recourses

to polling the server for notifications as this can consume large amounts of battery on

certain devices.

user/info.py

This manages all tables that relate to a user’s personal information a list is below:

• table – A root class for all other classes that relate to tables in the database

• user_id – Non-accessible to handlers, refers to the single attribute user_id

• auth – auth_credentials table

• profile – profile table

• friend – friends table

• occupation – occupations table

• team – teams table

Each of the above is a class for a table so each can be addressed as an object. These

classes aggressively use python class “properties” which are equivalent to the “getters”

Jack Leverett 7714 50639

286

and “setters” in other languages. The getters don’t do much in most of these attributes but

the setters filter inputs. These filters act as a additional defence against SQL injection

(despite using prepared statements anyway). But also help the methods themselves

handle errors and output correct status messages, if a value is found to not be valid in a

setter the attribute is set to None instead.

Most classes here have a number of public methods that all correspond to events

available to clients. Here permissions and security is abstracted away through the

handlers.

user/content.py

This file is similar to the info but instead all classes here refer to the content that users

produce. A full list of classes is below:

• user_content – a base class for all other content classes in this file (inherits from

table)

• post – posts table

• comment – comments table

• impression – impressions table, a base class for post and comment impressions

• post_impression – post_impressions table

• comment_impression – comment_impressions table

• notification – notifications table

All the classes here act in the same way as info, using getters and setters to filter inputs

and security abstraction through the handlers that mange the security side of things.

user/generate.py

These functions are used for generating a fresh user. This happens once a user has

registered creating a friend’s team, logging credentials in the auth_credentials table and a

profile.

start/start.py

Manages the startup operation of the server and some first time setup operations such as

creating the database, configuration file. It also creates a time slot for the day if one has

not been created.

logging/logging.py

Contains 2 classes, geared towards logging and status messages to clients. The logging

class can read and write to the logs, all statuses are written to the logs as well alongside

additional information to assist in debugging.

Jack Leverett 7714 50639

287

data/config.py

Manges the configuration file. It programmatically creates the configuration file and

provides a proper interface for the rest of the server to read the configuration file.

data/database.py

Manages the programmatic creation of the database. Also has a connection class to make

an easy interface for the info and content classes to execute commands to the database. It

manages the connection, the cursor and the automatic committing of any SQL command

to lighten the load on other classes.

data/datetime.py

Contains the timestamp class. This class is used to manage all timings within the system.

It coordinates the timings of the client and the post slots. It also can be called at any point

to get the exact Unix timestamp using the property timestamp.now and timestamp. Date. It

also creates the post time notification and abstracts the complexities of assigning a post

time and retrieving it.

data/sss.cpp

This file contains the logic for Shamir Secret Sharing. This is only used if enabled in the

config but is mostly made up of matrix operations, all these operations in the correct

sequence can invert a matrix of size n x n.

auth/auth.py

This file manages all registration, login and authentication token creation. Most security

functions are present in this file and are used for authentication of users before they can

run an event. It also manages the creation and distribution of authentication tokens; these

tokens can be stored by clients and have an expiration date on them. After this date a

client will be forced to log back in and get a new authentication token.

algorithms/recomend.py

Contains the logic for generating friend recommendations for users. Containing a method

and the associated classes, such as User and Graph. This is called from the friend class in

the user/info.py.

algorithms/hash.cpp

Contains the hashing logic. Very short and this type of hash is only really used by the

friend recommendation algorithm since its unsuitable for long strings. C struggles with

large strings and large numbers and often suffers from memory overflows.

algorithms/uuid.py

This is where the function that generates UUIDs is. This function is used plenty of times

throughout the code for the generation of almost all IDs. User ID is the most important one

generated out of this since this also acts as a salt for the password. So secure and random

Jack Leverett 7714 50639

288

UUID generation is very important for the security of passwords. It also manages the hash

function which is used for hashing passwords. This makes passwords safe for storage

since if a database leak were to happen an attacker would have to devote large amounts

of compute to get username, password pairs.

Client

main.py

This is where all programable UI management happens. It’s a large file since it is
impractical to turn most of this code into modules, since most methods are executing
within widget classes and manipulating the UI.

Changing, adding, and updating of widgets all takes place in parent widgets and so on.
This class-based approach to widgets allows complex structures and in many cases
objects of parent classes becoming attributes of child classes. Small background tasks
also often take place, most of these background or scheduled functions are for updating
countdowns and managing the post slot.

ui/beopen.kv

This file is directly tied to the UI library used for the project, Kivy. This library makes use of
some implicit links between a python class running in a main file and a “kv” file that
contains the expressions for many widgets. This custom KV language is very simple and is
designed to make creating widgets and adding static widgets to the UI easy. Then the
main.py file will have classes of the same names as widgets in the kv file. Since their
names are the same, they are implicitly linked at runtime which means programmatically
adding widgets to the UI is done from the python code.

Overall, this file mainly manages the looks of base widgets and the arrangement of static
widgets.

session/session.py

This session file manages the current user session. A new session is created for each
separate launch of the app/when a new user is logged in. This session stores some basic
information that can then be easily used throughout the program through a constant
“session” object present in the main file. This session object contains basic information.
For example, the username of the current user session, whether the session is logged in
any present auth_tokens, the server code etc.

Session also plays a key role in receiving information from the server callbacks. Since
session is used as a point of transfer for data. This allows the client to apply any filtering to
incoming data as well as authentication of the information.

This file also contains the db class used for seamlessly interacting with the client-side
database in a safe way. The wait class is also present this is very important for safely

Jack Leverett 7714 50639

289

awaiting data from a server callback. Without this class and its methods, if a server didn’t
respond fast enough a client would continue with invalid data causing errors. Wait
facilitates poor connections likely when a device is constantly moving around.

session/time.py

This manages the timing of the client and keeps it in sync with the server. This file allows
the rest of the client to abstract away the handling of time data, post slots and date. Its
most vital for the “memories” function of the client which must handle time and dates in a
complex manner.

handler/info.py

This file manages any complicated data that is passed back to the client. For instance,
images need to be decoded and stored on the client side. They also need to be
dynamically removed to save on performance of the application. Through the info class the
complexities of data such as images is abstracted away to the rest of the code making it
as simple as any other piece of data.

handler/request.py

This file manages all the events being called on the server side. So, every time the client
calls a get, set, or delete it goes through this requests file and its aptly named request
class. This class centralises the security of outgoing data and handles the data in an easy
way so that any method calling the request class and its “emit” method doesn’t have to see
the complexities of a callback function.

Jack Leverett 7714 50639

290

Code

I break down the code per file. Ill start from the root file of both the server and the client.

The titles of each section will depict the path from these root files.

Server

main.py

import socketio

import eventlet

SESSION

class server_session():

 def __init__(self):

 self.clients = []

 self.logged_in = []

 self.accepting_clients = True

 self.mode = "normal"

 self.flags = []

 self.encrypt_on_shutdown = True

 self.db_encrypted = True

 self.password = None

this is a class object shared accross the server

it allows access to some basic infomation about the server's current status

session = server_session()

SESSION

STARTUP

from modules.track.logging import log

from modules.start.start import main as server_startup

server_startup(session)

STARTUP

MODULES

from modules.auth import auth

from modules.track import *

send_status = logging.status.send_status

from modules.user import info as user_info

from modules.handler.handler import *

from modules.handler.tasks import user_service, server_service

from modules.algorithms.univ import dict_key_verify

from modules.data.datetime import timestamp

from modules.data.config import read as config_read

Jack Leverett 7714 50639

291

MODULES

sio = socketio.Server()

app = socketio.WSGIApp(sio)

CONNECT/DISCONNECT EVENTS

@sio.event

def connect(sid, environ, auth):

 if session.accepting_clients:

 sio.save_session(sid, {'id': None, 'level': None})

 log("INFO", f"client {sid} connected")

 session.clients.append(sid)

 else:

 # return status here, create interface etc

 sio.disconnect(sid)

@sio.event

def disconnect(sid):

 log("INFO", f"client {sid} disconnected")

 session.clients.remove(sid)

 if sid in session.logged_in:

 session.logged_in.remove(sid)

CONNECT/DISCONNECT EVENTS

AUTH EVENTS

@sio.event

def login(sid, data):

 info = {'logged_in': False}

 status, user_id, level = auth.login(sio, sid, data)

 with sio.session(sid) as client_session:

 # saves some infomation to the sid of a connected client

 # this sid can be passed to other functions to identify the client even if

they havent provided specfic info to that event

 # as long as they have logged in

 client_session['id'] = user_id

 client_session['level'] = level

 if auth.authorised(sio, sid, "member"):

 info['logged_in'] = True

 if sid not in session.logged_in:

 session.logged_in.append(sid)

 sio.start_background_task(user_service, sio, sid)

 send_status(sio, sid, status)

Jack Leverett 7714 50639

292

 return True, info

any event that returns infomation will return True as its first parameter

this is to let the client side function know that the infomation being returned

is a "callback" from the server

without this the client side function would have no way of knowing if the func-

tion has been called by the server or the client itself

@sio.event

def register(sid, data):

 status = auth.register(data)

 send_status(sio, sid, status)

 if status['level'] == "INFO":

 return True, {'is_registered': True}

 return True, {'is_registered': False}

@sio.event

def admin_register(sid, data):

 status = auth.admin_register(data)

 send_status(sio, sid, status)

 if status['level'] == "INFO":

 return True, {'is_registered': True}

 return True, {'is_registered': False}

@sio.event

def auth_get(sid, data=None):

 info, status = auth_handler(sio, sid, session, min_level='member',

event_name='auth_get').get(data)

 return True, info

@sio.event

def auth_set(sid, data=None):

 info, status = auth_handler(sio, sid, session, min_level='member',

event_name='auth_set').set(data)

AUTH EVENTS

PROFILE EVENTS

@sio.event

def profile_get(sid, data=None):

 info, status = profile_handler(sio, sid, session, min_level='member',

event_name='profile_get').get(data)

 return True, info

@sio.event

def profile_get_permissions(sid, data=None):

Jack Leverett 7714 50639

293

 info, status = profile_handler(sio, sid, session, min_level='member',

event_name='profile_get_permissions').get_permissions(data)

 return True, info

@sio.event

def profile_set(sid, data=None):

 info, status = profile_handler(sio, sid, session, min_level='member',

event_name='profile_set').set(data)

@sio.event

def profile_delete(sid, data=None):

 info, status = profile_handler(sio, sid, session, min_level='member',

event_name='profile_delete').delete(data)

PROFILE EVENTS END

FRIEND EVENTS START

@sio.event

def friend_get(sid, data=None):

 info, status = friend_handler(sio, sid, session, min_level='member',

event_name='friend_get').get(data)

 return True, info

@sio.event

def friend_get_requests(sid, data=None):

 info, status = friend_handler(sio, sid, session, min_level='member',

event_name='friend_get_requests').get_requests(data)

 return True, info

@sio.event

def friend_get_recomendations(sid, data=None):

 friend_get_recomendations

 info, status = friend_handler(sio, sid, session, min_level='member',

event_name='friend_get_recomendations').get_recomendations(data)

 return True, info

@sio.event

def friend_add_request(sid, data=None):

 info, status = friend_handler(sio, sid, session, min_level='member',

event_name='friend_add_request').add_request(data)

@sio.event

def friend_approve_request(sid, data=None):

 info, status = friend_handler(sio, sid, session, min_level='member',

event_name='friend_approve_request').approve_request(data)

@sio.event

Jack Leverett 7714 50639

294

def friend_remove_request(sid, data=None):

 info, status = friend_handler(sio, sid, session, min_level='member',

event_name='friend_remove_request').remove_request(data)

@sio.event

def friend_reject_request(sid, data=None):

 info, status = friend_handler(sio, sid, session, min_level='member',

event_name='friend_reject_request').reject_request(data)

@sio.event

def friend_remove(sid, data=None):

 info, status = friend_handler(sio, sid, session, min_level='member',

event_name='remove').remove(data)

FRIEND EVENTS END

OCCUAPTION EVENTS

@sio.event

def occupation_get(sid, data=None):

 info, status = occupation_handler(sio, sid, session, min_level='member',

event_name='occupation_get').get(data)

 return True, info

@sio.event

def occupation_get_all(sid, data=None):

 info, status = occupation_handler(sio, sid, session, min_level='member',

event_name='occupation_get_all').get_all(data)

 return True, info

@sio.event

def occupation_set(sid, data=None):

 info, status = occupation_handler(sio, sid, session, min_level='member',

event_name='occupation_set').set(data)

@sio.event

def occupation_set_request(sid, data=None):

 info, status = occupation_handler(sio, sid, session, min_level='member',

event_name='occupation_set_request').set_request(data)

@sio.event

def occupation_get_request(sid, data=None):

 info, status = occupation_handler(sio, sid, session, min_level='member',

event_name='occupation_get_request').get_request(data)

 return True, info

@sio.event

def occupation_get_all_requests(sid, data=None):

Jack Leverett 7714 50639

295

 info, status = occupation_handler(sio, sid, session, min_level='member',

event_name='occupation_get_all_request').get_all_request(data)

 return True, info

@sio.event

def occupation_delete_request(sid, data=None):

 info, status = occupation_handler(sio, sid, session, min_level='member',

event_name='occupation_delete_request').delete_request(data)

@sio.event

def occupation_approve_request(sid, data=None):

 info, status = occupation_handler(sio, sid, session, min_level='management',

event_name='occupation_approve_request').approve_request(data)

@sio.event

def occupation_reject_request(sid, data=None):

 info, status = occupation_handler(sio, sid, session, min_level='management',

event_name='occupation_reject_request').reject_request(data)

@sio.event

def occupation_create(sid, data=None):

 info, status = occupation_handler(sio, sid, session, min_level='management',

event_name='occupation_create').create(data)

@sio.event

def occupation_edit(sid, data=None):

 info, status = occupation_handler(sio, sid, session, min_level='management',

event_name='occupation_edit').edit(data)

@sio.event

def occupation_delete_occupation(sid, data=None):

 info, status = occupation_handler(sio, sid, session, min_level='management',

event_name='occupation_delete_occupation').delete_occupation(data)

OCCUAPTION EVENTS

TEAM EVENTS

@sio.event

def team_get(sid, data=None):

 info, status = team_handler(sio, sid, session, min_level='member',

event_name='team_get').get(data)

 return True, info

@sio.event

def team_get_all(sid, data=None):

 info, status = team_handler(sio, sid, session, min_level='member',

event_name='team_get_all').get_all(data)

Jack Leverett 7714 50639

296

 return True, info

@sio.event

def team_get_leaders(sid, data=None):

 info, status = team_handler(sio, sid, session, min_level='member',

event_name='team_get_leaders').get_leaders(data)

 return True, info

@sio.event

def team_get_members(sid, data=None):

 info, status = team_handler(sio, sid, session, min_level='member',

event_name='team_get_members').get_members(data)

 return True, info

@sio.event

def team_set(sid, data=None):

 info, status = team_handler(sio, sid, session, min_level='member',

event_name='team_set').set(data)

@sio.event

def team_delete_leaders(sid, data=None):

 info, status = team_handler(sio, sid, session, min_level='member',

event_name='team_delete_leaders').delete_leaders(data)

TEAM EVENTS

POST EVENTS

@sio.event

def post_get_feed(sid, data=None):

 info, status = post_handler(sio, sid, session, min_level='member',

event_name='post_get_feed').get_feed(data)

 return True, info

@sio.event

def post_get(sid, data=None):

 info, status = post_handler(sio, sid, session, min_level='member',

event_name='post_get').get(data)

 return True, info

@sio.event

def post_get_memories(sid, data=None):

 info, status = post_handler(sio, sid, session, min_level='member',

event_name='post_get').get_memories(data)

 return True, info

@sio.event

def post_get_user(sid, data=None):

Jack Leverett 7714 50639

297

 info, status = post_handler(sio, sid, session, min_level='member',

event_name='post_get_user').get_user(data)

 return True, info

@sio.event

def post_get_friends(sid, data=None):

 info, status = post_handler(sio, sid, session, min_level='member',

event_name='post_get_friends').get_friends(data)

 return True, info

@sio.event

def post_get_team(sid, data=None):

 info, status = post_handler(sio, sid, session, min_level='member',

event_name='post_get_team').get_team(data)

 return True, info

@sio.event

def post_get_permissions(sid, data=None):

 info, status = post_handler(sio, sid, session, min_level='member',

event_name='post_get_permissions').get_permissions(data)

 return True, info

@sio.event

def post_set(sid, data=None):

 info, status = post_handler(sio, sid, session, min_level='member',

event_name='post_set').set(data)

@sio.event

def post_delete(sid, data=None):

 info, status = post_handler(sio, sid, session, min_level='member',

event_name='post_delete').delete(data)

POST EVENTS

COMMENT EVENTS

@sio.event

def comment_get(sid, data=None):

 info, status = comment_handler(sio, sid, session, min_level='member',

event_name='comment_get').get(data)

 return True, info

@sio.event

def comment_get_post(sid, data=None):

 info, status = comment_handler(sio, sid, session, min_level='member',

event_name='comment_get_post').get_post(data)

 return True, info

Jack Leverett 7714 50639

298

@sio.event

def comment_get_permissions(sid, data=None):

 info, status = comment_handler(sio, sid, session, min_level='member',

event_name='comment_get_permissions').get_permissions(data)

 return True, info

@sio.event

def comment_set(sid, data=None):

 info, status = comment_handler(sio, sid, session, min_level='member',

event_name='comment_set').set(data)

 return True, info

@sio.event

def comment_delete(sid, data=None):

 info, status = comment_handler(sio, sid, session, min_level='member',

event_name='comment_delete').delete(data)

 return True, info

COMMENT EVENTS

IMPRESSION EVENTS

@sio.event

def post_impression_get(sid, data=None):

 info, status = post_impression_handler(sio, sid, session, min_level='member',

event_name='post_impression_get').get(data)

 return True, info

@sio.event

def post_impression_get_post(sid, data=None):

 info, status = post_impression_handler(sio, sid, session, min_level='member',

event_name='post_impression_get_post').get_post(data)

 return True, info

@sio.event

def post_impression_count(sid, data=None):

 info, status = post_impression_handler(sio, sid, session, min_level='member',

event_name='post_impression_count').count(data)

 return True, info

@sio.event

def post_impression_set(sid, data=None):

 info, status = post_impression_handler(sio, sid, session, min_level='member',

event_name='post_impression_set').set(data)

@sio.event

def post_impression_delete(sid, data=None):

Jack Leverett 7714 50639

299

 info, status = post_impression_handler(sio, sid, session, min_level='member',

event_name='post_impression_delete').delete(data)

@sio.event

def comment_impression_get(sid, data=None):

 info, status = comment_impression_handler(sio, sid, session, min_level='mem-

ber', event_name='comment_impression_get').get(data)

 return True, info

@sio.event

def comment_impression_get_comment(sid, data=None):

 info, status = comment_impression_handler(sio, sid, session, min_level='mem-

ber', event_name='comment_impression_get_comment').get_comment(data)

 return True, info

@sio.event

def comment_impression_count(sid, data=None):

 info, status = comment_impression_handler(sio, sid, session, min_level='mem-

ber', event_name='comment_impression_count').count(data)

 return True, info

@sio.event

def comment_impression_set(sid, data=None):

 info, status = comment_impression_handler(sio, sid, session, min_level='mem-

ber', event_name='comment_impression_set').set(data)

@sio.event

def comment_impression_delete(sid, data=None):

 info, status = comment_impression_handler(sio, sid, session, min_level='mem-

ber', event_name='comment_impression_delete').delete(data)

IMPRESSION EVENTS END

NOTIFICATION EVENTS START

@sio.event

def notification_get(sid, data=None):

 info, status = notification_handler(sio, sid, session, min_level='member',

event_name='notification_get').get(data)

 return True, info

@sio.event

def notification_create(sid, data=None):

 status = notification_handler(sio, sid, session, min_level='member',

event_name='notification_create').create(data)

@sio.event

def notification_delete(sid, data=None):

Jack Leverett 7714 50639

300

 status = notification_handler(sio, sid, session, min_level='member',

event_name='notification_delete').delete(data)

@sio.event

def notification_remove(sid, data=None):

 status = notification_handler(sio, sid, session, min_level='member',

event_name='notification_remove').remove(data)

NOTIFICATION EVENTS END

OTHER EVENTS

@sio.event

def get_ntfy_topic(sid, data=None):

 info = {'topic': None}

 if sio.get_session(sid)['level']:

 user_id = sio.get_session(sid)['id']

 username = user_info.auth(user_id=user_id).get()['username']

 nfty_topic = f"{username}-{user_id[:8]}"

 info['topic'] = nfty_topic

 return True, info

@sio.event

def server_code_get(sid, data=None):

 code = config_read('miscellaneous', 'servercode')

 info = {'server_code': code}

 return True, info

@sio.event

def is_post_slot(sid, data=None):

 info = None

 if timestamp().is_valid_time():

 info = {'is_post_slot': True}

 else:

 info = {'is_post_slot': False}

 return True, info

@sio.event

def get_date(sid, data=None):

 info = {'date':timestamp().date}

 return True, info

@sio.event

def post_slot_get(sid, data=None):

 info, status = post_slot_handler(sio, sid, session, min_level='member',

event_name='post_slot_get').get(data)

Jack Leverett 7714 50639

301

 return True, info

@sio.event

def shutdown(sid, data=None):

 info, status = server(sio, sid, session, min_level='admin', event_name='shut-

down').shutdown(data)

OTHER EVENTS

ENCRYPTION EVENTS START

@sio.event

def decrypt(sid, data=None):

 success = encryption_handler(session).decrypt(data)

 return True, {'success': success}

@sio.event

def get_mode(sid, data=None):

 sss_enabled = config_read('database', 'ShamirSecretSharing')

 min_shares = config_read('database', 'MinimumShares')

 info = {'mode': session.mode, 'password': True, 'sss': sss_enabled,

'min_shares': min_shares}

 return True, info

ENCRYPTION EVENTS END

def test():

 pass

def main():

 # add mode check + while loop to background tasks

 sio.start_background_task(server_service, session)

 open_port = int(config_read('networking', 'Port'))

 eventlet.wsgi.server(eventlet.listen(('', open_port)), app)

 server(sio, None, session, min_level='admin', event_name='shutdown').inter-

nal_shutdown({'time': 0.1})

if __name__ == "__main__":

 main()

modules/algorithms/hash.cpp

include<string.h>

include<string>

include<cmath>

typedef long long int Lint;

extern "C" Lint hash(char* str) {

 Lint m = std::pow(10,7) + 7;

 int p = 97;

Jack Leverett 7714 50639

302

 Lint total = 0;

 for (int i=0; i<strlen(str); i++) {

 total += (int(str[i]) - 32) * pow(p,i);

 }

 Lint result = total % m;

 return result;

}

extern "C" Lint printc(char* str) {

 int num = strlen(str);

 return num;

}

modules/algorithms/univ.py

checks a string for illegal characters

string = string to be checked

allow_chars = allowed characters should be passed as a string

def char_check(string, allow_chars):

 # default allow_chars value

 if allow_chars == None:

 allow_chars = ascii_letters + digits

 #allowed_char = ascii_letters + digits + "_" + "-"

 if set(string).difference(allow_chars):

 return True

 else:

 return False

def dict_key_verify(dictionary, keys, mode="and", *args, **kwargs):

checks if the dictionary exists, if the key exists as a field and if that fields

value is not none

can be used to check if multiple keys exist

 if mode != "and" and mode != "or":

 mode = "and"

 if type(keys) != list:

 keys = [keys]

 verified = []

 if type(keys) != list:

 keys = [keys]

 for key in keys:

Jack Leverett 7714 50639

303

 if type(dictionary) != dict or key not in dictionary or not diction-

ary[key]:

 verified.append(False)

 else:

 verified.append(True)

 if mode == "and":

 if all(verified) == True:

 return True

 if mode == "or":

 if True in verified:

 return True

 return False

if __name__ == "__main__":

 data = {'name': "joe", 'job': "cuck", 'age': "69"}

 answer = dict_key_verify(data, ['job', 'names'], "and")

 print(answer)

modules/algorithms/uuid.py

import random

import ctypes

import pathlib

import hashlib

RBP

import time

RBP

def bin_to_hex(byte):

 byte_hex = ""

 total = 0

 for i, bit in enumerate(byte):

 total += int(bit) * 2 ** i

 first_place = total // 16

 second_place = total - first_place * 16

 places = [first_place, second_place]

 for i, place in enumerate(places):

 if place < 10:

 byte_hex += str(place)

 else:

 byte_hex += chr(65 + place - 10)

 return byte_hex.lower()

Jack Leverett 7714 50639

304

def den_to_bin(number):

 byte_string = ""

 result = 2

 power = 0

 # finds the greatest power of 2 that can fit in the number

 # this defines the length of the binary number

 while result > 0:

 result = number // 2**power

 if result == 0:

 break

 power += 1

 for i in range(power-1, -1, -1):

 bit = number // 2**i

 number -= bit * 2**i

 byte_string += str(bit)

 return byte_string

def set_bits(binary, num_bits):

 for i in range(num_bits - len(binary)):

 binary += "0"

 return binary

#uuid START

def generate():

 byte_list = []

 # generates 16 8 bit numbers as strings

 for i in range(16):

 number = random.randint(0, 255)

 bits = den_to_bin(number)

 byte = set_bits(bits , 8)

 byte_list.append(byte)

 # setting certain places as pre-defined, as stated by the UUID4 spec (see apen-

dix)

 byte_list[6] = byte_list[6][:4] + "0010"

 byte_list[8] = byte_list[8][:6] + "01"

 # UUIDs are always shown in terms of hex

 hex_string = ""

 for byte_index, byte in enumerate(byte_list):

 byte_hex = bin_to_hex(byte)

 # adds the dashes in the indexes as required by the UUID4 spec

Jack Leverett 7714 50639

305

 if byte_index in [4, 6, 8, 10]:

 hex_string += "-"

 hex_string += byte_hex

 return hex_string

#uuid END

#string hash START

def hash_string(string):

 string = string.replace("-", "0")

 string = string.replace("_", "0")

 libname = pathlib.Path().absolute() / "modules/algorithms/libcpphash.so"

 c_lib = ctypes.CDLL(libname)

 charptr = ctypes.POINTER(ctypes.c_char)

 c_lib.printc.argtypes = [charptr]

 c_lib.printc.restypes = int

 result = c_lib.hash(ctypes.c_char_p(string.encode('utf-8')))

 return result

def long_hash(string):

 result = hashlib.sha256(string.encode('utf-8'))

 result = result.hexdigest()

 return result

string hash END

if __name__ == "__main__":

 result = hash_string("hello")

 print(result)

modules/algorithms/recommend.py

from modules.user import info as user_info

from modules.algorithms.univ import dict_key_verify

from modules.algorithms.uuid import hash_string

class User():

 def __init__(self, username, origin=False):

 self.username = username

 self.friends = user_info.friend(username=username)

 self.origin = origin

 self.exclude = []

 self.count = 1

 self.depth = 0

Jack Leverett 7714 50639

306

 self.score = 0

 self.friend_list = []

 def find_friends(self, exclude=[], **kwargs):

 self.exclude += exclude

 friends = self.friends.get()

 if dict_key_verify(friends, "friends"):

 self.__organise_friends(friends['friends'])

 self.__find_excluded()

 def __organise_friends(self, friends, **kwargs):

 # used to create the user objects of friends

 for friend in friends:

 if friend['username'] not in self.exclude:

 self.friend_list.append(User(friend['username']))

 def __find_excluded(self):

 # gathers the users to be excluded from the next nodes neigbours and sets

this list = to self.exclude

 # this exclude list includes the previously passed exclude list

 if self.username not in self.exclude:

 self.exclude.append(self.username)

 if self.origin:

 self.exclude = self.exclude + [friend.username for friend in

self.friend_list]

 requests = self.friends.get_requests()

 if dict_key_verify(requests, "requests"):

 self.exclude = self.exclude + [request for request in requests["re-

quests"]]

 def __hash__(self):

 obj_hash = hash_string(self.username)

 return obj_hash

class Graph():

 def __init__(self, username):

 self.origin_user = User(username, True)

 self.graph = [[]] * (10**7+7)

 self.friend_directory = [None] * (10**7+7)

 self.friend_directory[hash(self.origin_user)] = self.origin_user

 self.exclude = []

 def generate(self, depth=1):

 self.origin_user.depth = depth-1

Jack Leverett 7714 50639

307

 self.__add_user_friends(self.origin_user, self.origin_user, depth)

 def __add_user_friends(self, origin, source, depth):

 origin.find_friends(self.exclude + [source.username])

 if hash(self.origin_user) == hash(origin):

 self.exclude += origin.exclude

 for friend in origin.friend_list:

 friend_hash = hash(friend)

 self.__add_edge(hash(origin), friend_hash)

 # if this user already exists in the graph add to their count in the

user's object

 # this count keeps track of how many other users friend lists a certain

user is

 if self.friend_directory[friend_hash]:

 self.friend_directory[friend_hash].count += 1

 else:

 self.friend_directory[friend_hash] = friend

 if depth-1 > 0:

 # recursively calls the function until the depth is 0.

 self.__add_user_friends(friend, origin, depth-1)

 def __add_edge(self, node, edge):

 # using the + operator on the lists since .append() has some undefined be-

haviour on large arrays.

 self.graph[node] = self.graph[node] + [edge]

 def bft(self):

 self.visted = []

 # adds the hash of the selected orgin user to the edge queue

 self.edge_queue = [hash(self.origin_user)]

 self.__visit(self.edge_queue[0])

 def __visit(self, origin):

 # the origin is a number and so can be used as an index for the graph array

 start_pos = self.graph[origin]

 self.__on_visit(origin)

 # adds the current node to the vistsed lists and removes it from the queue

 self.edge_queue.pop(len(self.edge_queue)-1)

 self.visted.append(origin)

 for neigbour in start_pos:

 neigbour_obj = self.friend_directory[neigbour]

Jack Leverett 7714 50639

308

 origin_obj = self.friend_directory[origin]

 # checks if the node has been visted yet, if not adds it to the edge

queue and assigns it a depth from the origin

 if neigbour not in self.visted and neigbour not in self.edge_queue:

 neigbour_obj.depth = origin_obj.depth - 1

 self.edge_queue = [neigbour] + self.edge_queue

 if len(self.edge_queue) > 0:

 # recursively calls this method until the edge_queue is empty

 self.__visit(self.edge_queue[len(self.edge_queue)-1])

 def __on_visit(self, origin):

 origin_obj = self.friend_directory[origin]

 # each node is only visited once in the graph so the count is calculated

when constructing the graph

 origin_obj.score = origin_obj.depth * origin_obj.count

 def recomend_friends(self):

 self.recomendations = []

 # removing the user requesting the recomendations and their friends from

the visited list

 # this is done so that the user or people who are already friends of the

user dont get recomended

 possible = []

 for user in self.visted:

 user_obj = self.friend_directory[user]

 if user_obj.username not in self.exclude:

 possible = possible + [user]

 while len(self.recomendations) != len(possible):

 largest = User(username="")

 largest.score = -1

 for friend in possible:

 friend_obj = self.friend_directory[friend]

 if friend_obj not in self.recomendations and friend_obj.score >

largest.score:

 largest = friend_obj

 self.recomendations.append(largest)

def recomend_friend(username, amount=1, depth=1):

 if not (depth >= 1 and depth <= 4):

 depth = 4

 friend_graph = Graph(username)

Jack Leverett 7714 50639

309

 friend_graph.generate(depth)

 friend_graph.bft()

 friend_graph.recomend_friends()

 recomended = [{'username': recomended.username} for recomended in

friend_graph.recomendations[:amount]]

 return recomended

def main():

 result = recomend_friend("Jack", 3, 4)

if __name__ == "__main__":

 main()

modules/auth/auth.py

BEFORE PRODUCTION PUSH

Need to uncomment the try and exept build into fuctions:

login, register, admin_register

import sqlite3

import time

from string import ascii_letters, ascii_lowercase, digits

MODULES

from modules.track import *

from modules.user.generate import main as user_generate

from modules.user import info as user_info

from modules.data.database import connect as db_connect

from modules.data.config import read as config_read

from modules.data.datetime import timestamp

from modules.algorithms.uuid import long_hash as hash_string

from modules.algorithms.uuid import generate as uuid_generate

from modules.algorithms.univ import char_check

MODULES

need to change this to path

database_name = config_read("database", "Path")

class reg_cred():

 def __init__(self, cred):

 self.level = config_read("user", "DefaultLevel")

Jack Leverett 7714 50639

310

 self.key = cred['key']

 self.username = cred['username']

 self.password= cred['password']

 self.repassword= cred['repassword']

 self.db = db_connect()

 self.db.create(self)

 logging.status("INFO", "registration initialised").status_update(self)

 def exec(self):

 # CHECKS

 check_processes = [self.username_verify, self.username_bans,

self.username_clash_check, self.password_verify]

 for check in check_processes:

 check()

 if self.status['level'] == "FAIL":

 return

 if not self.key_verify():

 return

 logging.status("INFO", "credential verification successful").status_up-

date(self)

 # CHECKS

 self.id = user_generate(self.username, self.password, self.level)

 #self.db.close()

 logging.status("INFO", "registration successful").status_update(self)

 def username_verify(self):

 # This will be configurable

 min_len = 3

 max_len = 25

 if self.username == None:

 logging.status("FAIL", "username cannot be null").status_update(self)

 elif len(self.username) < min_len or len(self.username) > max_len:

 logging.status("FAIL", f"username cant be shorter than {min_len} char-

acters or longer than {max_len} characters").status_update(self)

 elif char_check(self.username, ascii_letters + digits + "_" + "-") == True:

 logging.status("FAIL", f"username contains invalid characters").sta-

tus_update(self)

 def username_bans(self):

Jack Leverett 7714 50639

311

 servercode = config_read('miscellaneous', 'servercode')

 if servercode in self.username:

 logging.status("FAIL", "usernames contains servercode").status_up-

date(self)

 def username_clash_check(self):

 self.cur.execute("SELECT username FROM auth_credentials WHERE username =

?", (self.username,))

 if self.cur.fetchall():

 logging.status("FAIL", "username is already in use").status_up-

date(self)

 def password_verify(self):

 # This will be configurable

 min_len = 4

 max_len = 100

 if self.password == None:

 logging.status("FAIL", "password cannot be null").status_update(self)

 elif len(self.password) < min_len or len(self.password) > max_len:

 logging.status("FAIL", f"password cant be shorter than {min_len} char-

acters or longer than {max_len}").status_update(self)

 elif self.password != self.repassword:

 logging.status("FAIL", f"passwords do not match").status_update(self)

 def key_verify(self):

 if self.key == config_read('authorisation', 'RegistrationKey'):

 return True

 else:

 return False

 logging.status("FAIL", "registration code is incorrect").status_up-

date(self)

class reg_admin(reg_cred):

 def __init__(self, cred):

 super().__init__(cred)

 self.level = "admin"

 logging.status("INFO", "admin registration initialised").status_up-

date(self)

 def key_verify(self):

 if self.key == config_read('authorisation', 'AdminKey'):

 return True

Jack Leverett 7714 50639

312

 else:

 return False

 def first_time(self):

 self.cur.execute("SELECT user_id FROM auth_credentials WHERE level = ?",

(self.level,))

 value = self.cur.fetchone()

 if value:

 return False

 else:

 return True

class login_cred():

 def __init__(self, sio, sid, cred):

 self.username = cred['username']

 self.password = cred['password']

 self.sio = sio

 self.sid = sid

 self.db = db_connect()

 self.db.create(self)

 logging.status("INFO", "credential login initialised").status_update(self)

 def exec(self):

 self.process_password()

 self.cur.execute("SELECT user_id FROM auth_credentials WHERE username = ?

AND password = ?", (self.username, self.password_hash))

 self.id = self.cur.fetchone()

 if self.id:

 self.id = self.id[0]

 logging.status("INFO", "valid login credentials").status_update(self)

 login_token.create_token(self)

 login_token.send_token(self)

 logging.status("INFO", "login successful").status_update(self)

 else:

 logging.status("FAIL", "invalid login credentials").status_update(self)

 self.db.close()

 def process_password(self):

Jack Leverett 7714 50639

313

 self.cur.execute("SELECT user_id FROM auth_credentials WHERE username = ?",

(self.username,))

 user_id = self.cur.fetchone()

 if user_id:

 self.password_hash = hash_string(self.password + user_id[0])

 else:

 self.password_hash = None

class login_token():

 def __init__(self, cred):

 self.token = cred['token']

 self.db = db_connect()

 self.db.create(self)

 logging.status("INFO", "token login initialised").status_update(self)

 def exec(self):

 self.token_hash = hash_string(self.token)

 self.cur.execute("SELECT user_id, token_expire FROM auth_tokens WHERE token

= ?", (self.token_hash,))

 fetch_data = self.cur.fetchall()

 self.id = None

 if fetch_data:

 self.id, self.token_expire = fetch_data[0][0], fetch_data[0][1]

 if self.token_expire > timestamp().now:

 logging.status("INFO", "valid token").status_update(self)

 else:

 logging.status("FAIL", "invalid token").status_update(self)

 else:

 logging.status("FAIL", "invalid token").status_update(self)

 self.db.close()

 @staticmethod

 def create_token(self):

 expire_time = float(config_read("authorisation", "tokenexpirytime"))

 self.token = uuid_generate()

 self.token_hash = hash_string(self.token)

 self.token_expire = timestamp().now + expire_time

 ### ALL NEEDS CHANGING

Jack Leverett 7714 50639

314

 self.cur.execute("INSERT INTO auth_tokens (user_id, token, token_expire)

VALUES (?, ?, ?)", (self.id, self.token_hash, self.token_expire))

 self.db.commit()

 logging.status("INFO", "authentication token created").status_update(self)

 @staticmethod

 def send_token(self):

 self.sio.emit('recv_token', {'token':self.token, 'expire': self.token_ex-

pire}, room=self.sid)

 logging.status("INFO", "token sent").status_update(self)

class error_process():

 def __init__(self):

 logging.status("WARNING", "something went wrong").status_update(self)

 self.id = None

def login(sio, sid, cred):

 if "token" in cred:

 try:

 client = login_token(cred)

 client.exec()

 except:

 logging.status("FAIL", "token not authorised").status_update(client)

 elif all(param in cred for param in ['username', 'password']):

 try:

 client = login_cred(sio, sid, cred)

 client.exec()

 except:

 logging.status("FAIL", "login failed").status_update(client)

 else:

 client = error_process()

 logging.status("FAIL", "no credentials provided").status_update(client)

 client.level = user_info.level(user_id=client.id).get()

 if client.level:

 client.level = client.level['level']

 return client.status, client.id, client.level

def register(cred):

Jack Leverett 7714 50639

315

 if all(param in cred for param in ['username', 'password', 'repassword',

'key']):

 try:

 client = reg_cred(cred)

 client.exec()

 except:

 logging.status("FAIL", "registration failed").status_update(client)

 else:

 client = generic_process()

 logging.status("FAIL", "no credentials provided").status_update(client)

 return client.status

def admin_register(cred):

 if all(param in cred for param in ['username', 'password', 'repassword',

'key']):

 try:

 client = reg_admin(cred)

 if client.key_verify() == True and client.first_time() == True:

 client.exec()

 else:

 logging.status("FAIL", "admin key does not match/admin already ex-

ists").status_update(client)

 except:

 logging.status("FAIL", "registration failed").status_update(client)

 else:

 client = error_process()

 logging.status("FAIL", "no credentials provided").status_update(client)

 return client.status

def authorised(sio, sid, min_level='admin'):

 level_list = ['member', 'management', 'admin']

 allow_levels = level_list[level_list.index(min_level):]

 level = sio.get_session(sid)['level']

 if level in allow_levels:

 user_authorised = True

 else:

 user_authorised = False

 return user_authorised

Jack Leverett 7714 50639

316

def main():

 error = error_process()

if __name__ == "__main__":

 main()

modules/data/config.py

import configparser

from modules.track.logging import log

path = "data/config.ini"

def create():

 try:

 file = open(path, 'r')

 log("INFO", "Config already exists")

 return

 except FileNotFoundError as e:

 log("INFO", "Creating config file")

 pass

 config = configparser.ConfigParser()

 config.add_section('authorisation')

 # change this to a randomly generated string

 config.set('authorisation', 'AdminKey', 'secret')

 config.set('authorisation', 'RegistrationKey', 'secret')

 config.set('authorisation', 'UsernameMaxLength', '20')

 config.set('authorisation', 'UsernameMinLength', '5')

 config.set('authorisation', 'PasswordMaxLength', '30')

 config.set('authorisation', 'PasswordMinLength', '5')

 config.set('authorisation', 'TokenExpiryTime', '2592000')

 config.add_section('database')

 config.set('database', 'Path', 'data/database.db')

 config.set('database', 'Encrypt', 'false')

 config.set('database', 'ShamirSecretSharing', 'false')

 config.set('database', 'NumberOfShares', '5')

 config.set('database', 'MinimumShares', '3')

 config.set('database', 'KeyPath', 'data/key.txt')

 config.set('database', 'EncryptedPath', 'data/.cryptdatabase.db')

 config.set('database', 'EncryptionConfigPath', 'data/encryptconfig.txt')

 config.set('database', 'SaltPath', 'data/.salt.txt')

 config.set('database', 'SharesPath', 'data/shares/')

Jack Leverett 7714 50639

317

 config.add_section('user')

 config.set('user', 'DefaultLevel', 'member')

 config.set('user', 'DefaultOccupationID', 'Null')

 config.add_section('posts')

 config.set('posts', 'PostTimeLimit', '5') # miniutes

 config.set('posts', 'DayStart', '9') #24 hour time

 config.set('posts', 'DayEnd', '17') #24 hour time

 config.add_section('notifications')

 config.set('notifications', 'DefaultExpireTime', '604800')

 config.set('notifications', 'ntfyUrl', 'https://ntfy.example.com')

 config.add_section('networking')

 config.set('networking', 'Port', '9999')

 config.add_section('miscellaneous')

 config.set('miscellaneous', 'ServerCode', '12345')

 with open(path, 'w') as configfile:

 config.write(configfile)

 log("INFO", "Created config file")

def read(section, key, *args, **kwargs):

 config = configparser.ConfigParser()

 config.read(path)

 if section not in config:

 return None

 if key not in config[section]:

 return None

 info = config[section][key]

 if info == "false":

 info = False

 if info == "true":

 info = True

 return info

def main():

 create()

 info = read("users", "DefaultOccupation")

 print(info)

if __name__ == "__main__":

Jack Leverett 7714 50639

318

 main()

modules/data/database.py

import sqlite3

import os

import ctypes

import pathlib

import base64

from cryptography.fernet import Fernet

from cryptography.hazmat.primitives import hashes

from cryptography.hazmat.primitives.kdf.pbkdf2 import PBKDF2HMAC

db encrypt

from cryptography.fernet import Fernet

#from pysqlcipher3 import dbapi2 as sqlite3

db encrypt

from modules.track.logging import log

from modules.data.config import read as config_read

from modules.algorithms.uuid import generate as uuid_generate

class connect():

 def __init__(self):

 self.path = config_read("database", "Path")

 def create(self, obj):

 self.con = sqlite3.connect(self.path)

 self.cur = self.con.cursor()

 if obj != None:

 obj.con = self.con

 obj.cur = self.cur

 def commit(self):

 self.con.commit()

 def close(self):

 self.con.commit()

 self.con.close()

 def execute(self, command, values=None):

 cur = self.con.cursor()

 cur.execute(command, values)

 self.close()

Jack Leverett 7714 50639

319

Table creation

class create():

 def __init__(self):

 self.path = config_read("database", "Path")

 self.en_path = config_read("database", "EncryptedPath")

 def tables(self):

 decrypted_database = os.path.exists(self.path)

 encrypted_database = os.path.exists(self.en_path)

 if decrypted_database or encrypted_database:

 return

 con = sqlite3.connect(self.path)

 self.cur = con.cursor()

 tables = [self.auth_credentials, self.auth_tokens, self.profile ,

self.friends, self.occupations, self.occupation_requests, self.teams,

self.team_leaders, self.posts, self.comments, self.post_impressions, self.com-

ment_impressions, self.time_slots, self.notifications, self.notifications_sent]

 for table in tables:

 table()

 def auth_credentials(self):

 self.cur.execute("""

 CREATE TABLE IF NOT EXISTS auth_credentials (

 user_id TEXT NOT NULL PRIMARY KEY,

 username TEXT NOT NULL,

 password TEXT NOT NULL,

 level TEXT NOT NULL,

 FOREIGN KEY (user_id)

 REFERENCES profile (user_id)

 ON UPDATE CASCADE

 ON DELETE CASCADE

)

 """)

 def auth_tokens(self):

 self.cur.execute("""

 CREATE TABLE IF NOT EXISTS auth_tokens(

 user_id TEXT NOT NULL,

 token TEXT NOT NULL PRIMARY KEY,

 token_expire REAL NOT NULL,

 FOREIGN KEY (user_id)

 REFERENCES auth_credentials (user_id)

 ON UPDATE CASCADE

 ON DELETE CASCADE

)

Jack Leverett 7714 50639

320

 """)

 def profile(self):

 self.cur.execute("""

 CREATE TABLE IF NOT EXISTS profile (

 user_id TEXT NOT NULL PRIMARY KEY,

 occupation_id TEXT,

 name TEXT,

 picture TEXT,

 biography TEXT,

 role TEXT,

 num_friends INTEGER DEFAULT 0,

 FOREIGN KEY (occupation_id)

 REFERENCES occupations (occupation_id)

 ON UPDATE CASCADE

 ON DELETE SET NULL

)

 """)

 def friends(self):

 self.cur.execute("""

 CREATE TABLE IF NOT EXISTS friends (

 user_id TEXT NOT NULL,

 friend_id TEXT NOT NULL,

 approved BOOLEAN,

 FOREIGN KEY (user_id)

 REFERENCES profile (user_id)

 ON UPDATE CASCADE

 ON DELETE CASCADE

 FOREIGN KEY (friend_id)

 REFERENCES profile (user_id)

 ON UPDATE CASCADE

 ON DELETE CASCADE

 PRIMARY KEY (user_id, friend_id)

)

 """)

 def occupations(self):

 self.cur.execute("""

 CREATE TABLE IF NOT EXISTS occupations (

 occupation_id TEXT NOT NULL PRIMARY KEY,

 name TEXT NOT NULL,

 description TEXT

)

 """)

 def occupation_requests(self):

Jack Leverett 7714 50639

321

 self.cur.execute("""

 CREATE TABLE IF NOT EXISTS occupation_requests (

 user_id TEXT NOT NULL PRIMARY KEY,

 occupation_id TEXT NOT NULL,

 approved BOOLEAN DEFAULT False NOT NULL,

 FOREIGN KEY (user_id)

 REFERENCES profile (user_id)

 ON UPDATE CASCADE

 ON DELETE CASCADE

 FOREIGN KEY (occupation_id)

 REFERENCES occupations (occupation_id)

 ON UPDATE CASCADE

 ON DELETE CASCADE

)

 """)

 def teams(self):

 self.cur.execute("""

 CREATE TABLE IF NOT EXISTS teams (

 team_id TEXT NOT NULL PRIMARY KEY,

 name TEXT NOT NULL,

 occupation_id TEXT,

 user_id TEXT,

 FOREIGN KEY (occupation_id)

 REFERENCES occupations (occupation_id)

 ON UPDATE CASCADE

 ON DELETE CASCADE

 FOREIGN KEY (user_id)

 REFERENCES profile (user_id)

 ON UPDATE CASCADE

 ON DELETE CASCADE

)

 """)

 def team_leaders(self):

 self.cur.execute("""

 CREATE TABLE IF NOT EXISTS team_leaders (

 user_id TEXT NOT NULL,

 team_id TEXT NOT NULL,

 FOREIGN KEY (user_id)

 REFERENCES profile (user_id)

 ON UPDATE CASCADE

 ON DELETE CASCADE

 FOREIGN KEY (team_id)

 REFERENCES teams (team_id)

 ON UPDATE CASCADE

 ON DELETE CASCADE

Jack Leverett 7714 50639

322

 PRIMARY KEY (user_id, team_id)

)

 """)

 def posts(self):

 self.cur.execute("""

 CREATE TABLE IF NOT EXISTS posts (

 post_id TEXT NOT NULL PRIMARY KEY,

 user_id TEXT NOT NULL,

 content TEXT NOT NULL,

 caption TEXT,

 date TEXT NOT NULL,

 FOREIGN KEY (user_id)

 REFERENCES profile (user_id)

 ON UPDATE CASCADE

 ON DELETE CASCADE

)

 """)

 def comments(self):

 self.cur.execute("""

 CREATE TABLE IF NOT EXISTS comments (

 comment_id TEXT NOT NULL PRIMARY KEY,

 post_id TEXT NOT NULL,

 user_id TEXT NOT NULL,

 content TEXT NOT NULL,

 FOREIGN KEY (post_id)

 REFERENCES posts (post_id)

 ON UPDATE CASCADE

 ON DELETE CASCADE

 FOREIGN KEY (user_id)

 REFERENCES profile (user_id)

 ON UPDATE CASCADE

 ON DELETE CASCADE

)

 """)

 def post_impressions(self):

 self.cur.execute("""

 CREATE TABLE IF NOT EXISTS post_impressions (

 impression_id TEXT NOT NULL PRIMARY KEY,

 post_id NOT NULL,

 user_id NOT NULL,

 type NOT NULL,

 FOREIGN KEY (post_id)

 REFERENCES posts (post_id)

 ON UPDATE CASCADE

Jack Leverett 7714 50639

323

 ON DELETE CASCADE

 FOREIGN KEY (user_id)

 REFERENCES profile (user_id)

 ON UPDATE CASCADE

 ON DELETE CASCADE

)

 """)

 def comment_impressions(self):

 self.cur.execute("""

 CREATE TABLE IF NOT EXISTS comment_impressions (

 impression_id TEXT NOT NULL PRIMARY KEY,

 comment_id NOT NULL,

 user_id NOT NULL,

 type NOT NULL,

 FOREIGN KEY (comment_id)

 REFERENCES comments (comment_id)

 ON UPDATE CASCADE

 ON DELETE CASCADE

 FOREIGN KEY (user_id)

 REFERENCES profile (user_id)

 ON UPDATE CASCADE

 ON DELETE CASCADE

)

 """)

 def time_slots(self):

 self.cur.execute("""

 CREATE TABLE IF NOT EXISTS time_slots (

 date TEXT NOT NULL PRIMARY KEY,

 start FLOAT NOT NULL,

 end FLOAT NOT NULL

)

 """)

 def notifications(self):

 self.cur.execute("""

 CREATE TABLE IF NOT EXISTS notifications (

 notification_id TEXT NOT NULL PRIMARY KEY,

 target_id TEXT NOT NULL,

 title TEXT NOT NULL,

 content TEXT,

 time_created FLOAT NOT NULL,

 expire_after FLOAT NOT NULL

)

 """)

Jack Leverett 7714 50639

324

 def notifications_sent(self):

 self.cur.execute("""

 CREATE TABLE IF NOT EXISTS notifications_sent (

 notification_id TEXT NOT NULL,

 user_id TEXT NOT NULL,

 time_sent FLOAT,

 sent BOOLEAN DEFAULT False NOT NULL,

 PRIMARY KEY (notification_id, user_id)

 FOREIGN KEY (notification_id)

 REFERENCES notifications (notification_id)

 ON UPDATE CASCADE

 ON DELETE CASCADE

 FOREIGN KEY (user_id)

 REFERENCES profile (user_id)

 ON UPDATE CASCADE

 ON DELETE CASCADE

)

 """)

class encryption():

 def __init__(self, session):

 self.key = key()

 # needs to pass num_shares and min_shares

 self.session = session

 self.sss_enabled = config_read("database", "ShamirSecretSharing")

 self.en_config_path = config_read("database", "EncryptionConfigPath")

 self.db_path = config_read("database", "Path")

 self.en_db_path = config_read("database", "EncryptedPath")

 def mode(self):

 # uses a large amount of logic statements to figure out what mode the

server should enter on launch

 # additionally what flags it should launch with

 encryption_enabled = config_read("database", "Encrypt")

 db_encrypted = self.key.is_db_encrypted()

 mode = None

 flags = []

 if encryption_enabled:

 if db_encrypted:

 mode = "decrypt"

 else:

 success = self.encrypt()

 if success:

 mode = "decrypt"

 else:

Jack Leverett 7714 50639

325

 exit()

 else:

 if db_encrypted:

 mode = "decrypt"

 flags = ["forever"]

 else:

 mode = "normal"

 self.session.db_encrypted = False

 self.session.mode = mode

 self.session.flags = flags

 def encrypt(self, flags=[]):

 if self.session.password:

 password = self.session.password

 else:

 password = self._generate()

 if not password:

 log("FAIL", "Could not encrypt database, something went wrong, see logs

for details")

 return False

 scheme = self.key.read_db_scheme(password)

 with open(self.db_path, "rb") as db:

 db_data = db.read()

 # create new encrypted database

 log("INFO", "Encrypting database")

 en_db_data = scheme.encrypt(db_data)

 with open(self.en_db_path, "wb") as en_db:

 en_db.write(en_db_data)

 # delete unecrypted database

 os.remove("data/database.db")

 log("INFO", "Deleted unencrypted database")

 return True

 def decrypt(self, data, flags=[]):

 min_shares = config_read('database', 'MinimumShares')

 if "sss" in flags:

 password = int(shares(min_shares).get_key(data['shares']))

 else:

 password = int(data['password'])

 scheme = self.key.read_db_scheme(password)

 if not scheme:

Jack Leverett 7714 50639

326

 return False

 # decrypting the databsae raw bytes

 with open(self.en_db_path, "rb") as en_db:

 en_db_data = en_db.read()

 db_data = scheme.decrypt(en_db_data)

 with open(self.db_path, "wb") as db:

 db.write(db_data)

 if not self._database_read():

 log("FAIL", "Decryption of database failed, see logs for details")

 return False

 log("INFO", "Decryption of database successful")

 self.session.password = password

 for flag in flags:

 if flag == "forever":

 log("WARN", "Permanent decryption of the database")

 self.session.encrypt_on_shutdown = False

 self.key.delete()

 elif flag == "sss":

 with open(self.en_config_path, "w") as en_config:

 en_config.write(str(password))

 log("WARN", f"You decrypted the database using Shamir secret

shares, your master password has been reconstructed and can be found on the server

at the location: {self.en_config_path}. Please remember to delete this file after

reading")

 self.session.db_encrypted = False

 self.session.mode = "normal"

 return True

 def _generate(self):

 options = self._read_config()

 if not self._config_check(options):

 log("FAIL", "Could not generate encryption scheme, something wrong in

config file or with maseter password")

 return None

 else:

 options['password'] = int(options['password'])

 if self.sss_enabled:

 options['num_shares'] = int(options['num_shares'])

 options['min_shares'] = int(options['min_shares'])

 self.key.generate_key_file(options['password'])

Jack Leverett 7714 50639

327

 if self.sss_enabled:

 log("INFO", "Shamir Secret Sharing enabled, generating shares")

 sss = shares(options['min_shares'], options['num_shares'])

 sss_success = sss.generate_shares(options['password'])

 if not sss_success:

 log("FAIL", "Something went wrong generating shamir secret shares,

see log for details")

 return None

 log("INFO", "Deleting encryption configuration file containing master pass-

word")

 os.remove(self.en_config_path)

 return options['password']

 def _read_config(self):

 num_shares = config_read("database", "NumberOfShares")

 min_shares = config_read("database", "MinimumShares")

 options = {}

 try:

 with open(self.en_config_path, "r") as config:

 log("INFO","Reading encryption configuration file")

 options['password'] = config.read()

 if self.sss_enabled:

 options['num_shares'] = num_shares

 options['min_shares'] = min_shares

 except:

 return None

 return options

 def _config_check(self, options):

 # checking if the file exists

 try:

 en_config = open(self.en_config_path, "r")

 en_config.close()

 except:

 log("FAIL", f"Encryption config could not be found at {self.en_con-

fig_path}")

 return False

 # check config contents

 try:

 log("INFO", "Testing master password type (must be int)")

 master_pass = int(options['password'])

 if len(options) == 1:

 return True

Jack Leverett 7714 50639

328

 elif self.sss_enabled and len(options) == 3:

 log("INFO", "Testing number of shares type (must be integer)")

 num_shares = int(options['num_shares'])

 log("INFO", "Testing minimum shares type (must be integer)")

 min_shares = int(options['min_shares'])

 if num_shares < 20 and min_shares < 7:

 return True

 else:

 log("WARN", "SSS number of shares is to large or minimum shares

is to large")

 return False

 else:

 log("WARN", "Something went wrong reading config file, check the

docs for a guide")

 return False

 except:

 log("WARN", "The master password, number of shares and minimum shares

all must be integers")

 return False

 def _database_read(self):

 try:

 db = connect()

 db.create(self)

 db.cur.execute("SELECT * FROM time_slots")

 return True

 except:

 return False

class key():

 def __init__(self):

 self.key_path = config_read("database", "KeyPath")

 self.db_path = config_read("database", "Path")

 self.en_db_path = config_read("database", "EncryptedPath")

 self.salt_path = config_read("database", "SaltPath")

 def _save_salt(self, salt):

 with open(self.salt_path, "wb") as salt_file:

 salt_file.write(salt)

 def _read_salt(self):

 try:

 with open(self.salt_path, "rb") as salt_file:

 salt = salt_file.read()

 return salt

 except:

Jack Leverett 7714 50639

329

 return None

 def _pass_to_scheme(self, password):

 password = str(password).encode()

 salt = self._read_salt()

 if not salt:

 salt = os.urandom(16)

 self._save_salt(salt)

 kdf = PBKDF2HMAC(

 algorithm=hashes.SHA256(),

 length=32,

 salt=salt,

 iterations=480000,

)

 key = base64.urlsafe_b64encode(kdf.derive(password))

 scheme = Fernet(key)

 return scheme

 def read_db_scheme(self, password):

 file_scheme = self._pass_to_scheme(password)

 with open(self.key_path, "r") as key_file:

 en_password = key_file.read()

 db_scheme = None

 try:

 password = file_scheme.decrypt(en_password)

 db_scheme = self._pass_to_scheme(password)

 except:

 log("WARN", "Provided password is wrong or something is wrong with the

database key")

 return db_scheme

 def generate_key_file(self, password):

 #db_password = bytes(uuid_generate().replace("-", "").encode())

 db_password = uuid_generate().replace("-", "").encode()

 file_scheme = self._pass_to_scheme(password)

 en_db_password = str(file_scheme.encrypt(db_password).decode())

 with open(self.key_path, "w") as key_file:

 key_file.write(en_db_password)

 def delete(self):

 os.remove(self.salt_path)

 os.remove(self.key_path)

 os.remove(self.en_db_path)

Jack Leverett 7714 50639

330

 def is_db_encrypted(self):

 try:

 db = open(self.en_db_path, "rb")

 return True

 except:

 return False

class ShareStruct(ctypes.Structure):

 __fields__ = [("y", ctypes.c_longlong), ("x", ctypes.c_int)]

this class is mainly geared towards acting as an interface for hte c++ code

class shares():

 def __init__(self, min_shares, num_shares=None):

 if num_shares:

 self.num_shares = int(num_shares)

 self.min_shares = int(min_shares)

 self.shares_path = config_read("database", "SharesPath")

 def _dict_to_c_array(self, share_list):

 c_share_array = ((ctypes.c_longlong*2)*self.min_shares)

 share_array = []

 for i in range(len(share_list)):

 c_share = (ctypes.c_longlong*2)(*[share_list[i]['num'],

share_list[i]['secret']])

 share_array.append(c_share)

 c_share_array = ((ctypes.c_longlong*2)*len(share_list))(*share_array)

 return c_share_array

 def generate_shares(self, password):

 libname = pathlib.Path().absolute() / "modules/data/libcppsss.so"

 c_lib = ctypes.CDLL(libname)

 c_lib.newSecretInternal.argtypes = [ctypes.c_longlong, ctypes.c_int,

ctypes.c_int, ctypes.POINTER(ctypes.c_char)]

 c_lib.newSecretInternal.restypes = None

 path_ptr = ctypes.c_char_p(self.shares_path.encode('utf-8'))

 c_lib.newSecretInternal(password, self.num_shares, self.min_shares,

path_ptr)

 success = self.verify(password)

 return success

 def get_key(self, share_list):

Jack Leverett 7714 50639

331

 libname = pathlib.Path().absolute() / "modules/data/libcppsss.so"

 c_lib = ctypes.CDLL(libname)

 c_share_array = ((ctypes.c_longlong*2)*self.min_shares)

 c_share_array_pointer = ctypes.POINTER(c_share_array)

 c_lib.solveInternal.argtypes = [c_share_array_pointer, ctypes.c_int]

 c_lib.solveInternal.restypes = int

 new_share_array = ctypes.pointer(self._dict_to_c_array(share_list))

 result = c_lib.solveInternal(new_share_array, self.min_shares)

 return result

 def verify(self, password):

 # used to verify that the shamir secret shares generated can be used to re-

construct the original key

 log("INFO", "Verifying share integrity")

 # we essentially take a sample of the shares

 # if all these samples work we assume any combination of said samples will

 # this works well since we test the combination of all hte smallest numbers

and all teh largest

 # the only reason a set of shares wouldnt work is because they have become

to large and c++ starts to lose accuracy

 # if this doesnt happen then its safe to assume all shares work

 shifts = self.num_shares - self.min_shares

 for i in range(shifts):

 top = i + self.min_shares

 shares_used = ""

 for num_share in range(i, top):

 shares_used += str(num_share) + ", "

 shares_used = shares_used[:-2]

 log("INFO", f"Attempting to generate original password with shares:

{shares_used}")

 share_list = []

 for j in range(i, top):

 # reads the shares from their files

 path = self.shares_path + f"share-{j+1}.txt"

 with open(path, "r") as share:

 try:

 x = int((share.readline().split(": "))[1])

 y = int((share.readline().split(": "))[1])

 share_list.append({'num': x, 'secret': y})

Jack Leverett 7714 50639

332

 except:

 log("WARN", "Something went wrong reading one of the

shares, have they been altered?")

 break

 result = self.get_key(share_list)

 if result != password:

 log("WARN", "A set of shares could not be used to generate the

original password, try again or use a diffrent password")

 return False

 else:

 log("INFO", f"{i+1}/{shifts} sets of shares successfully used to

generate the original password")

 return True

def main():

 db = create()

 db.path = "database.db"

 db.tables()

if __name__ == "__main__":

 main()

class retrieve():

 def __init__(self):

 self.db = db_connect()

 self.db.create(self)

 def level(self, identifier):

 self.cur.execute("SELECT level FROM auth_credentials WHERE username = ? OR

user_id = ?", (identifier, identifier))

 rez = self.cur.fetchone()

 if rez:

 return rez[0]

 def user_id(self, username):

 self.cur.execute("SELECT user_id FROM auth_credentials WHERE username = ?",

(username,))

 rez = self.cur.fetchone()

 if rez:

 rez = rez[0]

Jack Leverett 7714 50639

333

 return rez

 def username(self, user_id):

 self.cur.execute("SELECT username FROM auth_credentials WHERE user_id = ?",

(user_id,))

 rez = self.cur.fetchone()

 if rez:

 rez = rez[0]

 return rez

 def occupation_id(self, user_id):

 self.cur.execute("SELECT occupation_id FROM profile WHERE user_id = ?",

(user_id,))

 rez = self.cur.fetchone()

 if rez:

 rez = rez[0]

 return rez

modules/data/datetime.py

from datetime import date, timedelta, datetime

import random

import eventlet

MODULES

from modules.data.config import read as config_read

from modules.data.database import connect as db_connect

from modules.handler import outgoing

from modules.track.logging import log

MODULES

class timestamp():

 def __init__(self):

 self.time_limit = float(config_read("posts", "PostTimeLimit")) * 60

 self.db = db_connect()

 self.db.create(self)

 @property

 def start(self):

 value = self.get_date_timestamp()

 self._start = value

Jack Leverett 7714 50639

334

 return self._start

 @start.setter

 def start(self, value):

 value = self.get_date_timestamp()

 self._start = value

 @property

 def end(self):

 value = self.get_date_timestamp(day_mod=1) - 1

 self._end = value

 return self._end

 @end.setter

 def end(self, value):

 value = self.get_date_timestamp(day_mod=1) - 1

 self._end = value

 @property

 def now(self):

 value = self.get_timestamp()

 self._now = value

 return value

 @now.setter

 def now(self, value):

 value = self.get_timestamp()

 self._now = value

 @property

 def post_slot_start(self):

 value = self.get_slot()['start']

 self._post_slot_start = value

 return self._post_slot_start

 @post_slot_start.setter

 def post_slot_start(self, value):

 self._post_slot_start = self._post_slot_start

 @property

 def post_slot_end(self):

 value = self.get_slot()['end']

 self._post_slot_end = value

 return self._post_slot_end

 @post_slot_end.setter

 def post_slot_end(self, value):

 self._post_slot_end = self._post_slot_end

 @property

 def date(self):

 date = str(datetime.now().date())

Jack Leverett 7714 50639

335

 self._date = date

 return self._date

 @date.setter

 def date(self, value):

 self._date = value

 def get_date_timestamp(self, year_mod=0, month_mod=0, day_mod=0, *args,

**kwargs):

 modifier = [year_mod, month_mod, day_mod]

 now_mod = (datetime.now()+timedelta(days=day_mod))

 date = (str(now_mod.date()).replace("-0", "-")).split("-")

 date = [int(string) for string in date]

 timestamp = datetime(date[0], date[1], date[2]).timestamp()

 return timestamp

 def get_timestamp(self):

 now = (float(datetime.now().timestamp()))

 return now

 def generate_slot(self, data=None):

 for i in range(2):

 if i == 0:

 date = str(datetime.now().date())

 start = self.get_date_timestamp()

 else:

 now_mod = (datetime.now()+timedelta(days=1))

 date = (str(now_mod.date()))

 start = self.get_date_timestamp(0, 0, 1)

 self.cur.execute("SELECT date FROM time_slots WHERE date=?", (date,))

 if not self.cur.fetchone():

 log("INFO", f"Generating time slot for {date}")

 day_start = start + int(config_read("posts", "DayStart")) * 60 * 60

 day_end = start + int(config_read("posts", "DayStart")) * 60 * 60

 slot_start = random.randint(day_start, day_end)

 slot_end = slot_start + self.time_limit

 self.cur.execute("INSERT INTO time_slots (date, start, end) VALUES

(?, ?, ?)", (date, slot_start, slot_end))

 self.db.commit()

 def get_slot(self):

 info = None

Jack Leverett 7714 50639

336

 date = str(datetime.now().date())

 self.cur.execute("SELECT start, end FROM time_slots WHERE date=?", (date,))

 rez = self.cur.fetchone()

 if rez:

 info = {'start':rez[0], 'end':rez[1]}

 return info

 def is_valid_time(self):

 if (self.now < self.post_slot_end) and (self.now >= self.post_slot_start):

 return True

 return False

modules/data/sss.cpp

#include <cstdlib>

include<iostream>

include<string>

include<random>

include<cmath>

include<array>

#include <fstream>

using namespace std;

typedef long long int Lint; // 64 bits

typedef double Ldouble;

struct security {

 int num_shares;

 int num_required;

};

struct shareStruct {

 int x;

 Lint y;

};

bool isPrime(Lint n) {

 int flag = 0;

 for (int i = 2; i <= n / i; ++i) {

 if (n % i == 0) {

 flag = 1;

 break;

 }

 }

 if (flag == 0) return true;

 else return false;

}

Jack Leverett 7714 50639

337

Lint genRandInt(int n) {

 // Returns a random number

 // between 2**(n-1)+1 and 2**n-1

 //long max = (long)powl(2, n) - 1;

 //long min = (long)powl(2, n - 1) + 1;

 long max = (long)pow(2, n) - 1;

 long min = (long)pow(2, n - 1) + 1;

 Lint result = min + (rand() % (max - min + 1));

 return result;

}

Lint genPrime() {

 Lint prime = 10;

 while (isPrime(prime) == false) {

 int complexity = 50;

 prime = genRandInt(complexity);

 }

 return prime;

}

int* encodeSecret(int* poly, const int secret, const int num_required) {

 poly[num_required-1] = secret;

 return poly;

}

Lint getPolyY(const int* poly, int poly_len, int poly_x, const Lint prime) {

 Lint total = 0;

 Lint poly_y = 0;

 for (int i=0; i<poly_len+1; i++) {

 int power = poly_len - i;

 int coefficient = poly[i];

 poly_y = coefficient * pow(poly_x, power);

 total = total + poly_y;

 }

 return total;

}

shareStruct* genShares(int num_shares, int num_required, const int* poly, const

Lint prime){

 shareStruct* shares = new shareStruct[num_shares];

 for (int i=1; i<=num_shares; i++) {

 shareStruct share;

 share.x = i;

Jack Leverett 7714 50639

338

 share.y = getPolyY(poly, num_required-1, share.x, prime);

 shares[i-1] = share;

 }

 return shares;

}

int* genPoly(int degree, const Lint prime, const Lint secret) {

 int* poly = new int[degree];

 for (int i = 0; i < degree; i++) {

 int random_num = genRandInt(10);

 poly[i] = prime % random_num;

 }

 return poly;

}

// solving polynomials

struct inputStruct {

 int required;

 shareStruct* shares;

};

struct polyTerm {

 Lint coefficient;

 int power;

};

struct linearEquation {

 shareStruct point;

 polyTerm* terms;

};

linearEquation* constructEquations(const int required, shareStruct shares[]) {

 linearEquation* equations = new linearEquation[required];

 shareStruct share;

 polyTerm term;

 for (int i = 0; i < required; i++) {

 share = shares[i];

 linearEquation equation;

 polyTerm* terms = new polyTerm[required];

 for (int j = 0; j < required; j++) {

 term.power = required - 1 - j;

 terms[j] = term;

 }

Jack Leverett 7714 50639

339

 equation.terms = terms;

 equation.point.x = share.x;

 equation.point.y = share.y;

 equations[i] = equation;

 // dont delete terms from memory as its referanced in equations

 }

 return equations;

}

struct matrix{

 Lint** matrix;

 int dimension_x;

 int dimension_y;

};

struct matrix_system {

 matrix A;

 matrix B;

 matrix X;

};

matrix_system formMatrix(const linearEquation* equations, int required) {

 Lint** matrixA = new Lint*[required];

 Lint** matrixB = new Lint*[required];

 for (int i=0; i < required; i++) {

 linearEquation equation = equations[i];

 Lint* lineA = new Lint[required];

 for (int j=0; j < required; j++) {

 lineA[j] = pow(equation.point.x, equation.terms[j].power);

 }

 matrixA[i] = lineA;

 Lint* lineB = new Lint[1];

 lineB[0] = equation.point.y;

 matrixB[i] = lineB;

 }

 matrix matrixA_data; matrix matrixB_data;

 matrixA_data.matrix = matrixA; matrixB_data.matrix = matrixB;

 matrixA_data.dimension_x = required; matrixB_data.dimension_x = 1;

 matrixA_data.dimension_y = required; matrixB_data.dimension_y = required;

 matrix_system matricies;

 matricies.A = matrixA_data; matricies.B = matrixB_data;

Jack Leverett 7714 50639

340

 return matricies;

}

Lint** findMinor(Lint** matrixA, const int dimension, const int pos_x, const int

pos_y) {

 Lint** matrixB = new Lint*[dimension-1];

 int matrixB_pos_x = 0; int matrixB_pos_y = 0;

 for (int i=0; i<dimension; i++) {

 Lint* line = new Lint[dimension-1];

 for (int j=0; j<dimension; j++) {

 if (i != pos_y and j != pos_x) {

 line[matrixB_pos_x] = matrixA[i][j];

 matrixB_pos_x++;

 }

 }

 if (matrixB_pos_x != 0) {

 matrixB[matrixB_pos_y] = line;

 matrixB_pos_y++;

 }

 else {

 delete[] line;

 }

 matrixB_pos_x = 0;

 }

 return matrixB;

}

Lint findDet(Lint** matrixA, const int dimension) {

 Lint det = 0;

 if (dimension == 0) {

 det = 1;

 }

 else if (dimension == 1) {

 det = matrixA[0][0];

 }

 else if (dimension == 2) {

 det = matrixA[0][0] * matrixA[1][1] - matrixA[0][1] * matrixA[1][0];

 }

 else {

 for (int i=0; i<dimension; i++) {

 // reuse form matrix? pottentially split it up into formMatrixA and formMa-

trixB?

 Lint** matrixB = findMinor(matrixA, dimension, i, 0);

 Lint matrixB_det = findDet(matrixB, dimension-1);

 Lint term = matrixA[0][i] * matrixB_det;

Jack Leverett 7714 50639

341

 if ((i+1)%2 == 0) {

 term = 0-term;

 }

 det = det + term;

 }

 }

 return det;

}

matrix formMatrixCofactors(Lint** matrixA, const int dimension) {

 Lint** matrixB = new Lint*[dimension];

 for (int i=0; i<dimension; i++) {

 Lint* line = new Lint[dimension];

 int sign = 1;

 if ((i+1)%2 == 0) {

 sign = -1;

 }

 for (int j=0; j<dimension; j++) {

 Lint** minor = findMinor(matrixA, dimension, j, i);

 Lint cofactor = findDet(minor, dimension-1) * sign;

 sign = -sign;

 line[j] = cofactor;

 }

 matrixB[i] = line;

 }

 matrix matrix_data; matrix_data.matrix = matrixB;

 matrix_data.dimension_x = dimension; matrix_data.dimension_y = dimension;

 return matrix_data;

}

matrix transposeMatrix(Lint** cofactors, const int dimension) {

 Lint** matrixB = new Lint*[dimension];

 for (int i=0; i<dimension; i++) {

 Lint* line = new Lint[dimension];

 for (int j=0; j<dimension; j++) {

 line[j] = cofactors[j][i];

 }

 matrixB[i] = line;

 }

 matrix matrixB_data; matrixB_data.matrix = matrixB;

Jack Leverett 7714 50639

342

 matrixB_data.dimension_x = dimension; matrixB_data.dimension_y = dimension;

 return matrixB_data;

}

struct float_matrix{

 Ldouble** matrix;

 int dimension_x;

 int dimension_y;

};

struct float_matrix_system {

 matrix A;

 matrix B;

 matrix X;

};

float_matrix multiplyConstant(matrix matrixA_data, const int dimension, const Lint

det) {

 Ldouble** matrixB = new Ldouble*[dimension];

 Lint** matrixA = matrixA_data.matrix;

 for (int i=0; i<dimension; i++) {

 Ldouble* line = new Ldouble[dimension];

 for (int j=0; j<dimension; j++) {

 line[j] = (1.0/det) * matrixA[i][j];

 }

 matrixB[i] = line;

 }

 float_matrix matrixB_data; matrixB_data.matrix = matrixB;

 matrixB_data.dimension_x = matrixA_data.dimension_x; matrixB_data.dimension_y =

matrixA_data.dimension_y;

 return matrixB_data;

}

float_matrix multiplyMatricies(float_matrix inverseA_data, matrix matrixB_data) {

 int dimension_x = inverseA_data.dimension_x;

 int dimension_y = inverseA_data.dimension_y;

 Ldouble** matrixC = new Ldouble*[matrixB_data.dimension_y];

 Ldouble** inverseA = inverseA_data.matrix;

 Lint** matrixB = matrixB_data.matrix;

 for (int i=0; i<dimension_y; i++) {

 Ldouble* line = new Ldouble[0];

 Ldouble result = 0;

 for (int j=0; j<dimension_x; j++) {

 result = result + inverseA[i][j] * matrixB[j][0];

Jack Leverett 7714 50639

343

 }

 line[0] = result;

 matrixC[i] = line;

 }

 float_matrix matrixC_data; matrixC_data.matrix = matrixC;

 matrixC_data.dimension_x = matrixB_data.dimension_x; matrixC_data.dimension_y =

matrixB_data.dimension_y;

 return matrixC_data;

}

Lint** StructToArray(shareStruct* struct_array, int len_array) {

 Lint** array = new Lint*[len_array];

 for (int i=0; i<len_array; i++) {

 array[i] = new Lint[2];

 array[i][0] = struct_array[i].x;

 array[i][1] = struct_array[i].y;

 }

 return array;

}

shareStruct* ArrayToStruct(Lint** array, int len_array) {

 shareStruct* share_array = new shareStruct[len_array];

 for (int i=0; i<len_array; i++) {

 shareStruct share;

 share.x = array[i][0];

 share.y = array[i][1];

 share_array[i] = share;

 }

 return share_array;

}

void writeShares(shareStruct* shares, const int num_shares, const int num_required,

string root_path) {

 cout << root_path << endl;

 for (int i=0; i<num_shares; i++) {

 shareStruct share = shares[i];

 string share_path = root_path + "share-" + to_string(share.x) + ".txt";

 ofstream share_file(share_path);

 share_file << "Share number: " << share.x << endl;

 share_file << "Share secret: " << share.y << endl;

 share_file << "Minimum share required: " << to_string(num_required) << endl <<

endl;

 share_file << "IMPORTANT: Please remind your admin that its there job to dis-

tribute and delete shares from the server";

 }

Jack Leverett 7714 50639

344

}

extern "C" Lint solveInternal(shareStruct* shares, int required) {

 inputStruct inputs;

 inputs.shares = shares;

 inputs.required = required;

 linearEquation* equations = new linearEquation[inputs.required];

 equations = constructEquations(inputs.required, inputs.shares);

 matrix_system matricies = formMatrix(equations, inputs.required);

 delete[] equations;

 Lint det = findDet(matricies.A.matrix, matricies.A.dimension_x);

 matrix cofactors = formMatrixCofactors(matricies.A.matrix, matricies.A.dimen-

sion_x);

 matrix transposition = transposeMatrix(cofactors.matrix, cofactors.dimension_x);

 float_matrix inverseA = multiplyConstant(transposition, transposition.dimen-

sion_x, det);

 float_matrix matrixC = multiplyMatricies(inverseA, matricies.B);

 Lint secret = matrixC.matrix[matrixC.dimension_y-1][0];

 return secret;

}

extern "C" void newSecretInternal(const Lint secret, const int num_shares, const

int num_required, char* root_path) {

 string str(root_path);

 const Lint prime = genPrime();

 int* poly = genPoly(num_required-1, prime, secret);

 poly = encodeSecret(poly, secret, num_required);

 shareStruct* shares = genShares(num_shares, num_required, poly, prime);

 writeShares(shares, num_shares, num_required, root_path);

}

int main() {

}

modules/handler/handler.py

from modules.auth.auth import authorised

from modules.track import *

send_status = logging.status.send_status

Jack Leverett 7714 50639

345

status = logging.status

log = logging.log

from modules.algorithms.univ import dict_key_verify

from modules.user import info as user_info

from modules.user import content as content_info

from modules.data.datetime import timestamp

from modules.data.config import read as config_read

from modules.data.database import key as db_key

from modules.data.database import encryption as db_encrpytion

import eventlet

for this section client even calls call a handler. This handler then calls the

root handler passing the target method as an argument

this allows for one method (the root handler) to handle overhead tasks taht are

required for every event called

this is done to make the code simple and reduce boiler plate

class root_handler():

 def __init__(self, sio, sid, session, min_level='admin', event_name='event',

*args, **kwargs):

 self.info = None

 self.status = None

 self.sio = sio

 self.sid = sid

 self.event_name = event_name

 self.min_level = min_level

 self.session = session

 self.user_id = sio.get_session(sid)['id']

 self.user_level = sio.get_session(sid)['level']

 # permissions levels

 self.member = self.authorised(level='member')

 self.management = self.authorised(level='management')

 self.admin = self.authorised(level='admin')

 # permissions levels

 self.statface = logging.status_interface(sio, sid, self.user_id, self)

 def handle(self, method, data=None, auth=None):

 # bunch of boiler plate,

 if self.session.mode == "normal":

 self.obj.id = self.user_id

 # statface is the interface used for status messages, anytime a status

message is created this interface is also passed

 self.obj.statface = self.statface

Jack Leverett 7714 50639

346

 #checking the user calling the event is authorised based on their level

 if self.authorised(level=self.min_level):

 method(data=data)

 else:

 status("WARN", f"{self.event_name} - User not authorised",

self.statface)

 else:

 status("FAIL", f"Server is currently in {self.session.mode} and so is

not accepting calls to this event, try again later", self.statface)

 def authorised(self, level=None, username=None, mode="and", lead_username=None,

associated_username=None, *args, **kwargs):

 # an all in one function for verifying if a user is authorised for an ac-

tion in a number of diffretn ways:

 # - association

 # - level

 # - team lead

 auths = []

 if username:

 lead_username = username

 associated_username = username

 if level:

 # identifies if the user has level privalidges matchign that given

 level_auth = False

 level_list = ['member', 'management', 'admin']

 allow_levels = level_list[level_list.index(level):]

 if self.user_level in allow_levels:

 level_auth = True

 auths.append(level_auth)

 client_username = user_info.auth(user_id=self.user_id).get()['username']

 if lead_username:

 # checks if the user has leader privalidges over the target user

 leader_auth = False

 subjects_leaders = user_info.team(username=lead_username).get_lead-

ers()['leaders']

 if subjects_leaders and client_username in subjects_leaders:

 leader_auth = True

 auths.append(leader_auth)

 if associated_username:

 # your associated to a user if your in the same team or your friends

Jack Leverett 7714 50639

347

 # so if associated auth is true it means the target user is in the same

team or friends with the subject user

 associated_auth = False

 subjects_friends = user_info.friend(username=associ-

ated_username).get()['friends']

 subject_team = user_info.team(username=associated_username).get_mem-

bers()

 if subject_team:

 if client_username in subjects_friends or client_username in sub-

ject_team['members']:

 associated_auth = True

 auths.append(associated_auth)

 if mode == "and":

 auth = all(auths)

 if mode == "or":

 auth = (True in auths)

 else:

 auth = auths

 # returns auth as either true or false

 return auth

 def _leader_check(self, leaders, username):

 leader = False

 for leader in leaders:

 if leader['username'] == username:

 leader = True

 return leader

 def is_leader(self, user_id, identifier):

 username = user_info.auth(user_id=user_id).get()['username']

 leader = False

 leaders = user_info.team(user_id=identifier, username=identifier, occupa-

tion_id=identifier, team_id=identifier).get_leaders()['leaders']

 if leaders:

 leader = self._leader_check(leaders, username)

 else:

 leaders = user_info.team(user_id=identifier).get_leaders()['leaders']

 if leaders:

 leader = self._leader_check(leaders, username)

 return leader

class auth_handler(root_handler):

Jack Leverett 7714 50639

348

 def __init__(self, sio, sid, session, min_level='admin', event_name='authenti-

cation info event', *args, **kwargs):

 super().__init__(sio, sid, session, min_level=min_level,

event_name=event_name, *args, **kwargs)

 self.obj = user_info.auth(user_id=self.user_id)

 def get(self, data=None):

 self.handle(self._get, data)

 return self.info, self.status

 def _get(self, data=None):

 if dict_key_verify(data, 'username') and self.admin:

 self.obj.username = data['username']

 if dict_key_verify(data, 'items'):

 self.obj.columns = data['items']

 self.info = self.obj.get()

 def set(self, data=None):

 self.handle(self._get, data)

 return self.info, self.status

 def _set(self, data=None):

 if dict_key_verify(data, 'username'):

 profile.username = data['username']

 if dict_key_verify(data, 'items'):

 profile.columns = data['items']

 self.obj.set(data)

class profile_handler(root_handler):

 def __init__(self, sio, sid, session, min_level='admin', event_name='profile

event', *args, **kwargs):

 super().__init__(sio, sid, session, min_level=min_level,

event_name=event_name, *args, **kwargs)

 self.obj = user_info.profile(user_id=self.user_id)

 def get(self, data=None):

 self.handle(self._get, data)

 return self.info, self.status

 def _get(self, data=None):

 if dict_key_verify(data, 'username'):

 self.obj.username = data['username']

 if dict_key_verify(data, 'items'):

 self.obj.columns = data['items']

 self.info = self.obj.get()

 def get_permissions(self, data=None):

Jack Leverett 7714 50639

349

 self.handle(self._get_permissions, data)

 return self.info, self.status

 def _get_permissions(self, data=None):

 if dict_key_verify(data, 'username'):

 self.obj.username = data['username']

 if dict_key_verify(data, 'target_username'):

 self.obj.target_username = data['target_username']

 self.info = self.obj.get_permissions()

 def set(self, data=None):

 self.handle(self._set, data)

 return self.info, self.status

 def _set(self, data=None):

 if dict_key_verify(data, 'username'):

 if self.authorised('management', data['username'], "or"):

 self.obj.username = data['username']

 self.obj.columns = list(data.keys())

 self.obj.set(data)

 status("INFO", "item(s) successfully set to provided value(s)")

 def delete(self, data=None):

 self.handle(self._delete, data)

 return self.info, self.status

 def _delete(self, data=None):

 if dict_key_verify(data, 'username') and self.management:

 self.obj.username = data['username']

 if dict_key_verify(data, 'items'):

 self.obj.columns = data['items']

 self.obj.delete()

class occupation_handler(root_handler):

 def __init__(self, sio, sid, session, min_level='admin', event_name='occupation

event', *args, **kwargs):

 super().__init__(sio, sid, session, min_level='admin',

event_name=event_name, *args, **kwargs)

 self.obj = user_info.occupation(user_id=self.user_id)

 def get(self, data=None):

 self.handle(self._get, data)

 return self.info, self.status

 def _get(self, data=None):

 if dict_key_verify(data, 'username'):

 self.obj.username = data['username']

Jack Leverett 7714 50639

350

 if dict_key_verify(data, 'occupation_id'):

 self.obj.occupation_id = data['occupation_id']

 if dict_key_verify(data, 'items'):

 self.obj.columns = data['items']

 self.info = self.obj.get()

 def get_all(self, data=None):

 self.handle(self._get_all, data)

 return self.info, self.status

 def _get_all(self, data):

 self.info = self.obj.get_all()

 def set(self, data=None):

 self.handle(self._set, data)

 return self.info, self.status

 def _set(self, data=None):

 if dict_key_verify(data, 'username') and self.management:

 self.obj.username = data['username']

 if dict_key_verify(data, 'occupation_id'):

 self.obj.set(data)

 status("INFO", "Occupation successfully set", self.statface)

 else:

 status("WARN", "Occupation couldnt be updated no value(s) provided",

self.statface)

 def set_request(self, data=None):

 self.handle(self._set_request, data)

 return self.info, self.status

 def _set_request(self, data=None):

 if dict_key_verify(data, 'username') and self.admin:

 self.obj.username = data['username']

 if dict_key_verify(data, 'occupation_id'):

 self.obj.set_request(data)

 status("INFO", "Occupation change request successfully created",

self.statface)

 else:

 status("WARN", "Occupation change request could not be created no

value(s) provided", self.statface)

 def get_request(self, data=None):

 self.handle(self._get_request, data)

 return self.info, self.status

 def _get_request(self, data=None):

 if dict_key_verify(data, 'username') and self.management:

 self.obj.username = data['username']

Jack Leverett 7714 50639

351

 self.info = self.obj.get_request()

 def get_all_request(self, data=None):

 self.handle(self._get_all_request, data)

 return self.info, self.status

 def _get_all_request(self, data=None):

 self.info = self.obj.get_all_requests()

 def delete_request(self, data=None):

 self.handle(self._delete_request, data)

 return self.info, self.status

 def _delete_request(self, data=None):

 if dict_key_verify(data, 'username') and self.management:

 self.obj.username = data['username']

 self.obj.delete_request()

 def approve_request(self, data=None):

 self.handle(self._approve_request, data)

 return self.info, self.status

 def _approve_request(self, data=None):

 if dict_key_verify(data, 'username'):

 self.obj.username = data['username']

 self.obj.approve_request()

 status("INFO", "Occupation change request successfully approved",

self.statface)

 else:

 status("FAIL", "Occupation change request unable to be approved invalid

data provided", self.statface)

 def reject_request(self, data=None):

 self.handle(self._delete_request, data)

 return self.info, self.status

 def _reject_request(self, data=None):

 if dict_key_verify(data, 'username'):

 self.obj.username = data['username']

 self.obj.reject_request()

 status("INFO", "Occupation change request successfully rejected",

self.statface)

 else:

 status("FAIL", "Occupation change request unable to be rejected invalid

data provided", self.statface)

 def create(self, data=None):

 self.handle(self._create, data)

 return self.info, self.status

 def _create(self, data=None):

Jack Leverett 7714 50639

352

 if dict_key_verify(data, "name"):

 self.obj.create(data)

 status("INFO", "Occupation successfully created", self.statface)

 else:

 self.status = logging.status("WARNING", "no value(s) provided").sta-

tus_update(None)

 status("FAIL", "Occupation could not be created invalid data provided",

self.statface)

 def edit(self, data=None):

 self.handle(self._edit, data)

 return self.info, self.status

 def _edit(self, data=None):

 if dict_key_verify(data, 'occupation_id'):

 self.obj.occupation_id = data['occupation_id']

 self.obj.columns = list(data.keys())

 self.obj.edit(data)

 status("INFO", "Occupation successfully edited", self.statface)

 else:

 status("FAIL", "Occupation could not be edited invalid data provided",

self.statface)

 def delete_occupation(self, data=None):

 self.handle(self._delete_occupation, data)

 return self.info, self.status

 def _delete_occupation(self, data=None):

 if dict_key_verify(data, 'occupation_id'):

 self.obj.occupation_id = data['occupation_id']

 self.obj.delete_occupation()

 status("INFO", "Occuaption successfully deleted", self.statface)

 else:

 status("FAIL", "Occupation could not be deleted invalid data provided",

self.statface)

class team_handler(root_handler):

 def __init__(self, sio, sid, session, min_level='admin', event_name='team

event', *args, **kwargs):

 super().__init__(sio, sid, session, min_level='admin',

event_name=event_name, *args, **kwargs)

 self.obj = user_info.team(user_id=self.user_id)

 def get(self, data=None):

 self.handle(self._get, data)

 return self.info, self.status

 def _get(self, data=None):

 if dict_key_verify(data, 'username'):

Jack Leverett 7714 50639

353

 self.obj.username = data['username']

 if dict_key_verify(data, 'user_id'):

 self.obj.id = data['user_id']

 if dict_key_verify(data, 'occupation_id'):

 self.obj.occupation_id = data['occupation_id']

 if dict_key_verify(data, 'team_id'):

 self.obj.team_id = data['team_id']

 if self.obj.team_id:

 self.info = self.obj.get()

 else:

 status("FAIL", "Team data could not be fetched, invalid data provided",

self.statface)

 def get_all(self, data=None):

 self.handle(self._get_all, data)

 return self.info, self.status

 def _get_all(self, data=None):

 if dict_key_verify(data, 'items'):

 self.obj.columns = data['items']

 self.info = self.obj.get_all()

 def get_leaders(self, data=None):

 self.handle(self._get_leaders, data)

 return self.info, self.status

 def _get_leaders(self, data=None):

 if dict_key_verify(data, 'username'):

 self.obj.username = data['username']

 if dict_key_verify(data, 'id'):

 self.obj.id = data['id']

 if dict_key_verify(data, 'occupation_id'):

 self.obj.occupation_id = data['occupation_id']

 if dict_key_verify(data, 'team_id'):

 self.obj.team_id = data['team_id']

 if self.obj.team_id:

 self.info = self.obj.get_leaders()

 else:

 status("FAIL", "Team leaders could not be fetched, invalid data pro-

vided", self.statface)

 def get_members(self, data=None):

 self.handle(self._get_members, data)

 return self.info, self.status

 def _get_members(self, data=None):

 if dict_key_verify(data, 'username'):

Jack Leverett 7714 50639

354

 self.obj.username = data['username']

 if dict_key_verify(data, 'id'):

 self.obj.id = data['id']

 if dict_key_verify(data, 'occupation_id'):

 self.obj.occupation_id = data['occupation_id']

 if dict_key_verify(data, 'team_id'):

 self.obj.team_id = data['team_id']

 if self.obj.team_id:

 self.info = self.obj.get_members()

 else:

 status("FAIL", "Team members could not be fetched, invalid data pro-

vided")

 def set(self, data=None):

 self.handle(self._set, data)

 return self.info, self.status

 def _set(self, data=None):

 if dict_key_verify(data, 'username'):

 self.obj.username = data['username']

 if dict_key_verify(data, 'user_id'):

 self.obj.id = data['user_id']

 if dict_key_verify(data, 'occupation_id'):

 self.obj.occupation_id = data['occupation_id']

 if dict_key_verify(data, 'team_id'):

 self.obj.team_id = data['team_id']

 if dict_key_verify(data, 'items'):

 self.obj.columns = data['items']

 if self.is_leader(self.user_id, self.obj.team_id) or self.management:

 if self.obj.team_id:

 self.obj.set(data)

 else:

 status("FAIL", "Team data not changed invalid data provided",

self.statface)

 else:

 status("FAIL", "Team data not changed, not authorised to alter this

team", self.statface)

 def delete_leaders(self, data=None):

 self.handle(self._delete_leaders, data)

 return self.info, self.status

 def _delete_leaders(self, data=None):

 if dict_key_verify(data, 'username'):

 self.obj.username = data['username']

 if dict_key_verify(data, 'user_id'):

 self.obj.id = data['user_id']

Jack Leverett 7714 50639

355

 if dict_key_verify(data, 'occupation_id'):

 self.obj.occupation_id = data['occupation_id']

 if dict_key_verify(data, 'team_id'):

 self.obj.team_id = data['team_id']

 if data['leaders']:

 if self.is_leader(self.user_id, self.obj.team_id) or management:

 self.obj.delete_leaders(data)

 else:

 status("FAIL", "Leader(s) was not deleted, not authorised to alter

this team", self.statface)

 else:

 status("FAIL", "Leader(s) was not deleted, not authorised to alter this

team", self.statface)

class friend_handler(root_handler):

 def __init__(self, sio, sid, session, min_level='admin', event_name='friend

event', *args, **kwargs):

 super().__init__(sio, sid, session, min_level='admin',

event_name=event_name, *args, **kwargs)

 self.obj = user_info.friend(user_id=self.user_id)

 def get(self, data=None):

 self.handle(self._get, data)

 return self.info, self.status

 def _get(self, data=None):

 if dict_key_verify(data, 'username') and self.management:

 self.obj.username = data['username']

 self.info = self.obj.get()

 def get_requests(self, data=None):

 self.handle(self._get_requests, data)

 return self.info, self.status

 def _get_requests(self, data=None):

 if dict_key_verify(data, 'username') and self.management:

 self.obj.username = data['username']

 if dict_key_verify(data, 'mode'):

 self.obj.mode = data['mode']

 else:

 status("WARN", "No mode provided defaulting to fetching incoming friend

request(s)", self.statface)

 self.info = self.obj.get_requests()

 def get_recomendations(self, data=None):

 self.handle(self._get_recomendations, data)

Jack Leverett 7714 50639

356

 return self.info, self.status

 def _get_recomendations(self, data=None):

 if dict_key_verify(data, 'username') and self.management:

 self.obj.username = data['username']

 self.info = self.obj.get_recomendations(data)

 def add_request(self, data=None):

 self.handle(self._add_request, data)

 return self.info, self.status

 def _add_request(self, data=None):

 if dict_key_verify(data, 'username') and self.admin:

 self.obj.username = data['username']

 self.info = self.obj.add_request(data)

 def approve_request(self, data=None):

 self.handle(self._approve_request, data)

 return self.info, self.status

 def _approve_request(self, data=None):

 if dict_key_verify(data, 'username') and self.admin:

 self.obj.username = data['username']

 self.info = self.obj.approve_request(data)

 def reject_request(self, data=None):

 self.handle(self._remove, data)

 return self.info, self.status

 def remove_request(self, data=None):

 self.handle(self._remove, data)

 return self.info, self.status

 def remove(self, data=None):

 self.handle(self._remove, data)

 return self.info, self.status

 def _remove(self, data=None):

 if dict_key_verify(data, 'username') and self.management:

 self.obj.username = data['username']

 self.info = self.obj.remove(data)

class post_handler(root_handler):

 def __init__(self, sio, sid, session, min_level='admin', event_name='post

event', *args, **kwargs):

 super().__init__(sio, sid, session, min_level=min_level,

event_name=event_name, *args, **kwargs)

Jack Leverett 7714 50639

357

 self.obj = content_info.post(user_id=self.user_id)

 def get_feed(self, data=None):

 self.handle(self._get_feed, data)

 return self.info, self.status

 def _get_feed(self, data=None):

 if dict_key_verify(data, 'username'):

 if self.authorised('management', data['username'], "or"):

 post.username = data['username']

 if dict_key_verify(data, 'items'):

 self.obj.columns = data['items']

 self.info = self.obj.get_feed()

 def get(self, data=None):

 self.handle(self._get, data)

 return self.info, self.status

 def _get(self, data=None):

 if dict_key_verify(data, 'username'):

 if self.authorised('management', data['username'], "or"):

 post.username = data['username']

 if dict_key_verify(data, 'post_id'):

 self.obj.post_id = data['post_id']

 if dict_key_verify(data, 'items'):

 self.obj.columns = data['items']

 self.info = self.obj.get()

 def get_memories(self, data=None):

 self.handle(self._get_memories, data)

 return self.info, self.status

 def _get_memories(self, data=None):

 if dict_key_verify(data, 'username') and self.management:

 post.username = data['username']

 if dict_key_verify(data, 'items'):

 self.obj.columns = data['items']

 self.info = self.obj.get_memories()

 def get_user(self, data=None):

 self.handle(self._get_user, data)

 return self.info, self.status

 def _get_user(self, data=None):

 if dict_key_verify(data, 'username'):

 if self.authorised('management', data['username'], "or"):

 self.obj.username = data['username']

 if dict_key_verify(data, 'items'):

Jack Leverett 7714 50639

358

 self.obj.columns = data['items']

 self.info = self.obj.get_user()

 return self.info, self.status

 def _get_friends(self, data=None):

 if dict_key_verify(data, 'username') and self.management:

 self.obj.username = data['username']

 if dict_key_verify(data, 'items'):

 self.obj.columns = data['items']

 self.info = self.obj.get_friends()

 def get_team(self, data=None):

 self.handle(self._get_team, data)

 return self.info, self.status

 def _get_team(self, data=None):

 if dict_key_verify(data, 'username'):

 if self.authorised('management', lead_username=data['username'],

mode="or"):

 self.obj.username = data['username']

 if dict_key_verify(data, 'team_id') and self.management:

 self.obj.team_id = data['team_id']

 if dict_key_verify(data, 'occupation_id') and self.management:

 self.obj.occupation_id = data['occupation_id']

 if dict_key_verify(data, 'items'):

 self.obj.columns = data['items']

 self.info =self.obj.get_team()

 def get_permissions(self, data=None):

 self.handle(self._get_permissions, data)

 return self.info, self.status

 def _get_permissions(self, data=None):

 if dict_key_verify(data, 'username'):

 if self.authorised('management', lead_username=data['username'],

mode="or"):

 self.obj.username = data['username']

 if dict_key_verify(data, 'post_id'):

 self.obj.post_id = data['post_id']

 self.info = self.obj.get_permissions()

 def set(self, data=None):

 self.handle(self._set, data)

 return self.info, self.status

Jack Leverett 7714 50639

359

 def _set(self, data=None):

 if dict_key_verify(data, 'username') and self.admin:

 self.obj.username = data['username']

 if dict_key_verify(data, 'content'):

 self.obj.content = data['content']

 if dict_key_verify(data, 'caption'):

 self.obj.caption = data['caption']

 if self.obj.content:

 self.obj.columns = list(data.keys())

 self.obj.set(data)

 else:

 status("FAIL", "Post could not be created, invalid image provided",

self.statface)

 def delete(self, data=None):

 self.handle(self._delete, data)

 return self.info, self.status

 def _delete(self, data=None):

 if dict_key_verify(data, 'username'):

 if self.authorised('management', lead_username = data['username'],

mode="or"):

 self.obj.username = data['username']

 if dict_key_verify(data, 'post_id'):

 poster_info = content_info.post(post_id=data['post_id'],

items=['username']).get()

 if dict_key_verify(poster_info, 'posts'):

 poster_info = poster_info['posts']

 if dict_key_verify(poster_info, 'username'):

 poster_username = poster_info['username']

 if self.authorised('management', lead_username =

poster_username, mode="or"):

 self.obj.post_id = data['post_id']

 self.obj.delete()

class comment_handler(root_handler):

 def __init__(self, sio, sid, session, min_level='admin', event_name='comment

event', *args, **kwargs):

 super().__init__(sio, sid, session, min_level=min_level,

event_name=event_name, *args, **kwargs)

 self.obj = content_info.comment(user_id=self.user_id)

 def get(self, data=None):

 self.handle(self._get, data)

 return self.info, self.status

Jack Leverett 7714 50639

360

 def _get(self, data=None):

 if dict_key_verify(data, 'username'):

 if self.authorised('management', data['username'], "or"):

 self.obj.username = data['username']

 if dict_key_verify(data, 'comment_id'):

 self.obj.comment_id = data['comment_id']

 if dict_key_verify(data, 'items'):

 self.obj.columns = data['items']

 self.info = self.obj.get()

 def get_post(self, data=None):

 self.handle(self._get_post, data)

 return self.info, self.status

 def _get_post(self, data=None):

 if dict_key_verify(data, 'username'):

 if self.authorised('management', data['username'], "or"):

 self.obj.username = data['username']

 if dict_key_verify(data, 'post_id'):

 self.obj.post_id = data['post_id']

 if dict_key_verify(data, 'items'):

 self.obj.columns = data['items']

 self.info = self.obj.get_post()

 def get_permissions(self, data=None):

 self.handle(self._get_permissions, data)

 return self.info, self.status

 def _get_permissions(self, data=None):

 if dict_key_verify(data, 'username'):

 if self.authorised('management', lead_username=data['username'],

mode="or"):

 self.obj.username = data['username']

 if dict_key_verify(data, 'comment_id'):

 self.obj.comment_id = data['comment_id']

 self.info = self.obj.get_permissions()

 def set(self, data=None):

 self.handle(self._set, data)

 return self.info, self.status

 def _set(self, data=None):

 if dict_key_verify(data, 'username') and self.admin:

 self.obj.username = data['username']

 if dict_key_verify(data, 'post_id'):

 self.obj.post_id = data['post_id']

Jack Leverett 7714 50639

361

 self.obj.columns = list(data.keys())

 self.obj.set(data)

 def delete(self, data=None):

 self.handle(self._delete, data)

 return self.info, self.status

 def _delete(self, data=None):

 if dict_key_verify(data, 'username'):

 if self.authorised('management', lead_username=data['username'],

mode="or"):

 self.obj.username = data['username']

 if dict_key_verify(data, 'comment_id'):

 commenter_info = content_info.comment(comment_id=data['comment_id'],

items=['username']).get()

 if dict_key_verify(commenter_info, 'comments'):

 commenter_info = commenter_info['comments']

 if dict_key_verify(commenter_info, 'username'):

 commenter_username = commenter_info['username']

 if self.authorised('management', lead_username = com-

menter_username, mode="or"):

 self.obj.comment_id = data['comment_id']

 self.obj.delete()

class impression_handler(root_handler):

 def get(self, data=None):

 self.handle(self._get, data)

 return self.info, self.status

 def _get(self, data=None):

 if dict_key_verify(data, 'impression_id'):

 self.obj.impression_id = data['impression_id']

 if dict_key_verify(data, 'items'):

 self.obj.columns = data['items']

 self.info = self.obj.get()

 def get_comment(self, data=None):

 self.handle(self._get_content, data)

 return self.info, self.status

 def get_post(self, data=None):

 self.handle(self._get_content, data)

 return self.info, self.status

 def _get_content(self, data=None):

 if dict_key_verify(data, 'username'):

 if authorised(level='management', lead_username=data['username'],

mode='or'):

Jack Leverett 7714 50639

362

 self.obj.username = data['username']

 if dict_key_verify(data, 'post_id'):

 self.obj.post_id = data['post_id']

 if dict_key_verify(data, 'comment_id'):

 self.obj.comment_id = data['comment_id']

 if dict_key_verify(data, 'items'):

 self.obj.columns = data['items']

 if dict_key_verify(data, 'types'):

 self.obj.types = data['types']

 self.info = self.obj.get_content()

 def count(self, data=None):

 self.handle(self._count, data)

 return self.info, self.status

 def _count(self, data=None):

 if dict_key_verify(data, 'username'):

 if authorised(level='management', lead_username=data['username'],

mode='or'):

 self.obj.username = data['username']

 if dict_key_verify(data, 'impression_type'):

 self.obj.impression_type = data['impression_type']

 if dict_key_verify(data, 'post_id'):

 self.obj.post_id= data['post_id']

 if dict_key_verify(data, 'comment_id'):

 self.obj.comment_id = data['comment_id']

 self.info = self.obj.count(data)

 def set(self, data=None):

 self.handle(self._set, data)

 return self.info, self.status

 def _set(self, data=None):

 if dict_key_verify(data, 'username') and self.management:

 self.obj.username = data['username']

 if dict_key_verify(data, 'impression_type'):

 self.obj.impression_type = data['impression_type']

 if dict_key_verify(data, 'post_id'):

 self.obj.post_id= data['post_id']

 if dict_key_verify(data, 'comment_id'):

 self.obj.comment_id = data['comment_id']

 self.info = self.obj.set(data)

 def delete(self, data=None):

 self.handle(self._delete, data)

 return self.info, self.status

Jack Leverett 7714 50639

363

 def _delete(self, data=None):

 if dict_key_verify(data, 'impression_id'):

 self.obj.impression_id = data['impression_id']

 username = self.obj.get()['username']

 if self.is_leader(self.obj.id, username) or self.admin or self.manage-

ment:

 self.info = self.obj.delete(data)

class post_impression_handler(impression_handler):

 def __init__(self, sio, sid, session, min_level='admin', event_name='comment

impression event', *args, **kwargs):

 super().__init__(sio, sid, session, min_level=min_level,

event_name='event', *args, **kwargs)

 self.obj = content_info.post_impression(user_id=self.user_id)

class comment_impression_handler(impression_handler):

 def __init__(self, sio, sid, session, min_level='admin', event_name='comment

impression event', *args, **kwargs):

 super().__init__(sio, sid, session, min_level=min_level,

event_name='event', *args, **kwargs)

 self.obj = content_info.comment_impression(user_id=self.user_id)

class notification_handler(root_handler):

 def __init__(self, sio, sid, session, min_level='admin', event_name='notifica-

tion event', *args, **kwargs):

 super().__init__(sio, sid, session, min_level=min_level,

event_name=event_name, *args, **kwargs)

 self.obj = content_info.notification(user_id=self.user_id)

 def get(self, data=None):

 self.handle(self._get, data)

 return self.info, self.status

 def _get(self, data=None):

 if dict_key_verify(data, 'username') and self.management:

 self.obj.username = data['username']

 self.info = self.obj.get(data)

 if self.info:

 status("INFO", "Notification(s) successfully fetched", self.statface)

 else:

 status("FAIL", "Notification(s) unable to be fetched, something went

wrong", self.statface)

 def create(self, data=None):

 self.handle(self._create, data)

Jack Leverett 7714 50639

364

 return self.status

 def _create(self, data=None):

 allowed = False

 if dict_key_verify(data, 'target_id'):

 target_data = {'target_id': data['target_id']}

 target_info = self.obj.get_target_group(target_data)

 if target_info['type'] == "team" or "user":

 if self.is_leader(self.user_id, target_info['id']) or self.manage-

ment:

 allowed = True

 if allowed:

 self.obj.create(data)

 else:

 status("FAIL", "Unable to create notification, you are unauthorised for

this action", self.statface)

 def delete(self, data=None):

 self.handle(self._delete, data)

 return self.status

 def _delete(self, data=None):

 if dict_key_verify(data, 'username') and self.management:

 self.obj.username = data['username']

 self.obj.delete(data)

 def remove(self, data=None):

 self.handle(self._remove, data)

 return self.status

 def _remove(self, data=None):

 if dict_key_verify(data, 'username') and self.management:

 self.obj.username = data['username']

 if dict_key_verify(data, 'notification_id'):

 self.obj.notification_id = data['notification_id']

 self.obj.remove(data)

class post_slot_handler(root_handler):

 def __init__(self, sio, sid, session, min_level='admin', event_name='post slot

event', *args, **kwargs):

 super().__init__(sio, sid, session, min_level=min_level,

event_name=event_name, *args, **kwargs)

 self.obj = timestamp()

 def get(self, data=None):

 self.info = {'post_slot_start': None, 'post_slot_end': None, 'date': None}

Jack Leverett 7714 50639

365

 slot_data = self.obj.get_slot()

 if slot_data:

 self.info['post_slot_start'] = slot_data['start']

 self.info['post_slot_end'] = slot_data['end']

 self.info['date'] = self.obj.date

 status("INFO", "Successfully fetched post slot", self.statface)

 else:

 status("CRIT", "Unable to fetch post slot, something went wrong, please

contact administrator", self.statface)

 return self.info, self.status

class server(root_handler):

 def __init__(self, sio, sid, session, min_level='admin', event_name='post slot

event', *args, **kwargs):

 if sid:

 super().__init__(sio, sid, session, min_level=min_level,

event_name=event_name, *args, **kwargs)

 self.session = session

 self.clients = self.session.clients

 self.logged_in = self.session.logged_in

 try:

 # to handle for the case where the database hasnt been decrypted but an

internal shutdown has been called

 self.obj = content_info.notification()

 except:

 pass

 def _estimate_shutdown_time(self):

 estimate = (len(self.clients) - len(self.logged_in)) +

len(self.logged_in)*2 + 10

 return estimate

 def _notify_clients(self, shutdown_by):

 server_code = config_read("miscellaneous", "ServerCode")

 notif_data = {'target_id': "all-"+server_code, 'expire_after':shutdown_by-

timestamp().now-1, 'title': "Server Shutting Down", 'content': "Its recomended to

disconnect"}

 self.obj.create(notif_data)

 status("INFO", "Shutdown notifications sent", self.statface)

 def _shutdown_services(self):

 # the below is in the documentation but doesnt work

 #self.sio.shutdown()

 status("INFO", "Background user and server services shutdown", self.stat-

face)

Jack Leverett 7714 50639

366

 def _close_new_clients(self):

 self.session.accepting_clients = False

 status("INFO", "Server closed to new clients", self.statface)

 def _disconnect_clients(self):

 status("INFO", "Disconnecting clients, bye", self.statface)

 for client in self.clients:

 self.sio.disconnect(client)

 def shutdown(self, data=None):

 self.handle(self._shutdown, data)

 return self.info, self.status

 def _shutdown(self, data=None):

 log("WARN", "Server recieved shutdown signal")

 tasks = {'notifs': False, 'disconnect_clients': False ,'background_ser-

vices': False, 'close_new_clients': False}

 if dict_key_verify(data, "time"):

 shutdown_by = timestamp().now + float(data['time'])

 else:

 shutdown_by = timestamp().now + 30

 status("WARN", "No shutdown time was provided, shutting down in 30 sec-

onds", self.statface)

 estimate = self._estimate_shutdown_time()

 sent_notifs = False

 while timestamp().now < shutdown_by - estimate:

 if not tasks['notifs']:

 self._notify_clients(shutdown_by)

 tasks['notifs'] = True

 if timestamp().now <= shutdown_by - estimate*1.2 and tasks['back-

ground_services'] == True:

 self._shutdown_services()

 tasks['background_services'] = True

 self._close_new_clients()

 tasks['close_new_clients'] = True

 eventlet.sleep(1)

 status("WARN", "Beginning final shutdown process, disconnect client",

self.statface)

 if not tasks['background_services']:

 self._shutdown_services()

 if not tasks['close_new_clients']:

 self._close_new_clients()

Jack Leverett 7714 50639

367

 self._disconnect_clients()

 log("INFO", "Server finished pre-shutdown process calling stop")

 if config_read("database", "encrypt"):

 if not self.session.db_encrypted:

 db_encrpytion(self.session).encrypt()

 else:

 log("WARN", "Not encrypting database, database was never de-

crypted")

 #self.sio.shutdown()

 def internal_shutdown(self, data):

 self.statface = None

 self._shutdown(data)

class encryption_handler():

 def __init__(self, session):

 self.obj = db_encrpytion(session)

 self.session = session

 self.statface = None

 def decrypt(self, data=None):

 if data:

 success = self._decrypt(data)

 return success

 else:

 log("FAIL", "Could not decrypt database")

 return False

 def _decrypt(self, data):

 sss_enabled = config_read("database", "ShamirSecretSharing")

 flags = []

 if sss_enabled and dict_key_verify(data, "shares") and not dict_key_ver-

ify(data, "password"):

 flags = ["sss"]

 if dict_key_verify(data, "password") or ("sss" in flags):

 try:

 if dict_key_verify(data, "password"):

 password = int(data['password'])

 success = self.obj.decrypt(data, flags)

 if success:

 return True

 else:

 log("FAIL", "Something went wrong while decrypting the data-

base")

 except:

 log("FAIL", "Something went wrong with decrypting the database")

Jack Leverett 7714 50639

368

 return False

TESTING RBP

def test():

 pass

TESTING RBP

if __name__ == "__main__":

 test()

modules/handler/outgoing.py

from modules.data.config import read as config_read

import requests

def post_slot(sio, sid=None):

 if sid:

 sio.emit("post_slot", room=sid)

 else:

 sio.emit("post_slot")

def send_ntfy(sio, info, sid, username):

 url = config_read("notifications", "ntfyUrl")

 if url == "https://ntfy.example.com":

 return

 user_id = sio.get_session(sid)['id']

 nfty_topic = f"{username}-{user_id[:8]}"

 if url[-1] != "/":

 url = url + "/"

 message = info['message'].encode(encoding='utf-8')

 title = info['title']

 print(f"ntfy: {nfty_topic}")

 try:

 requests.post(f"{url}{ntfy_topic}", data=message, headers={"Title": title})

 except:

 log("WARN", "Notification server cannot be reached, ensure ntfy is up and

that the provided url is correct")

def send_notification(sio, info, sid=None, username=None):

 if sid:

 send_ntfy(sio, info, sid, username)

 sio.emit("notification", info, room=sid)

Jack Leverett 7714 50639

369

 else:

 sio.emit("notification", info)

modules/handler/tasks.py

import eventlet

from modules.track.logging import log

from modules.data.database import connect as db_connect

from modules.data.config import read as config_read

from modules.data.datetime import timestamp

from modules.handler import outgoing

from modules.user.content import notification

from modules.user.info import auth as auth_info

from modules.start.start import final_startup

def user_service(sio, sid):

 user_id = sio.get_session(sid)['id']

 db = db_connect()

 db.create(None)

 log("INFO", f"Starting user service for {user_id}")

 while True:

 eventlet.sleep(30)

 user_notification_service(db, sio, sid, user_id)

def user_notification_service(db_con, sio, sid, user_id):

 notifications = notification(user_id=user_id)

 notifications.columns = ['notification_id','title', 'content']

 username = auth_info(user_id=user_id).get()['username']

 notif_queue = notifications.get_unsent()['notifications']

 if notif_queue:

 for notif in notif_queue:

 outgoing.send_notification(sio, notif, sid, username)

 db_con.cur.execute("UPDATE notifications_sent SET time_sent = ?, sent =

? WHERE user_id = ? AND notification_id = ?", (timestamp().now, True, user_id, no-

tif['notification_id']))

 db_con.commit()

def post_time_notification():

 if timestamp().is_valid_time():

 log("INFO", "Sending post time notifications")

 post_time_limit = int(config_read('posts', 'posttimelimit'))

 title = "post-" + config_read('miscellaneous', 'ServerCode')

Jack Leverett 7714 50639

370

 content = f"you have {post_time_limit} minutes to post"

 target = "all-" + config_read('miscellaneous', 'ServerCode')

 # notifications has a sepcial code for sending notifications accross the

server

 # if the target is set to "all-<unique server code>" the entire server is

notified

 notification_data = {'title': title, 'content': content, 'target_id': tar-

get, "expire_after": post_time_limit*60}

 notification().create(notification_data)

 notification_created = True

 log("INFO", "Sent post time notifications")

 else:

 notification_created = False

 return notification_created

def notification_remove(db_con):

 db_con.cur.execute("SELECT notification_id, time_created, expire_after FROM no-

tifications")

 rez = db_con.cur.fetchall()

 if rez:

 for notif in rez:

 if notif[1] + notif[2] < timestamp().now:

 notification(notification_id=notif[0]).delete()

def startup_notif():

 server_code = config_read('miscellaneous', 'servercode')

 notif_data = {'target_id': "all-"+server_code, 'title': "Server is up", 'con-

tent': "The server is now on and functioning", 'expire_after': 180}

 notification().create(notif_data)

def server_service(session):

 db = db_connect()

 db.create(None)

 log("INFO", f"Starting server background service")

 while session.mode != "normal":

 eventlet.sleep(1)

 log("INFO", "Server mode normal, continuing startup")

 final_startup(session)

 startup_notif()

 while True:

 # keeps the service running forever

 post_notification = False

 post_notif_title = "post-" + config_read('miscellaneous','ServerCode')

Jack Leverett 7714 50639

371

 db.cur.execute("SELECT time_created FROM notifications WHERE title=?",

(post_notif_title,))

 rez = db.cur.fetchall()

 if rez:

 for notif in rez:

 if timestamp().start < notif[0] and timestamp().end > notif[0]:

 post_notification = True

 today_end = timestamp().end

 while timestamp().now < today_end:

 # keeps running this loop until the end of the day then it returns to

the while above on the start of the new day

 #print(f"now: {timestamp().now}")

 eventlet.sleep(10)

 # removes expired notifications

 notification_remove(db)

 if not post_notification:

 post_notification = post_time_notification()

modules/start/start.py

from modules.data.database import create as db_create

from modules.data.database import encryption

from modules.data.config import read as config_read

from modules.track.logging import log

import os

def main(session):

 create_directories()

 log("INFO", "Ensuring server directories")

 from modules.data.config import create as config_create

 log("INFO", "Ensuring config file")

 config_create()

 log("INFO", "Ensuring database")

 db_create().tables()

 if session.db_encrypted:

 log("INFO", "Checking encryption")

 encryption(session).mode()

def final_startup(session):

 from modules.data.datetime import timestamp as datetime_timestamp

Jack Leverett 7714 50639

372

 datetime_timestamp().generate_slot()

def create_directories():

 paths = ["data", "data/images"]

 if config_read("database", "ShamirSecretSharing"):

 paths = ["data", "data/images", "data/shares/"]

 for path in paths:

 if not os.path.exists(path):

 os.mkdir(path)

 log("INFO", f"Created new directory: {path}")

if __name__ == "__main__":

 main()

modules/track/logging.py

from datetime import datetime

from os.path import exists

class log():

 def __init__(self, level, message):

 if not hasattr(self, "message_type"):

 self.message_type = "log"

 self.time = datetime.utcnow().strftime("%Y-%m-%dT%H:%M:%SZ")

 self.level = level

 self.message = message

 self.path = "data/log.txt"

 if self.message_type == "log":

 self._create()

 def log_file_exist(self):

 file_exists = exists(self.path)

 return file_exists

 def create(self):

 # here for legacy support

 # old version required a specific call to log(*info).create

 # this has since been revambed

 pass

 def _create(self, log_string=None):

 if not log_string:

 log_string = f"{self.time} | {self.level} | {self.message}"

 if not self.log_file_exist():

Jack Leverett 7714 50639

373

 with open(self.path, 'w') as log_file:

 log_file.write(f"{self.time} | INFO | Log file created at

'{self.path}'")

 else:

 with open(self.path, 'a') as log_file:

 log_file.write(log_string)

 self.output(log_string)

 def read(self, amount):

 with open(self.path, 'r') as log_file:

 entries = log_file.readlines()

 if amount == None:

 return entries

 entries = entries[len(entries)-amount:]

 return entries

 def output(self, log_string):

 if self.message_type == "log":

 print(log_string)

class status(log):

 def __init__(self, level, message, interface=None):

 self.message_type = "status"

 super().__init__(level, message)

 self.status = {"time":self.time, "level":self.level, "message":self.mes-

sage}

 if interface:

 self.interface = interface

 self.process()

 # LEGACY METHODS

 def status_update(self, obj):

 status = {"time":self.time, "level":self.level, "message":self.message}

 if obj != None:

 obj.status = status

 obj.status_string = f"{self.time} | {self.level} | {self.message}"

 return status

 @staticmethod

 def send_status(sio, sid, status):

 sio.emit('recv_status', status, room=sid)

 # LEGACY METHODS

 def process(self):

 self.__format()

 self.__object_update()

Jack Leverett 7714 50639

374

 self._create(self.log_string)

 self.interface.send_status(self.status)

 def __object_update(self):

 if self.interface.obj != None:

 self.interface.obj.status = self.status

 self.interface.obj.status_string = self.status_string

 def __format(self):

 self.status = {"time":self.time, "level":self.level, "message":self.mes-

sage}

 self.status_string = f"{self.time} | {self.level} | {self.message}"

 user_id = self.interface.user_id

 sid = self.interface.sid

 self.log_string = f"{self.time} | {self.level} | {self.interface.user_id} |

{self.message}"

class status_interface(log):

 def __init__(self, sio, sid, user_id="Unknown", obj=None):

 self.sio = sio

 self.sid = sid

 self.user_id = user_id

 self.obj = obj

 self.path = "data/actions_log.txt"

 def send_status(self, status):

 self.sio.emit('recv_status', status, room=self.sid)

def main():

 entry = logging("INFO", "test log creation")

 entry.path = "log.txt"

if __name__ == "__main__":

 main()

modules/user/content.py

from modules.user.info import table, auth

from modules.user.info import user_id as info_user_id

from modules.user.info import auth as info_auth

from modules.user.info import friend as info_friends

from modules.user.info import team as info_team

from modules.algorithms.uuid import generate as uuid_generate

from modules.algorithms.univ import dict_key_verify

Jack Leverett 7714 50639

375

from modules.data.config import read as config_read

from modules.data.database import connect as db_connect

from modules.data.datetime import timestamp

from modules.track.logging import status

from PIL import Image

import io

class user_content(table):

 def __init__(self, user_id=None, username=None, occupation_id=None,

team_id=None, comment_id=None, post_id=None, content=None, caption=None, *args,

**kwargs):

 if not self.allowed_columns:

 self.allowed_columns = ['post_id', 'content', 'caption', 'username',

'team_id', 'date']

 super().__init__(user_id=user_id, username=username, occupation_id=occupa-

tion_id, team_id=team_id, post_id=post_id, content=content)

 self.post_id = post_id

 self.comment_id = comment_id

 self.content = content

 self.caption = caption

 @property

 def id(self):

 return self._id

 @id.setter

 def id(self, value):

 if type(value) == str:

 self.cur.execute("SELECT username FROM auth_credentials WHERE user_id =

?", (value,))

 if self.cur.fetchone():

 self.cur.execute("SELECT post_id FROM posts WHERE user_id=? AND

date=?", (value, self.date))

 rez = self.cur.fetchone()

 if rez:

 self.post_id = rez[0]

 else:

 value = None

 else:

 value = None

 self._id = value

 @property

 def post_id(self):

 return self._post_id

Jack Leverett 7714 50639

376

 @post_id.setter

 def post_id(self, value):

 self.cur.execute("SELECT content FROM posts WHERE post_id = ?", (value,))

 if not self.cur.fetchone():

 value = None

 self._post_id = value

 @property

 def comment_id(self):

 return self._comment_id

 @comment_id.setter

 def comment_id(self, value):

 self.cur.execute("SELECT content FROM comments WHERE comment_id=?",

(value,))

 if not self.cur.fetchone():

 value = None

 self._comment_id = value

 @property

 def occupation_id(self):

 return self._occupation_id

 @occupation_id.setter

 def occupation_id(self, value):

 team_value = None

 self.cur.execute("SELECT name FROM occupations WHERE occupation_id = ?",

(value,))

 if not self.cur.fetchone():

 value = None

 else:

 self.cur.execute("SELECT team_id FROM teams WHERE occupation_id = ?",

(value,))

 rez = self.cur.fetchone()

 if rez:

 team_value = rez[0]

 self.team_id = team_value

 self._occupation_id = value

 @property

 def content(self):

 return self._content

 @content.setter

 def content(self, value):

 if type(value) != str:

 value = None

 self._content = value

Jack Leverett 7714 50639

377

class post(user_content):

 @property

 def caption(self):

 return self._caption

 @caption.setter

 def caption(self, value):

 if type(value) != str:

 value = None

 self._caption = value

 @property

 def content(self):

 return self._content

 @content.setter

 def content(self, value):

 image_formats = ['png', 'jpg']

 for form in image_formats:

 try:

 save_path = f"data/images/post_{self.id}_{self.date}.{form}"

 with Image.open(io.BytesIO(value)) as recieved:

 recieved.save(save_path)

 break

 except:

 save_path = None

 self._content = save_path

 def __init__(self, user_id=None, username=None, occupation_id=None,

team_id=None, post_id=None, content=None, caption=None, *args, **kwargs):

 self.allowed_columns = ['post_id', 'content', 'caption', 'username',

'date']

 super().__init__(user_id=user_id, username=username, occupation_id=occupa-

tion_id, team_id=team_id, post_id=post_id, content=content, caption=caption)

 def get_feed(self):

 info = {"posts": None}

 post_feeds = []

 friend_posts_info = self.get_friends()

 if dict_key_verify(friend_posts_info, "posts"):

 friend_posts = friend_posts_info['posts']

 post_feeds.append(friend_posts)

 status("INFO", "Succesfully fetched friends' post(s)", self.statface)

 team_posts_info = self.get_team()

 if dict_key_verify(team_posts_info, "posts"):

 team_posts = team_posts_info['posts']

 post_feeds.append(team_posts)

Jack Leverett 7714 50639

378

 status("INFO", "Succesfully fetched team's post(s)", self.statface)

 for post_feed in post_feeds:

 info = {"posts": []}

 for post in post_feed:

 info['posts'].append(post)

 return info

 def get(self):

 info = {"posts":{column: None for column in self.columns}}

 for column in self.columns:

 # gots per column for the sql querey instead of quereying every field

 # this is so we can add only what the user requests as their is no easy

way of identifying onces fetched from a result

 # without hte user of "magic numbers" anyway

 if column == "username":

 column = "user_id"

 self.cur.execute(f"SELECT {column} FROM posts WHERE post_id=?",

(self.post_id,))

 rez = self.cur.fetchone()

 append_item = rez[0]

 if rez:

 if column == "user_id":

 column = "username"

 append_item = auth(user_id=append_item).get()['username']

 elif column == "content":

 with open(append_item, "rb") as content:

 append_item = content.read()

 info["posts"][column] = append_item

 status("INFO", "Succesfully fetched {column} for requested post",

self.statface)

 else:

 status("FAIL", "Could not fetch post data, invalid data provided",

self.statface)

 else:

 status("WARN", "No post data requested to be fetched, check your in-

puts", self.statface)

 return info

 def get_memories(self):

 info = {"posts":None}

 self.cur.execute(f"SELECT post_id FROM posts WHERE user_id=?", (self.id,))

 rez = self.cur.fetchall()

Jack Leverett 7714 50639

379

 if rez:

 info = {"posts":[{column: None for column in self.columns} for post in

rez]}

 for i, post_details in enumerate(rez):

 post_info = post(post_id=post_details[0])

 post_info.columns = self.columns

 info['posts'][i] = post_info.get()['posts']

 status("INFO", "Succesfully fetched post memories", self.statface)

 elif self.id:

 status("WARN", "No memories exist", self.statface)

 if not self.id:

 status("FAIL", "Could not fetch memory data, invalid data provided or

none exist", self.statface)

 return info

 def get_user(self):

 info = {"posts":{column: None for column in self.columns}}

 self.cur.execute(f"SELECT post_id FROM posts WHERE user_id=? AND date=?",

(self.id, self.date))

 rez = self.cur.fetchone()

 if rez:

 post_info = post(post_id=rez[0])

 post_info.columns = self.columns

 info = post_info.get()

 status("INFO", "Post(s) Succesfully fetched", self.statface)

 else:

 info["posts"] = None

 status("WARN", "No post(s) exist for that user", self.statface)

 if not self.id or not self.date:

 info = None

 status("FAIL", "No posts fetched, invalid inputs", self.statface)

 return info

 def get_friends(self):

 info = {'posts':None}

 friends = info_friends(user_id=self.id).get()

 if dict_key_verify(friends, 'friends'):

 friends = friends['friends']

 info = {"posts":[{column: None for column in self.columns} for friend

in friends]}

 for i, friend in enumerate(friends):

Jack Leverett 7714 50639

380

 friend_info = post(username=friend['username'])

 friend_info.columns = self.columns

 data = friend_info.get_user()['posts']

 info["posts"][i] = data

 else:

 status("WARN", "Could not fetch friend(s) post(s), no friends ex-

ist", self.statface)

 else:

 status("WARN", "Could not fetch friend(s) post(s), no friends exist",

self.statface)

 if not self.id:

 info = None

 status("FAIL", "Could not fetch friend(s) post(s), invalid data pro-

vided", self.statface)

 else:

 status("INFO", "Succesfully fetched friend(s) post(s)", self.statface)

 return info

 def get_team(self):

 info = {"posts": None}

 members_data = info_team(user_id=self.id, username=self.username, occupa-

tion_id=self.occupation_id, team_id=self.team_id)

 members_info = members_data.get_members()

 if members_info:

 members = members_info['members']

 else:

 status("WARN", "Team posts unable to be fetched, no other team mem-

bers", self.statface)

 members = None

 info = None

 if members:

 info = {"posts":[{column: None for column in self.columns} for member

in members]}

 for i, member in enumerate(members):

 member_info = post(username=member['username'])

 member_info.columns = self.columns

 data = member_info.get_user()['posts']

 info['posts'][i] = data

 if not members_data.team_id:

 status("FAIL", "Team posts unable to be fetched, invalid data pro-

vided", self.statface)

Jack Leverett 7714 50639

381

 info = None

 else:

 status("INFO", "Team posts Succesfully fetched", self.statface)

 else:

 status("WARN", "Team posts unable to be fetched, no team members pro-

vided", self.statface)

 return info

 def get_permissions(self):

 info = {"delete": False, "edit": False}

 subject = info_auth(user_id=self.id, items=['level', 'username']).get()

 if subject['level'] == "management" or subject['level'] == "admin":

 info['delete'] = True

 if subject['level'] == "admin":

 info['edit'] = True

 target_info = post(post_id=self.post_id, items=['username']).get()

 if dict_key_verify(target_info, 'username'):

 target_username = target_info['username']

 if subject['username'] == target_username:

 info['delete'] = True

 target_team_info = info_team(username=target_username).get_leaders()

 if dict_key_verify(target_team_info, 'leaders'):

 target_leaders = target_team_info['leaders']

 if subject['username'] in target_leaders:

 info['delete'] = True

 if not self.id or not self.post_id:

 info = None

 status("FAIL", "Permissions could not be fetched, invalid data pro-

vided", self.statface)

 else:

 status("INFO", "Permissions succesfully fetched", self.statface)

 return info

 def set(self, data=None):

 self.content = data['content']

 self.caption = None

 caption_intended = False

 if dict_key_verify(data, 'caption'):

 caption_intended = True

 if len(data['caption']) <= 100:

 self.caption = data['caption']

Jack Leverett 7714 50639

382

 post_id = uuid_generate()

 valid_time = timestamp().is_valid_time()

 self.cur.execute("SELECT post_id FROM posts WHERE user_id=? AND date=?",

(self.id, self.date))

 if not self.cur.fetchone() and valid_time and ((caption_intended and

self.caption) or (not caption_intended and not self.caption)):

 self.cur.execute("INSERT INTO posts (post_id, user_id, content, cap-

tion, date) VALUES (?, ?, ?, ?, ?)", (post_id, self.id, self.content, self.caption,

self.date))

 self.db.commit()

 status("INFO", "Post successfully created", self.statface)

 else:

 status("FAIL", "Post could not be created, invalid data provided",

self.statface)

 def delete(self):

 if self.id and self.date:

 self.cur.execute("SELECT post_id FROM posts WHERE user_id=? AND

date=?", (self.id, self.date))

 rez = self.cur.fetchone()

 if rez and not self.post_id:

 self.post_id = rez[0]

 if self.post_id:

 self.cur.execute("DELETE FROM posts WHERE post_id=?", (self.post_id,))

 self.db.commit()

 status("INFO", "Post successfully deleted", self.statface)

 else:

 status("FAIL", "Post could not be deleted, invalid data provided",

self.statface)

 def _sort(self, posts):

 for post in posts:

 if dict_key_verify(post, "post_id"):

 num_likes = post_impressions(post_id=post['post_id']).count()

 post['impression_count'] = num_likes

 if len(posts) < 2:

 return posts

 mid = len(posts) // 2

 return __merge(

 left=_sort(posts[:mid]),

 right=_sort(posts[mid:]))

Jack Leverett 7714 50639

383

 def __merge(self, left, right):

 if len(left) == 0:

 return right

 if len(right) == 0:

 return left

 result = []

 index_left = index_right = 0

 while len(result) < len(left) + len(right):

 if left[index_left]['impression_count'] <= right[index_right]['impres-

sion_count']:

 result.append(left[index_left])

 index_left += 1

 else:

 result.append(right[index_right])

 index_right += 1

 if index_right == len(right):

 result += left[index_left:]

 break

 if index_left == len(left):

 result += right[index_right:]

 break

class comment(user_content):

 def __init__(self, user_id=None, username=None, occupation_id=None,

team_id=None, comment_id=None, post_id=None, content=None, *args, **kwargs):

 self.allowed_columns = ['comment_id','post_id','username','content']

 super().__init__(user_id=user_id, username=username, occupation_id=occupa-

tion_id, team_id=team_id, comment_id=comment_id, post_id=post_id, content=content)

 def get(self):

 info = {'comments':None}

 info['comments'] = {column: None for column in self.columns}

 for column in self.columns:

 if column == "username":

 column = "user_id"

 self.cur.execute(f"SELECT {column} FROM comments WHERE comment_id = ?",

(self.comment_id,))

 rez = self.cur.fetchone()

 if rez:

 comment_info = rez[0]

 if column == "user_id":

 column = "username"

 comment_info = auth(user_id=comment_info).get()['username']

 info['comments'][column] = comment_info

Jack Leverett 7714 50639

384

 else:

 status("FAIL", f"Comment {column} unable to be fetched, something

went wrong", self.statface)

 else:

 status("WARN", "No data requested to be fetched, check inputs",

self.statface)

 if not self.comment_id:

 info = None

 status("FAIL", "Comment unable to be fetched, invalid commentID pro-

vided", self.statface)

 else:

 status("INFO", "Succesfully fetched comment", self.statface)

 return info

 def get_post(self):

 info = {'comments':None}

 self.cur.execute("SELECT comment_id FROM comments WHERE post_id=?",

(self.post_id,))

 rez = self.cur.fetchall()

 if rez:

 info['comments'] = [{column: None for column in self.columns} for com-

ment in rez]

 for i, comment in enumerate(rez):

 self.comment_id = comment[0]

 data = self.get()

 info['comments'][i] = data['comments']

 else:

 status("WARN", "No comments related to requested post", self.stat-

face)

 else:

 status("FAIL", "Comment(s) unable to be fetched, something went wrong",

self.statface)

 if not self.post_id:

 info = None

 status("FAIL", "Comment(s) unable to be fetched, invalid commentID pro-

vided", self.statface)

 else:

 status("INFO", "Succesfully fetched comment(s)", self.statface)

 return info

 def get_permissions(self):

Jack Leverett 7714 50639

385

 info = {"delete": False, "edit": False}

 subject = info_auth(user_id=self.id, items=['level', 'username']).get()

 if subject['level'] == "management" or subject['level'] == "admin":

 info['delete'] = True

 if subject['level'] == "admin":

 info['edit'] = True

 target_info = comment(comment_id=self.comment_id, items=['username']).get()

 if dict_key_verify(target_info, 'username'):

 target_username = target_info['username']

 if subject['username'] == target_username:

 info['delete'] = True

 target_team_info = info_team(username=target_username).get_leaders()

 if dict_key_verify(target_team_info, 'leaders'):

 target_leaders = target_team_info['leaders']

 if subject['username'] in target_leaders:

 info['delete'] = True

 if not self.id or not self.comment_id:

 info = None

 status("FAIL", "Unable to get comment permissions, invalid user or com-

mentID provided", self.statface)

 else:

 status("INFO", "Succesfully fetched comment permissions", self.stat-

face)

 return info

 def set(self, data=None):

 comment_id = uuid_generate()

 if dict_key_verify(data, 'content'):

 self.content = data['content']

 if self.content and self.post_id and self.id:

 self.cur.execute("INSERT INTO comments (post_id, comment_id, user_id,

content) VALUES (?,?,?,?)", (self.post_id, comment_id, self.id, self.content))

 self.db.commit()

 status("INFO", "Succesfully created comment", self.statface)

 else:

 status("FAIL", "Could not create comment, invalid content, postID or

user provided", self.statface)

 def delete(self):

 if self.comment_id:

 self.cur.execute("DELETE FROM comments WHERE comment_id=?", (self.com-

ment_id,))

Jack Leverett 7714 50639

386

 self.db.commit()

 status("INFO", "Succesfully deleted comment", self.statface)

 else:

 status("FAIL", "Could not delete comment, invalid commendID provided",

self.statface)

class impression(user_content):

 # this class is inherited by post_impression and comment_impression

 # because of this it uses attributes for the table names and the table fields

 # they are baked into the sql string because these are NOT user defined and so

therefor there is no security risk baking it into a string

 @property

 def impression_id(self):

 return self._impression_id

 @impression_id.setter

 def impression_id(self, value):

 self.cur.execute(f"SELECT impression_id FROM {self.table_name} WHERE im-

pression_id = ?", (value,))

 if not self.cur.fetchone():

 value = None

 self._impression_id = value

 @property

 def impression_type(self):

 return self._impression_type

 @impression_type.setter

 def impression_type(self, value):

 if not value in self.types:

 value = None

 self._impression_type = value

 @property

 def table_name(self):

 return self._table_name

 @table_name.setter

 def table_name(self, value):

 if value != "post_impressions" and value != "comment_impressions":

 value = None

 self._table_name = value

 if value:

 self.attr_name = value.replace("impressions", "id")

 @property

 def attr_name(self):

 return self._attr_name

 @attr_name.setter

 def attr_name(self, value):

Jack Leverett 7714 50639

387

 if value != "post_id" and value != "comment_id":

 value = None

 self._attr_name = value

 if not self.table_name and value:

 self.table_name = value.replace("id", "impressions")

 @property

 def attr_id(self):

 return self._attr_id

 @attr_id.setter

 def attr_id(self, value):

 root_table = "comments"

 if self.attr_name:

 if "post" in self.attr_name:

 root_table = "posts"

 self.cur.execute(f"SELECT user_id FROM {root_table} WHERE

{self.attr_name} = ?", (value,))

 if not self.cur.fetchone():

 value = None

 else:

 value = None

 self._attr_id = value

 def __init__(self, user_id=None, username=None, comment_id=None, post_id=None,

impression_id=None, impression_type=None, table_name=None, attr_name=None,

attr_id=None, *args, **kwargs):

 if not hasattr(self, "allowed_columns"):

 self.allowed_columns = ['impression_id','username','type']

 super().__init__(user_id=user_id, username=username, post_id=post_id, com-

ment_id=comment_id)

 self.impression_id = impression_id

 if not hasattr(self, "types"):

 self.types = ['like']

 if not hasattr(self, "table_name"):

 self.table_name = table_name

 if not hasattr(self, "attr_name"):

 self.attr_name = attr_name

 if not hasattr(self, "attr_id"):

 self.attr_id = attr_id

 def get(self):

 info = {'impressions':None}

 info['impressions'] = [{column: None for column in self.columns}]

 for column in self.columns:

 if column == "username":

Jack Leverett 7714 50639

388

 column = "user_id"

 self.cur.execute(f"SELECT {column} FROM {self.table_name} WHERE impres-

sion_id=?", (self.impression_id,))

 rez = self.cur.fetchone()

 if rez:

 rez_info = rez[0]

 if column == "user_id":

 column = "username"

 rez_info = auth(user_id=rez_info,

items=['username']).get()['username']

 info['impressions'][0][column] = rez_info

 else:

 status("FAIL", f"Impression {column} could not be fetched, some-

thing went wrong", self.statface)

 else:

 status("WARN", "No data requested to be fetched, check inputs",

self.statface)

 if not self.impression_id:

 info = None

 status("FAIL", "Impressions could not be fetched, invalid impressionID

provided", self.statface)

 else:

 status("INFO", "Impressions succesfully fetched", self.statface)

 return info

 def get_content(self):

 info = {'impressions': None}

 if self.attr_name:

 self.cur.execute(f"SELECT impression_id FROM {self.table_name} WHERE

user_id=? AND {self.attr_name}=?", (self.id,self.attr_id))

 rez = self.cur.fetchall()

 if rez:

 info['impressions'] = [{column: None for column in self.columns}

for impression_id in rez]

 for i, impression_id in enumerate(rez):

 impression_info = self.class_type()

 impression_info.impression_id = impression_id[0]

 impression_info.columns = self.columns

 impression_info = impression_info.get()['impressions'][0]

 info['impressions'][i] = impression_info

 else:

 status("WARN", "Post/comment has no impressions associated",

self.statface)

 else:

Jack Leverett 7714 50639

389

 status("WARN", "Impression(s) unable to be fetched, somethign went

wrong", self.statface)

 else:

 status("FAIL", "Impression(s) unable to be fetched, impression type un-

specified", self.statface)

 if not self.attr_id:

 info = None

 status("FAIL", "Impression(s) unable to be fetched, invalid post/com-

ment ID provided", self.statface)

 else:

 status("INFO", "Succesfully fetched impression(s)", self.statface)

 return info

 def count(self, data=None):

 info = {'impression_count': 0}

 if dict_key_verify(data, "impression_type") and not self.impression_type:

 self.impression_type = data['impression_type']

 if self.impression_type:

 self.cur.execute(f"SELECT COUNT(*) FROM {self.table_name} WHERE type =

? AND {self.attr_name} = ?", (self.impression_type,self.attr_id))

 rez = self.cur.fetchall()

 if rez:

 info['impression_count'] = rez[0][0]

 status("INFO", "Succesfully fetched impression count", self.stat-

face)

 else:

 status("FAIL", "Impression count unable to be fetched, something

went wrong", self.statface)

 else:

 info = None

 status("FAIL", "Impression count unable to be fetched, invalid impres-

sion type", self.statface)

 return info

 def set(self, data=None):

 if dict_key_verify(data, "impression_type"):

 self.impression_type = data['impression_type']

 impression_id = uuid_generate()

 exists = False

Jack Leverett 7714 50639

390

 self.cur.execute(f"SELECT type FROM {self.table_name} WHERE user_id=? AND

type=? AND {self.attr_name}=?", (self.id, self.impression_type, self.attr_id))

 if self.cur.fetchone():

 exists = True

 else:

 status("WARN", "Impression from this user of this type already exists

on this content", self.statface)

 if self.impression_type and self.id and self.attr_id:

 if not exists:

 self.cur.execute(f"INSERT INTO {self.table_name} (impression_id,

{self.attr_name}, user_id, type) VALUES (?, ?, ?, ?)", (impression_id,

self.attr_id, self.id , self.impression_type))

 self.db.commit()

 status("INFO", "Impression succesfully created", self.statface)

 else:

 status("FAIL", "Impression unable to be created, impression already

exists", self.statface)

 else:

 status("FAIL", "Impression unable to be created, invalid impression

type, user or post/comment ID provided", self.statface)

 def delete(self, data=None):

 if dict_key_verify(data, "impression_id"):

 self.impression_id = data['impression_id']

 if self.impression_id:

 self.cur.execute(f"DELETE FROM {self.table_name} WHERE impres-

sion_id=?", (self.impression_id,))

 self.db.commit()

 status("INFO", "Succesfully deleted impression", self.statface)

 else:

 status("FAIL", "Impression unable to be deleted, invalid impression ID

provided", self.statface)

class post_impression(impression):

 def __init__(self, user_id=None, username=None, post_id=None, impres-

sion_type=None, *args, **kwargs):

 self.allowed_columns = ['impression_id','post_id','username','type']

 self.types = ['like']

 self.table_name = "post_impressions"

 self.class_type = post_impression

 super().__init__(user_id=user_id, username=username, post_id=post_id, im-

pression_type=impression_type)

 if self.post_id:

 self.attr_id = self.post_id

Jack Leverett 7714 50639

391

 @property

 def post_id(self):

 return self._post_id

 @post_id.setter

 def post_id(self, value):

 self.cur.execute("SELECT content FROM posts WHERE post_id = ?", (value,))

 if not self.cur.fetchone():

 value = None

 self._post_id = value

 self.attr_id = value

 def get_post(self):

 info = self.get_content()

 return info

class comment_impression(impression):

 def __init__(self, user_id=None, username=None, comment_id=None, impres-

sion_type=None, *args, **kwargs):

 self.types = ['like']

 self.table_name = "comment_impressions"

 self.allow_columns = ['impression_id','comment_id','username','type']

 self.class_type = comment_impression

 super().__init__(user_id=user_id, username=username, comment_id=comment_id,

impression_type=impression_type)

 if self.comment_id:

 self.attr_id = self.comment_id

 def get_comment(self):

 info = self.get_content()

 return info

 @property

 def comment_id(self):

 return self._comment_id

 @comment_id.setter

 def comment_id(self, value):

 self.cur.execute("SELECT content FROM comments WHERE comment_id=?",

(value,))

 if not self.cur.fetchone():

 value = None

 self._comment_id = value

 self.attr_id = value

class notification(table):

 @property

Jack Leverett 7714 50639

392

 def notification_id(self):

 return self._notification_id

 @notification_id.setter

 def notification_id(self, value):

 self.cur.execute("SELECT notification_id FROM notifications WHERE notifica-

tion_id=?", (value,))

 if not self.cur.fetchone():

 value = None

 self._notification_id = value

 @property

 def target_id(self):

 return self._target_id

 @target_id.setter

 def target_id(self, value):

 self.cur.execute("SELECT user_id FROM auth_credentials WHERE user_id=?",

(value,))

 user = self.cur.fetchone()

 self.cur.execute("SELECT team_id FROM teams WHERE team_id=?", (value,))

 team = self.cur.fetchone()

 if value == "all-" + self.server_code:

 all_server = True

 else:

 all_server = False

 level = value in ['member', 'management', 'admin']

 if not (user or team or all_server or level):

 value = None

 self._target_id = value

 @property

 def title(self):

 return self._title

 @title.setter

 def title(self, value):

 if type(value) != str:

 value = None

 self._title = value

 @property

 def content(self):

 return self._content

 @content.setter

 def content(self, value):

 if type(value) != str:

 value = None

 self._content = value

Jack Leverett 7714 50639

393

 @property

 def expire_after(self):

 return self._expire_after

 @expire_after.setter

 def expire_after(self, value):

 if type(value) != float and type(value) != int:

 value = None

 self._expire_after = value

 def __init__(self, user_id=None, username=None, notification_id=None, tar-

get_id=None, title=None, content=None, expire_after=None):

 self.allowed_columns = ['notification_id', 'target_id', 'title', 'content',

'time_created']

 super().__init__(user_id=user_id, username=username)

 self.notification_id = notification_id

 self.target_id = target_id

 self.title = title

 self.content = content

 self.expire_after = expire_after

 def get_target_group(self, data=None):

 # finds out the type of id thats been provided

 # below the list displays the types that can be provided

 info = {'type': None, 'id': None}

 types = ['server', 'user', 'team', 'level']

 # "server" means that everyone is the target for the notificaion

 if dict_key_verify(data, 'target_id'):

 self.target_id = data['target_id']

 if self.target_id:

 if self.target_id == "all-"+self.server_code:

 # "all-<server code>" is the unique way of identifying a notifica-

tion to the entire server

 # its structured this way to stop any collisions with a user who

might call themselves "all" or "server"

 # as such the server code (usually a string of numbers or 12345 by

default) is banned from use in usernames

 info = {'type': types[0], 'id': self.target_id}

 elif self.target_id in ['member', 'management', 'admin']:

 info = {'type': types[3], 'id': self.target_id}

 else:

 self.cur.execute("SELECT username FROM auth_credentials WHERE

user_id = ?", (self.target_id,))

 rez = self.cur.fetchone()

 if rez:

Jack Leverett 7714 50639

394

 username = auth(user_id=self.target_id).get()['username']

 info = {'type': types[1], 'id': username}

 self.cur.execute("SELECT name FROM teams WHERE team_id = ?",

(self.target_id,))

 rez = self.cur.fetchone()

 if rez:

 info = {'type': types[2], 'id': self.target_id}

 else:

 info = None

 return info

 def get_targets(self, data=None):

 # targets are the users that hte notifications should be sent to

 # targets can be specified on creation as a number of diffrent things, for

instance providing a team id allows the targeting of a team

 # its implicit meaning its the servers job to find out what type of ID the

user is providing

 info = {'targets': None}

 if dict_key_verify(data, 'target_id'):

 self.target_id = target_id

 if self.target_id:

 target_group = self.get_target_group(self)

 if target_group['type'] == "user":

 info['targets'] = [{'user_id':info_user_id(username=tar-

get_group['id']).get()['user_id']}]

 else:

 if target_group['type'] == "server":

 self.cur.execute("SELECT user_id FROM profile")

 elif target_group['type'] == "team":

 self.cur.execute("SELECT user_id FROM profile INNER JOIN teams

USING(occupation_id) WHERE team_id=?", (target_group['id'],))

 elif target_group['type'] == "level":

 self.cur.execute("SELECT user_id FROM auth_credentials WHERE

level=?", (target_group['id'],))

 rez = self.cur.fetchall()

 if rez:

 info['targets'] = [{'user_id':target[0]} for target in rez]

 else:

 # status message

 info = None

Jack Leverett 7714 50639

395

 return info

 def get_unsent(self, data=None):

 info = {'notifications': None}

 #self.cur.execute("SELECT notification_id FROM notifications_sent WHERE

user_id=? AND sent=?",(self.id, False))

 self.cur.execute("SELECT notification_id, time_created FROM notifications

INNER JOIN notifications_sent USING(notification_id) WHERE user_id=? AND sent=?",

(self.id, False))

 rez = self.cur.fetchall()

 if rez:

 info['notifications'] = []

 queued_notifs = self._sort_notifications(rez)

 for unsent in queued_notifs:

 notification_info = notification(notification_id=unsent)

 notification_info.columns = self.columns

 notif_data = notification_info.get_notification()['notifica-

tions'][0]

 info['notifications'].append(notif_data)

 if not self.id:

 info = None

 return info

 def _sort_notifications(self, notifs):

 for i in range(len(notifs)):

 if i < len(notifs)-2:

 if notifs[i][1] < notifs[i+1][1]:

 swap = notifs[i+1]

 notifs[i+1] = notifs[i]

 notifs[i] = swap

 notifs = [notif[0] for notif in notifs]

 return notifs

 def get(self, data=None):

 info = None

 if dict_key_verify(data, 'user_id'):

 self.id = data['user_id']

 if dict_key_verify(data, 'target_id'):

 self.target_id = data['target_id']

 if dict_key_verify(data, 'notification_id'):

 self.notification_id = data['notification_id']

Jack Leverett 7714 50639

396

 if self.notification_id:

 info = self.get_notification()

 elif self.id:

 info = self.get_user()

 else:

 status("WARN", "Unable to fetch notifications, must provide a valid

user or notification ID", self.statface)

 return info

 def get_user(self):

 info = {'notifications':None}

 self.cur.execute("SELECT notification_id FROM notifications_sent WHERE

user_id = ?", (self.id,))

 rez = self.cur.fetchall()

 if rez:

 info = {'notifications': []}

 # rez could be user_notifs

 for notif in rez:

 notif_id = notif[0]

 user_notification = notification(notification_id=notif_id)

 user_notification.columns = self.columns

 notification_info = user_notification.get_notification()['notifica-

tions'][0]

 info['notifications'].append(notification_info)

 else:

 status("WARN", "No notifications exist for this user", self.stat-

face)

 else:

 status("WARN", "No notifications exist for this user", self.statface)

 if not self.id:

 status("WARN", "Unable to fetch notifications, invalid user provided",

self.statface)

 info = None

 return info

 def get_group(self, data=None):

 info = {'notifications': None}

 if self.target_id:

 self.cur.execute("SELECT notification_id FROM notifications WHERE tar-

get_id=?", (self.target_id,))

 rez = self.cur.fetchall()

Jack Leverett 7714 50639

397

 if rez:

 info['notifications'] = [{column: None for column in self.columns}

for notif in rez]

 for i, notif in enumerate(rez):

 notification_info = notification(notification_id=notif[0])

 notification_info.columns = self.columns

 notif_data = notification_info.get_notification()['notifica-

tions'][0]

 info['notifications'][i] = notif_data

 else:

 # status message

 info = None

 return None

 def get_notification(self, data=None):

 info = {'notifications': None}

 info['notifications'] = [{column: None for column in self.columns}]

 if self.notification_id:

 for column in self.columns:

 self.cur.execute(f"SELECT {column} FROM notifications WHERE notifi-

cation_id = ?", (self.notification_id,))

 rez = self.cur.fetchone()

 if rez:

 info_item = rez[0]

 if column == "target_id":

 info_item = self.get_target_group({'target_id':

info_item})['id']

 info['notifications'][0][column] = rez[0]

 else:

 status("WARN", "Notification {column} unable to be fetched,

something went wrong", self.statface)

 else:

 status("WARN", "No data requested to be fetched, check inputs",

self.statface)

 else:

 info = None

 status("WARN", "Notification unable to be fetched, invalid notification

ID provided", self.statface)

 return info

 def load_notification(self, data=None):

 # loads notifications into the "notification_sent" table. This is where no-

tifications are queued for sending when their target next logs in

 if dict_key_verify(data, 'notification_id'):

 self.notification_id = data['notification_id']

Jack Leverett 7714 50639

398

 if self.notification_id:

 notification_info = notification(notification_id=self.notification_id)

 notification_data = notification_info.get_notification()['notifica-

tions'][0]

 notification_info.target_id = self.target_id

 target_data = notification_info.get_targets()['targets']

 if target_data:

 for target in target_data:

 self.cur.execute("INSERT INTO notifications_sent (notifica-

tion_id, user_id) VALUES (?, ?)", (self.notification_id, target['user_id']))

 self.db.commit()

 def create(self, data=None):

 if dict_key_verify(data, 'target_id'):

 self.target_id = data['target_id']

 if dict_key_verify(data, 'title'):

 self.title = data['title']

 if dict_key_verify(data, 'content'):

 self.content = data['content']

 if dict_key_verify(data, 'expire_after'):

 self.expire_after = data['expire_after']

 notification_id = uuid_generate()

 time_created = timestamp().now

 if self.title and self.target_id:

 if not self.content:

 self.content = self.title

 status("WARN", "No notification content provided, setting content

to title", self.statface)

 if not self.expire_after:

 self.expire_after = float(config_read(section="notifications",

key="defaultexpiretime"))

 status("WARN", "No notification expire after time provided, setting

to default", self.statface)

 self.cur.execute("INSERT INTO notifications (notification_id, tar-

get_id, title, content, time_created, expire_after) VALUES (?, ?, ?, ?, ?, ?)",

(notification_id, self.target_id, self.title, self.content, time_created, self.ex-

pire_after))

 self.db.commit()

 status("INFO", "Notification successfully created", self.statface)

 pre_load_notification_id = self.notification_id

 self.load_notification({'notification_id': notification_id})

 self.notification_id = pre_load_notification_id

Jack Leverett 7714 50639

399

 else:

 status("FAIL", "Unable to create notification, invalid title or target

ID provided", self.statface)

 def delete(self, data=None):

 if dict_key_verify(data, 'target_id'):

 self.target_id = data['target_id']

 if dict_key_verify(data, 'notification_id'):

 self.notification_id = data['notification_id']

 if self.notification_id:

 self.delete_notification(data)

 elif self.target_id:

 self.delete_group(data)

 elif self.id:

 self.delete_user(data)

 else:

 status("FAIL", "Unable to delete notification, invalid user or tar-

get/notification ID provided", self.statface)

 def delete_user(self, data=None):

 if self.id:

 self.cur.execute("SELECT notification_id FROM notifications_sent WHERE

user_id=?", (self.id,))

 rez = self.cur.fetchall()

 if rez:

 for notif in rez:

 notification_info = notification()

 notification_info.delete_notification({'notification_id':no-

tif[0]})

 else:

 status("WARN", "User has no notifications to be deleted",

self.statface)

 else:

 status("FAIL", "Unable to delete notification(s), something went

wrong", self.statface)

 else:

 status("FAIL", "Unable to delete notification(s), invalid user pro-

vided", self.statface)

 def delete_group(self, data=None):

 if self.target_id:

 self.cur.execute("SELECT notification_id FROM notifications WHERE tar-

get_id=?", (self.target_id,))

 rez = self.cur.fetchall()

Jack Leverett 7714 50639

400

 if rez:

 for notif in rez:

 notification_info = notification(notification_id=notif[0])

 notification_info.delete_notification()

 else:

 status("WARN", "Target(s) have no notifications to be deleted",

self.statface)

 else:

 status("FAIL", "Notification(s) unable to be deleted somethign went

wrong", self.statface)

 else:

 status("FAIL", "Notification(s) unable to be deleted, invalid target ID

provided", self.statface)

 def delete_notification(self, data=None):

 if self.notification_id:

 self.cur.execute("DELETE FROM notifications_sent WHERE notifica-

tion_id=?", (self.notification_id,))

 self.db.commit()

 status("INFO", "Succesfully deleted notification", self.statface)

 else:

 status("FAIL", "Unable to delete notification, invali notification ID

provided", self.statface)

 def remove(self, data=None):

 if self.notification_id:

 self.cur.execute("DELETE FROM notifications_sent WHERE user_id = ? AND

notification_id=?", (self.id, self.notification_id,))

 self.db.commit()

 status("INFO", "Notification successfully removed", self.statface)

 else:

 status("FAIL", "Notification unable to be removed, invalid notification

ID provided", self.statface)

modules/user/generate.py

This will essentially run one a successful registration happens

This could become a class or function in the user_info file

Since this file is essentially just going to be using that one

However it will also create some of its own database entries

import sqlite3

from modules.data.config import read as config_read

from modules.data.database import connect as db_connect

from modules.algorithms.uuid import generate as uuid_generate

Jack Leverett 7714 50639

401

from modules.algorithms.uuid import long_hash as hash_string

from modules.user import info

db = db_connect()

db.create(None)

cur = db.cur

def auth_credentials(user_id, username, password, level):

 cur.execute("INSERT INTO auth_credentials (user_id, username, password, level)

VALUES (?, ?, ?, ?)", (user_id, username, password, level))

 return user_id

def profile(user_id):

 cur.execute("INSERT INTO profile (user_id) VALUES (?)", (user_id,))

 occupation_id = config_read("user", "DeafultOccupation")

 # finds wether or not the occupation_id exists

 cur.execute("SELECT name FROM occupations WHERE occupation_id = ?", (occupa-

tion_id,))

 rez = cur.fetchone()

 if rez:

 info.occupation(user_id).set({"occupation_id":occupation_id})

def team(user_id, name="friends"):

 team_id = uuid_generate()

 cur.execute("INSERT INTO teams (team_id, name, user_id) VALUES (?, ?, ?)",

(team_id, name, user_id))

 cur.execute("INSERT INTO team_leaders (team_id, user_id) VALUES (?, ?)",

(team_id, user_id))

def main(username, password, level):

 user_id = uuid_generate()

 password_hash = hash_string(password + user_id)

 auth_credentials(user_id, username, password_hash, level)

 profile(user_id)

 team(user_id)

 db.commit()

 return user_id

Jack Leverett 7714 50639

402

if __name__ == "__main__":

 main("test_user", "test_password")

modules/user/info.py

from modules.track.logging import log, status

from modules.data.config import read as config_read

from modules.data.database import retrieve

from modules.data.database import connect as db_connect

from modules.data.datetime import timestamp

from modules.algorithms.uuid import generate as uuid_generate

from modules.algorithms.univ import dict_key_verify

from modules.algorithms.recomend import recomend_friend

class table():

 def __init__(self, user_id=None, username=None, occupation_id=None, al-

lowed_columns=None, *args, **kwargs):

 self.statface = None

 self.db = db_connect()

 self.db.create(self)

 self.id = user_id

 self.username = username

 self.occupation_id = occupation_id

 if not self.allowed_columns:

 self.allowed_columns = allowed_columns

 self.columns = self.allowed_columns

 self.server_code = config_read('miscellaneous', 'servercode')

 @property

 def id(self):

 return self._id

 @id.setter

 def id(self, value):

 if type(value) == str:

 self.cur.execute("SELECT username FROM auth_credentials WHERE user_id =

?", (value,))

 if not self.cur.fetchone():

 value = None

 else:

 value = None

 self._id = value

 @property

 def username(self):

Jack Leverett 7714 50639

403

 return self._username

 @username.setter

 def username(self, value):

 self.cur.execute("SELECT user_id FROM auth_credentials WHERE username = ?",

(value,))

 if not self.cur.fetchone():

 value = None

 self._username = value

 if value:

 u_id = user_id(username=value).get()['user_id']

 if self.id != u_id:

 self.id = u_id

 @property

 def occupation_id(self):

 return self._occupation_id

 @occupation_id.setter

 def occupation_id(self, value):

 self.cur.execute("SELECT name FROM occupations WHERE occupation_id = ?",

(value,))

 if not self.cur.fetchone():

 value = None

 self._occupation_id = value

 @property

 def team_id(self):

 return self._team_id

 @team_id.setter

 def team_id(self, value):

 self.cur.execute("SELECT name FROM teams WHERE team_id = ?", (value,))

 if not self.cur.fetchone():

 value = None

 self._team_id = value

 @property

 def columns(self):

 return self._columns

 @columns.setter

 def columns(self, value):

 valid = []

 if type(value) == list:

 for column in value:

 if column in self.allowed_columns:

 valid.append(column)

Jack Leverett 7714 50639

404

 self._columns = valid

 @property

 def date(self):

 self._date = timestamp().date

 return self._date

 @date.setter

 def date(self, value):

 self._date = value

class user_id():

 def __init__(self, username=None, *args, **kwargs):

 self.username = username

 self.db = db_connect()

 self.db.create(self)

 def get(self):

 info = {'user_id':None}

 self.cur.execute(f"SELECT user_id FROM auth_credentials WHERE username =

?", (self.username,))

 rez = self.cur.fetchone()

 if rez:

 info = {"user_id":rez[0]}

 else:

 info = None

 return info

class auth(table):

 def __init__(self, user_id=None, username=None, *args, **kwargs):

 self.allowed_columns = ["username", "level"]

 super().__init__(user_id=user_id, username=username)

 def get(self):

 info = {}

 for column in self.columns:

 info[column] = None

 self.cur.execute(f"SELECT {column} FROM auth_credentials WHERE user_id

= ?", (self.id,))

 rez = self.cur.fetchone()

 if rez:

Jack Leverett 7714 50639

405

 info[column] = rez[0]

 if not self.id:

 status("FAIL", "Invalid username provided", self.statface)

 info = None

 else:

 status("INFO", "Authorisation info successfully fetched", self.stat-

face)

 return info

 def set(self, data):

 for column in self.columns:

 value = data[column]

 rez = None

 if column == 'username':

 # the select statement was here instead of update i have no idea

why

 # ive replaced it with an update since updating a username is com-

pletetly fine

 #self.cur.execute("SELECT username FROM auth_credentials WHERE

username = ?", (value,))

 self.cur.execute("UPDATE auth_credentials SET username = ? WHERE

user_id = ?", (value, self.id))

 status("INFO", "Successfully changed username", self.statface)

 if column == 'level':

 self.cur.execute("UPDATE auth_credentials SET level = ? WHERE

user_id = ?", (value ,self.id))

 status("INFO", "Successfully changed level", self.statface)

 self.db.commit()

V RBP: I think this is depricated and no longer in use

class level(auth):

 def __init__(self, user_id):

 super().__init__(user_id=user_id)

 self.columns = ["level"]

^ RBP: I think this is depricated and no longer in use

class team(table):

 def __init__(self, user_id=None, username=None, occupation_id=None,

team_id=None, *args, **kwargs):

 self.allowed_columns = ['team_id', 'name', 'occupation_id', 'user_id']

 super().__init__()

 if user_id:

 self.id = user_id

Jack Leverett 7714 50639

406

 if username:

 self.username = username

 if occupation_id:

 self.occupation_id = occupation_id

 if team_id:

 self.team_id = team_id

 @property

 def id(self):

 return self._id

 @id.setter

 def id(self, value):

 occupation_value = None

 self.cur.execute("SELECT username FROM auth_credentials WHERE user_id = ?",

(value,))

 if not self.cur.fetchone():

 value = None

 else:

 self.cur.execute("SELECT occupation_id FROM profile WHERE user_id = ?",

(value,))

 rez = self.cur.fetchone()

 if rez:

 occupation_value = rez[0]

 self.occupation_id = occupation_value

 self._id = value

 @property

 def occupation_id(self):

 return self._occupation_id

 @occupation_id.setter

 def occupation_id(self, value):

 team_value = None

 self.cur.execute("SELECT name FROM occupations WHERE occupation_id = ?",

(value,))

 if not self.cur.fetchone():

 value = None

 else:

 self.cur.execute("SELECT team_id FROM teams WHERE occupation_id = ?",

(value,))

 rez = self.cur.fetchone()

 if rez:

 team_value = rez[0]

 self.team_id = team_value

 self._occupation_id = value

Jack Leverett 7714 50639

407

 def get(self):

 info = {column: None for column in self.columns}

 for column in self.columns:

 self.cur.execute(f"SELECT {column} FROM teams WHERE team_id = ?",

(self.team_id,))

 rez = self.cur.fetchone()

 if rez:

 info[column] = rez[0]

 if not all(info.values()) and not(self.team_id):

 info = None

 status("FAIL", "Team data could not be fetched, invalid data provided",

self.statface)

 else:

 status("INFO", "Team data successfully fetched", self.statface)

 return info

 def get_all(self):

 info = {'teams': None}

 for column in self.columns:

 self.cur.execute(f"SELECT {column} FROM teams WHERE user_id IS NULL")

 rez = self.cur.fetchall()

 if rez:

 if not info['teams']:

 info['teams'] = [{} for i in range(len(rez))]

 for i, items in enumerate(rez):

 info['teams'][i][column] = items[0]

 status("INFO", "Team(s) successfully fetched", self.statface)

 else:

 status("FAIL", "Team(s) could not be fetched, something went

wrong", self.statface)

 return info

 def get_members(self):

 info = {'members': None}

 self.cur.execute("""SELECT auth_credentials.username FROM auth_credentials

 INNER JOIN profile USING(user_id)

 CROSS JOIN teams ON profile.occupation_id = teams.occupation_id

 WHERE teams.team_id=?""", (self.team_id,))

 rez = self.cur.fetchall()

 if rez:

 info['members'] = [{'username': member[0]} for member in rez]

Jack Leverett 7714 50639

408

 status("INFO", "Team members successfully fetched", self.statface)

 if not self.team_id:

 status("FAIL", "Team members could not be fetched, invalid data pro-

vided")

 info = None

 return info

 def get_leaders(self):

 info = {'leaders': None}

 self.cur.execute("SELECT user_id FROM team_leaders WHERE team_id = ?",

(self.team_id,))

 rez = self.cur.fetchall()

 if rez:

 info['leaders'] =

[{'username':(auth(user_id=user_id).get())['username'] for user_id in leader} for

leader in rez]

 status("INFO", "Team leaders successfully fetched", self.statface)

 else:

 status("FAIL", "Team leaders could not be fetched, invalid data pro-

vided", self.statface)

 return info

 def set(self, data):

 for column in self.columns:

 if column == "name" and dict_key_verify(data, 'name'):

 self.cur.execute("UPDATE teams SET name=? where team_id=?",

(data['name'] ,self.team_id))

 self.db.commit()

 status("INFO", "Team data successfully changed", self.statface)

 if dict_key_verify(data, 'leaders'):

 current_leaders = (self.get_leaders())['leaders']

 for leader in data['leaders']:

 exists = False

 if current_leaders:

 for current_leader in current_leaders:

 if current_leader['username'] == leader['username']:

 exists = True

 if not exists:

 self.cur.execute("SELECT user_id FROM auth_credentials

WHERE username = ?", (leader['username'],))

Jack Leverett 7714 50639

409

 info = user_id(username=leader['username']).get()

 if info:

 self.cur.execute("INSERT INTO team_leaders (user_id,

team_id) VALUES (?, ?)", (info['user_id'], self.team_id))

 self.db.commit()

 status("INFO", "New leader successfully added to team",

self.statface)

 else:

 status("FAIL", "Leader not set, user does not exist",

self.statface)

 else:

 status("WARN", "This user already exists as a leader of the

team", self.statface)

 def delete_leaders(self, data):

 leaders = data['leaders']

 current_leaders = self.get_leaders()['leaders']

 if type(leaders) == str:

 leaders = [leaders]

 for leader in leaders:

 exists = False

 if current_leaders:

 for current_leader in current_leaders:

 if current_leader['username'] == leader['username']:

 exists = True

 if exists:

 self.cur.execute("DELETE FROM team_leaders WHERE user_id=? AND

team_id=?", (user_id(username=leader['username']).get()['user_id'],self.team_id,))

 self.db.commit()

 status("INFO", "User {leader['username']} removed as a leader from

this team", self.statface)

 else:

 status("WARN", "User {leader['username']} does not exist as a

leader of this team", self.statface)

class friend(table):

 @property

 def friend_username(self):

 return self._friend_username

 @friend_username.setter

 def friend_username(self, value):

 obj = friend(username=value)

 if not obj.username:

 value = None

 else:

Jack Leverett 7714 50639

410

 self.friend_id = user_id(username=value).get()['user_id']

 self._friend_username = value

 @property

 def friend_id(self):

 return self._friend_id

 @friend_id.setter

 def friend_id(self, value):

 obj = friend(user_id=value)

 if not obj.id:

 value = None

 self._friend_id = value

 @property

 def mode(self):

 return self._mode

 @mode.setter

 def mode(self, value):

 if value not in ['incoming', 'outgoing']:

 value = "incoming"

 self._mode = value

 def __init__(self, user_id=None, username=None, *args, **kwargs):

 self.allowed_columns = ['username', 'friend_username']

 self.mode = "outgoing"

 super().__init__(user_id=user_id, username=username)

 def get(self):

 info = {'friends':None}

 self.cur.execute("SELECT friend_id FROM friends WHERE user_id = ? AND ap-

proved = ?", (self.id, True))

 rez = self.cur.fetchall()

 info['friends'] = [auth(user_id=user[0]).get() for user in rez]

 if not self.id:

 info = None

 status("FAIL", "Friends not fetched, invalid data provided", self.stat-

face)

 else:

 status("INFO", "Friends successfully fetched", self.statface)

 return info

 def get_requests(self):

 info = {'requests': None}

Jack Leverett 7714 50639

411

 if self.mode == 'incoming':

 self.cur.execute("SELECT user_id FROM friends WHERE friend_id = ? AND

approved = ?", (self.id, False))

 else:

 self.cur.execute("SELECT friend_id FROM friends WHERE user_id = ? AND

approved = ?", (self.id, False))

 rez = self.cur.fetchall()

 if rez:

 users = [auth(user_id=user[0]).get()['username'] for user in rez]

 info['requests'] = users

 status("INFO", f"Successfully fetched {self.mode} friend request(s)",

self.statface)

 elif not self.id:

 status("FAIL", f"Could not fetch {self.mode} friend request(s), invalid

data provided", self.statface)

 info = None

 return info

 def get_recomendations(self, data):

 info = {'recomended': None}

 if dict_key_verify(data, 'amount') and isinstance(data['amount'], int):

 amount = data['amount']

 else:

 status("FAIL", "Could not fetch friend recomendation(s), invalid amount

provided or data is in wrong format", self.statface)

 return None

 depth = 3

 username = auth(user_id=self.id).get()['username']

 recomendations = recomend_friend(username, amount, depth)

 if recomendations:

 info['recomended'] = recomendations

 status("INFO", "Successfully fetched friend recomendations", self.stat-

face)

 else:

 status("FAIL", "Could not fetch friend recomendation(s), something went

wrong generating recomendation(s)", self.statface)

 return info

 def add_request(self, data):

 approved = False

 if dict_key_verify(data, 'friend_username'):

Jack Leverett 7714 50639

412

 self.friend_username = data['friend_username']

 friend_id = user_id(data['friend_username']).get()['user_id']

 if friend_id:

 # checks if the other person has added them as a friend

 # if so it accepts the other persons request and creates their own ap-

proved request

 self.cur.execute("SELECT user_id FROM friends WHERE friend_id = ? AND

user_id = ?", (self.id, friend_id))

 rez = self.cur.fetchone()

 if rez:

 self.cur.execute("UPDATE friends SET approved = True WHERE

friend_id = ? AND user_id = ?", (self.id, friend_id))

 approved = True

 # checks to see if this friend request already exists (wether accepted

or rejected)

 # if not then it makes a new unaproved friend request

 self.cur.execute("SELECT approved FROM friends WHERE user_id = ? AND

friend_id = ?", (self.id, friend_id))

 rez = self.cur.fetchone()

 if not rez:

 self.cur.execute("INSERT INTO friends (user_id, friend_id, ap-

proved) VALUES (?, ?, ?)", (self.id, friend_id, approved))

 status("INFO", "Friend request successfully created", self.stat-

face)

 elif rez[0] == False:

 status("WARN", "User already has an active friend request to this

user", self.statface)

 elif rez[0] == True:

 status("WARN", "User is already friends with other user",

self.statface)

 else:

 status("FAIL", "Could not create friend request, invalid data pro-

vided")

 self.db.commit()

 def approve_request(self, data):

 if dict_key_verify(data, 'friend_username'):

 self.friend_username = data['friend_username']

 self.cur.execute("SELECT approved FROM friends WHERE friend_id = ? AND

user_id = ?", (self.id, self.friend_id))

 rez = self.cur.fetchone()

 if rez:

 self.add_request(data)

 else:

Jack Leverett 7714 50639

413

 status("FAIL", "Friend request does not exist", self.statface)

 def reject_request(self, data):

 self.remove(data)

 def delete_request(self, data):

 self.remove(data)

 def remove(self, data):

 if dict_key_verify(data, 'friend_username'):

 self.friend_username = data['friend_username']

 if self.friend_id:

 self.cur.execute("DELETE FROM friends WHERE user_id = ? AND friend_id =

?", (self.id, self.friend_id))

 self.cur.execute("DELETE FROM friends WHERE friend_id = ? AND user_id =

?", (self.id, self.friend_id))

 status("INFO", "Friend/friend request successfully removed/rejected",

self.statface)

 else:

 status("FAIL", "Friend/friend request could not be removed/rejected,

invalid data provided", self.statface)

 self.db.commit()

class profile(table):

 @property

 def target_username(self):

 return self._target_username

 @target_username.setter

 def target_username(self, value):

 prof = profile(username=value)

 if not prof.username:

 value = None

 self._target_username = value

 def __init__(self, user_id=None, username=None, *args, **kwargs):

 self.allowed_columns = ["biography", "role", "name", "occupation_id"]

 super().__init__(user_id=user_id, username=username)

 def get(self):

 info = {}

 for column in self.columns:

 info[column] = None

Jack Leverett 7714 50639

414

 self.cur.execute(f"SELECT {column} FROM profile WHERE user_id = ?",

(self.id,))

 rez = self.cur.fetchone()

 if rez:

 info[column] = rez[0]

 if not self.id:

 status("FAIL", "Invalid username provided profile unable to be

fetched")

 info = None

 else:

 status("INFO", "Profile infomation successfully fetched")

 return info

 def get_permissions(self):

 info = {"delete": False, "edit": False}

 subject = auth(user_id=self.id, items=['level', 'username']).get()

 if subject['level'] == "management" or subject['level'] == "admin":

 info['delete'] = True

 info['edit'] = True

 if self.target_username:

 if subject['username'] == self.target_username:

 info['delete'] = True

 info['edit'] = True

 target_team_info = team(username=self.target_username).get_leaders()

 if dict_key_verify(target_team_info, 'leaders'):

 target_leaders = target_team_info['leaders']

 if subject['username'] in target_leaders:

 info['delete'] = True

 if not self.id or not self.target_username:

 status("FAIL", "Invalid username or data provided", self.statface)

 info = None

 else:

 status("INFO", "Permissions successfully fetched", self.statface)

 return info

 def set(self, data):

 for column in self.columns:

 item = data[column]

Jack Leverett 7714 50639

415

 self.cur.execute(f"UPDATE profile SET {column} = ? WHERE user_id = ?",

(item, self.id))

 status("INFO", "Successfully changed/deleted {column}", self.statface)

 self.db.commit()

 def delete(self):

 data = {}

 for column in self.columns:

 data[column] = None

 self.set(data)

class occupation(table):

 def __init__(self, user_id=None, username=None, occupation_id=None, *args,

**kwargs):

 self.allowed_columns = ["occupation_id", "name", "description"]

 super().__init__(user_id=user_id, username=username, occupation_id=occupa-

tion_id)

 def get(self):

 info = {column: None for column in self.columns}

 if not self.occupation_id:

 self.cur.execute("SELECT occupations.occupation_id, occupations.name,

description FROM profile INNER JOIN occupations USING(occupation_id) WHERE user_id

= ?", (self.id,))

 else:

 self.cur.execute("SELECT occupation_id, name, description FROM occupa-

tions WHERE occupation_id = ?", (self.occupation_id,))

 rez = self.cur.fetchone()

 if rez:

 occupation = {'occupation_id':rez[0], 'name':rez[1], 'descrip-

tion':rez[2]}

 for column in self.columns:

 info[column] = occupation[column]

 if not rez and not self.id:

 status("FAIL", "Occupation could not be fetched: invalid data pro-

vided", self.statface)

 info = None

 else:

 status("INFO", "Occupation successfully fetched", self.statface)

 return info

Jack Leverett 7714 50639

416

 def get_request(self):

 info = {'occupation_id': None, 'approved': None}

 self.cur.execute("SELECT occupation_id, approved FROM occupation_requests

WHERE user_id = ?", (self.id,))

 rez = self.cur.fetchone()

 if rez:

 info['occupation_id'] = rez[0]

 info['approved'] = rez[1]

 status("INFO", "Occupation requests fetched successfully")

 else:

 status("FAIL", "Occupation requests could not be fetched invalid data

provided", self.statface)

 info = None

 return info

 def get_all_requests(self):

 info = {'requests': None}

 self.cur.execute("SELECT user_id, occupation_id FROM occupation_requests

WHERE approved = ?", (False,))

 rez = self.cur.fetchall()

 if rez:

 info['requests'] = [{'username': auth(user_id=re-

quest[0]).get()['username'], 'occupation_id': request[1]} for request in rez]

 status("INFO", "Occupation requests successfully fetched", self.stat-

face)

 else:

 status("FAIL", "Occupation requests could not be fetched something went

wrong", self.statface)

 return info

 def set(self, data):

 occupation_id = data["occupation_id"]

 self.cur.execute("SELECT name FROM occupations WHERE occupation_id = ?",

(occupation_id,))

 if self.cur.fetchone():

 self.cur.execute("UPDATE profile SET occupation_id = ? WHERE user_id =

?", (occupation_id, self.id))

 status("INFO", "Occupation successfully updated", self.statface)

 else:

 status("FAIL", "Occupation could not be updated invalid data provided",

self.statface)

Jack Leverett 7714 50639

417

 self.db.commit()

 def set_request(self, data):

 occupation_id = data['occupation_id']

 self.cur.execute("SELECT approved FROM occupation_requests WHERE user_id =

?", (self.id,))

 if self.cur.fetchone():

 self.delete_request()

 status("INFO", "Removing previous occupation change request",

self.statface)

 self.cur.execute("SELECT name FROM occupations WHERE occupation_id = ?",

(occupation_id,))

 if self.cur.fetchone():

 self.cur.execute("INSERT INTO occupation_requests (user_id, occupa-

tion_id, approved) VALUES (?, ?, ?)", (self.id, occupation_id, False))

 else:

 status("FAIL", "Occupation change request could not be made invalid oc-

cupation_id provided", self.statface)

 self.db.commit()

 def approve_request(self):

 self.cur.execute("SELECT occupation_id FROM occupation_requests WHERE ap-

proved = ? AND user_id = ?", (False, self.id,))

 if self.cur.fetchone():

 self.cur.execute("UPDATE occupation_requests SET approved = ? WHERE

user_id = ?", (True, self.id))

 self.cur.execute("SELECT occupation_id FROM occupation_requests WHERE

user_id = ?", (self.id,))

 rez = self.cur.fetchone()

 if rez:

 self.set({'occupation_id': rez[0]})

 status("INFO", "Occupation change request successfully approved",

self.statface)

 else:

 status("CRIT", "Occupation change request approved but not changed

in the user entry, contact admin", self.statface)

 else:

 status("FAIL", "Occupation change request from that user does not exist

or has already been approved", self.statface)

 self.db.commit()

 def reject_request(self):

Jack Leverett 7714 50639

418

 self.delete_request()

 def delete(self):

 self.cur.execute("UPDATE profile SET occupation_id = ? WHERE user_id = ?",

(None, self.id))

 self.db.commit()

 status("INFO", "Occupation no longer associated with user", self.statface)

 def delete_request(self):

 self.cur.execute("DELETE FROM occupation_requests WHERE user_id = ?",

(self.id,))

 self.db.commit()

 status("INFO", "Occupation change request successfully deleted", self.stat-

face)

 def get_all(self):

 info = {'occupations':None}

 self.cur.execute("SELECT occupation_id, name, description FROM occupa-

tions")

 rez = self.cur.fetchall()

 if rez:

 occupations = [{'occupation_id':occupation[0], 'name':occupation[1],

'description': occupation[2]} for occupation in rez]

 info['occupations'] = occupations

 status("INFO", "Occupation(s) successfully fetched", self.statface)

 else:

 status("FAIL", "Occupation(s) could not be fetched", self.statface)

 return info

 def create(self, data={'name': None, 'description': None}):

 occupation_uuid = uuid_generate()

 team_uuid = uuid_generate()

 name = data['name']

 description = data['description']

 self.cur.execute("INSERT INTO occupations(occupation_id, name, description)

VALUES (?, ?, ?)", (occupation_uuid, name, description))

 self.cur.execute("INSERT INTO teams (team_id, name, occupation_id) VALUES

(?, ?, ?)", (team_uuid, name, occupation_uuid))

 self.db.commit()

 def edit(self, data):

 if 'occupation_id' in data and not self.occupation_id:

 self.occupation_id = data['occupation_id']

Jack Leverett 7714 50639

419

 for column in self.columns:

 if column == "occupation_id":

 continue

 value = data[column]

 self.cur.execute(f"UPDATE occupations SET {column} = ? WHERE occupa-

tion_id = ?", (value, self.occupation_id))

 self.db.commit()

 def delete_occupation(self, data=None):

 if dict_key_verify(data, "occupation_id") and not self.occupation_id:

 self.occupation_id = data['occupation_id']

 self.cur.execute("DELETE FROM occupations WHERE occupation_id = ?",

(self.occupation_id,))

 self.db.commit()

def main():

 log("WARN", "modules/user/info.py has been called as main. This file is not in-

tended to run solo. Please use main.py or modules/handler/handler.py")

if __name__ == "__main__":

 main()

dockerfile

FROM python:3.11-alpine

WORKDIR /

ADD main.py .

ADD modules ./modules

RUN pip install python-socketio eventlet pathlib configparser datetime pillow py-

thon-dotenv

CMD python -u ./main.py

Docs/’Guide to encrypting the database.md’

Overview

This document is designed to guide an administrator through setting up encryption

on their BeOpen database. This can be a good idea for increased security and ease

of response to a breach. If you have database encryption in event of a breach all

you have to do is shutdown the server application, this encrypts the database imme-

diately.

Remember you can (while logged in on an admin account) shutdown the server from

your settings panel.

Options

Before enabling encryption and getting it setup you have to consider some options

available to you. Standard encryption simply utilises a single master password

Jack Leverett 7714 50639

420

which you can use to decrypt the database from any active client device while the

server is in "decrypt" mode.

You also have the option of enabling Shamir secret sharing. This allows you to cre-

ate a number of "shares", you can then hand out shares to trusted colleagues or

friends, in the event you as the administrator ever loses the master password you

can ask for a set number of these shares to be given back to you, inputting these

shares into the "decrypt" screen of the client will decrypt the database and recon-

struct your master password.

You can decide how many shares are required to reconstruct your master password and

how many shares you want to create. Its completely up to you. The only limitations

is that the number of shares created must be less than 20 and the number of shares

needed for reconstruction must be less than 7. These parameters can be changed in

the configuration file, under the database section.

Guide

1) Decide upon a master password, note your master password must be an integer. We

recommend that this integer is made to be significantly large, short common inte-

gers may be easily guessed or easy to crack.

2) Create a text file at the path "data/encryptconfig.txt" (This path is configura-

ble in the database section of your configuration file) and type your master pass-

word into this file.

3) Enable encryption in the configuration file by setting "EncryptDatabase" to

"true".

4) If you want Shamir secret sharing enable this in the same section of your con-

figuration file by setting "ShamirSecretSharing" to "true". Additionally change the

values of "MinimumShares" and "NumberOfShares" to your preferred values.

5) Launch the server, if all goes according to plan the server will launch normally

and you will be able to start any client and enter the decryption credentials.

Distribution of shares

If you used Shamir secret sharing your shares will now be sat as a collection of

text files in (by default) data/shares. These text files will NOT be automatically

deleted and so deleting these text files is left up to you as the administrator.

When you give someone a share make sure they remember their share number and share

secret. If you know your share secret but cannot remember your share number it is

not possible to use the share. The minimum shares required for reconstruction of

the master password is considered public so this fact is also included on all

shares. However this number is also stored in the configuration file of the server.

Fail

Encryption

If the encryption fails in anyway the server will log the problem and shutdown.

Have a good read of the server logs, the most common issue may be that the shares

Jack Leverett 7714 50639

421

generated could not reconstruct the original key. If this is the case simply try

again or use a shorter master password.

Server shutdown (ungraceful)

If the server suddenly lost power or was unable to perform a graceful shutdown for

any reason the unencrypted database will be left on the system. This happens to

avoid the risk of data loss. In this event:

1) Backup the encrypted database and the unencrypted database

2) Set encryption to false in the configuration file

3) Decrypt the database from any client

4) Shutdown the server again (gracefully)

5) Delete the database in the server directory and replace it with the previous

version you backed up

6) You can then re-enable encryption and go through the process of setting that up

again. If you use the same master password you do NOT have to re distribute the

Shamir secret shares. However a set of new shares may be generated simply delete

these files.

Dos and don'ts

If you use Shamir secret sharing do NOT change the "MinimumShares" configuration

even after the encryption has successfully happened and the shares have been gener-

ated. If for some reason this option does change contact share holders to see if

they or anyone else knows the correct value, without this value the master password

cannot be re-constructed.

Do not manually change or alter any files unless instructed to do so by this guide.

Changing configuration options while the server is running can lead to loss of

data.

Do not share your master password with anyone else, if you wish to have a "backup"

please use the Shamir secret sharing feature built into the server.

Client

main.py

import kivy

from kivymd.app import MDApp

from kivy.lang import Builder

from kivy.clock import Clock

from kivymd.uix.label import MDLabel

from kivymd.uix.button import MDIconButton, MDRaisedButton

from kivymd.uix.behaviors.magic_behavior import MagicBehavior

Jack Leverett 7714 50639

422

from kivymd.uix.textfield import MDTextField

from kivymd.uix.list import OneLineAvatarIconListItem, TwoLineAvatarIconListItem,

ThreeLineAvatarIconListItem, IconRightWidget, MDList

from kivymd.uix.fitimage import FitImage

from kivymd.uix.snackbar import Snackbar

from kivymd.uix.menu import MDDropdownMenu

from kivymd.uix.bottomnavigation import MDBottomNavigationItem

from kivymd.uix.list import IRightBodyTouch

from kivy.uix.camera import Camera

from kivymd.uix.screen import MDScreen

from kivymd.uix.screenmanager import MDScreenManager

from kivy.core.window import Window

from kivymd.uix.controllers import WindowController

from kivymd.uix.dialog import MDDialog

from kivymd.uix.button import MDFlatButton

from kivymd.uix.boxlayout import MDBoxLayout

from kivymd.uix.relativelayout import MDRelativeLayout

import socketio

import os

remove before production

import time

remove before production

kivy.require('2.1.0')

__version__ = "0.0.2"

IMPORTS

import uuid as uniqueid

from modules.session.session import session_info, wait, db

from modules.session.time import timestamp

from modules.session.session import setting as setting_info

from modules.handler.request import request, account_page

from modules.handler.info import image as image_info

def generate_uuid():

 uuid = str(uniqueid.uuid4())

 return uuid

def dict_key_verify(dictionary, keys, mode="and", *args, **kwargs):

 if mode != "and" and mode != "or":

 mode = "and"

 if type(keys) != list:

 keys = [keys]

Jack Leverett 7714 50639

423

 verified = []

 if type(keys) != list:

 keys = [keys]

 for key in keys:

 if type(dictionary) != dict or key not in dictionary or not diction-

ary[key]:

 verified.append(False)

 else:

 verified.append(True)

 if mode == "and":

 if all(verified) == True:

 return True

 if mode == "or":

 if True in verified:

 return True

 return False

def go_to(string, previous_line, file):

 line = previous_line

 while line != string:

 line = file.readline().strip()

 return line

def read_to(string, file):

 line = file.readline().strip()

 lines = []

 while line != string:

 lines.append(line)

 line = file.readline().strip()

 return lines

def get_dialog_content(dialog_title):

 with open("./data/assets/help.txt", "r") as f:

 line = f.readline().strip()

 line = go_to(f"[{dialog_title}:START]", line, f)

 line = go_to(f"(title:START)", line, f)

 title = read_to(f"(title:END)", f)

 line = go_to(f"(body:START)", line, f)

 body_lines = read_to(f"(body:END)", f)

 body = ""

 for line in body_lines:

 body += line + "\n"

 body = body[:-2]

 return {'title': title[0], 'body': body}

Jack Leverett 7714 50639

424

def open_help(app, page, dialog_title):

 content = get_dialog_content(dialog_title)

 page.dialog_help = HelpDialog(page, app, title=content['title'], text=con-

tent['body'])

 page.dialog_help.open()

IMPORTS

#================== socketio START ==================

sio = socketio.Client()

session = session_info()

http://localhost:9999

def start_client(sio, url):

 print("DEBUG: starting socketio client...")

 try:

 if not url:

 url = "http://localhost:9999"

 print(f"DEBUG: Connecting with url {url}")

 sio.connect(url)

 print("DEBUG: socketio client online!")

 return True

 except:

 print("DEGUB: socketio client failed to connect!")

 return False

def stop_client(sio):

 print("DEBUG: stopping socketio client...")

 sio.disconnect()

connect/disconnect START

@sio.event

def connect():

 print("DEBUG: Connected!")

@sio.event

def connect_error(data):

 print("DEBUG: connection error")

@sio.event

def disconnect():

 print("Disconnected")

connect/disconnect END

@sio.event

def recv_status(data):

 session.status = data

Jack Leverett 7714 50639

425

 string = f"{data['time']} | {data['level']} | {data['message']}"

 print(string)

#:import Snackbar kivymd.uix.snackbar.Snackbar

auth START

@sio.event

def recv_token(data):

 wait(session).wait_username()

 session.auth_tokens.append(data['token'])

 db().execute("INSERT INTO tokens(token, username, expire) VALUES(?, ?, ?)",

(data['token'], session.username, data['expire']))

def login_cred(username="user", password="pass"):

 data = {'username': username, 'password': password}

 sio.emit('login', data, callback=auth)

def auth(callback, data):

 pass

auth END

other events START

@sio.event

def notification(data):

 pass

other events END

#================== socketio END ==================

#================== kivy START ==================

Utility START

class ExpandText(MDLabel):

 pass

class ExpandPage(MDScreen):

 def __init__(self, expand_text, banner, previous_page, **kwargs):

 super(ExpandPage, self).__init__(**kwargs)

 self.expand_text = expand_text

 self.previous_page = previous_page

 self.load_content()

 self.toolbar.title = banner

 @property

 def expand_text(self):

 return self._expand_text

 @expand_text.setter

Jack Leverett 7714 50639

426

 def expand_text(self, value):

 if type(value) != str or type(value) != list:

 if type(value) == str:

 value = [value]

 else:

 value=None

 self._expand_text = value

 def load_content(self):

 self.text_area.clear_widgets()

 for text in self.expand_text:

 item = ExpandText(text=text)

 self.text_area.add_widget(item)

 def back(self, app):

 app.set_screen(self.previous_page.name, "right")

 app.sm.remove_widget(self)

class HelpDialog(MDDialog):

 def __init__(self, page, app, **kwargs):

 kwargs["buttons"] = [MDFlatButton(text="Close", on_release=self.close,

theme_text_color = "Custom", text_color=app.theme_cls.primary_color), MDFlatBut-

ton(text="Turn off help?", on_release=self.settings, theme_text_color = "Custom",

text_color=app.theme_cls.primary_color)]

 super().__init__(**kwargs)

 self.page = page

 self.app = app

 def close(self, button):

 self.page.dialog_help.dismiss()

 def settings(self, button):

 self.close(button)

 if self.page.name == "SettingsPageScreen":

 return

 settings_screen_name = "SettingsPageScreen"

 settings_screen = SettingsPage(self.page, name=settings_screen_name)

 self.app.sm.add_widget(settings_screen)

 self.app.set_screen(settings_screen_name, "left")

Utility END

HomePage START

class HomeSwiper(MDBoxLayout):

 @property

 def username(self):

 return self._username

Jack Leverett 7714 50639

427

 @username.setter

 def username(self, value):

 self.ids.username.text = value

 self._username = value

 @property

 def caption(self):

 return self._caption

 @caption.setter

 def caption(self, value):

 if value == None:

 value = ""

 self.ids.caption.text = value

 self._caption = value

 @property

 def content(self):

 return self._content

 @content.setter

 def content(self, value):

 self.load_image(value)

 self.ids.content.source = self.image.path

 self._content = self.image.path

 def __init__(self, page, post_id, **kwargs):

 super().__init__(**kwargs)

 self.post_id = post_id

 self.page = page

 self.action_menu = None

 self.load_content()

 def load_image(self, value):

 self.image = image_info(self.post_id)

 self.image.load(value)

 self.ids.content.source = self.image.path

 def load_content(self):

 post_data = {'post_id': self.post_id}

 post_content = request(sio, session).emit('post_get', post_data)['posts']

 self.username = post_content['username']

 self.caption = post_content['caption']

 self.content = post_content['content']

 user_impression_data = {'items': ['username'], 'post_id': self.post_id,

'impression_type': "like"}

Jack Leverett 7714 50639

428

 post_likes = request(sio, session).emit('post_impression_get_post',

user_impression_data)['impressions']

 impression_data = {'post_id': self.post_id, 'impression_type': "like"}

 num_post_likes = request(sio, session).emit('post_impression_count', im-

pression_data)['impression_count']

 self.ids.like_number.text = str(num_post_likes)

 if post_likes:

 for like in post_likes:

 if self.page.username in like['username']:

 self.ids.like.icon = "heart"

 def like(self):

 server = request(sio, session)

 if self.ids.like.icon == "heart-outline":

 self.ids.like.icon = "heart"

 data = {'impression_type': "like", 'post_id': self.post_id}

 server.emit('post_impression_set', data, None)

 self.ids.like_number.text = str(int(self.ids.like_number.text) + 1)

 else:

 self.ids.like.icon = "heart-outline"

 data = {'impression_type': "like", 'post_id': self.post_id, 'items':

['username','impression_id']}

 impression_info = server.emit('post_impression_get_post', data)

 if dict_key_verify(impression_info, 'impressions'):

 for impression in impression_info['impressions']:

 if impression['username'] == self.page.username:

 impression_id = impression['impression_id']

 data = {'impression_type': "like", 'impression_id': impression_id}

 server.emit('post_impression_delete', data, None)

 self.ids.like_number.text = str(int(self.ids.like_number.text) - 1)

 def switch_to_comments(self, app, direction='up'):

 comments_screen_name = "CommentsPageScreen_"+self.post_id

 comments_screen = CommentsPage(self.post_id, name=comments_screen_name)

 app.sm.add_widget(comments_screen)

 app.set_screen(comments_screen_name, direction)

 def post_options(self, app, direction='right'):

 data = {'post_id': self.post_id}

Jack Leverett 7714 50639

429

 delete_allowed = request(sio, session).emit("post_get_permissions",

data)['delete']

 if delete_allowed:

 profile_item = {'text': "view profile", 'viewclass': "OneLineListItem",

'on_release': lambda x=app: self.switch_to_account(app)}

 delete_item = {'text': "delete post", 'viewclass': "OneLineListItem",

'on_release': lambda: self.delete_post()}

 items = [profile_item, delete_item]

 self.action_menu = MDDropdownMenu(caller=self.account_button,

items=items, width_mult=3)

 self.action_menu.open()

 else:

 self.switch_to_account(app, direction)

 def delete_post(self):

 if self.action_menu:

 self.action_menu.dismiss()

 data = {'post_id': self.post_id}

 request(sio, session).emit("post_delete", data, None)

 self.page.home_swiper_grid.remove_widget(self)

 if len(self.page.home_swiper_grid.children) == 1:

 self.page.load_home()

 def switch_to_account(self, app, direction='right'):

 if self.action_menu:

 self.action_menu.dismiss()

 self.page.switch_to_account(app, self.username, direction)

class HomeLoadButton(MDBoxLayout):

 def __init__(self, **kwargs):

 if 'home_obj' in kwargs and kwargs['home_obj']:

 if kwargs['home_obj']:

 self.home_obj = kwargs['home_obj']

 del kwargs['home_obj']

 super().__init__(**kwargs)

 def load_content(self):

 self.home_obj.home_swiper_grid.remove_widget(self)

 self.home_obj.load_home()

class NoPostLabel(MDBoxLayout):

 pass

class MemoriesMonth(MDBoxLayout):

 def get_memories_swiper_height(self):

 swiper_height = Window.height * 0.8 * 0.02

Jack Leverett 7714 50639

430

 return swiper_height

class SwiperMagicButton(MagicBehavior,MDIconButton):

 pass

class MemoriesSwiper(MDBoxLayout):

 pass

class OccupationPageButton(MDRaisedButton):

 def __init__(self, tab, page, **kwargs):

 super().__init__(**kwargs)

 self.tab = tab

 self.page = page

 def switch_to_occupation(self, app):

 self.tab.switch_to_occupation(app)

class OrganisationBottomItem(MDBottomNavigationItem):

 def __init__(self, page, username, **kwargs):

 super().__init__(**kwargs)

 self.page = page

 self.load_content()

 self.username = username

 def load_content(self):

 occupation_button = OccupationPageButton(self, self.page)

 level = request(sio, session).emit('auth_get')['level']

 if level != "member":

 self.occupation_button_area.add_widget(occupation_button)

 def switch_to_occupation(self, app, direction="left"):

 occupation_screen_name = "OccupationPageScreen"

 occupation_screen = OccupationPage(self.page, name=occupation_screen_name)

 app.sm.add_widget(occupation_screen)

 app.set_screen(occupation_screen_name, direction)

 def switch_to_team(self, app, direction="left"):

 team_screen_name = "TeamPageScreen"

 team_screen = TeamPage(self.page, self.username, name=team_screen_name)

 app.sm.add_widget(team_screen)

 app.set_screen(team_screen_name, direction)

class MonthListItem(OneLineAvatarIconListItem):

 def __init__(self, date, posts, month_list, **kwargs):

 super().__init__(**kwargs)

Jack Leverett 7714 50639

431

 self.month_list = month_list

 self.posts = posts

 self.date = date

 def day_view(self):

 day_list = DayList(self.date, self.posts, self.month_list)

 self.month_list.page.root_scroll.remove_widget(self.month_list)

 self.month_list.page.root_scroll.add_widget(day_list)

class MonthList(MDBoxLayout):

 def __init__(self, page, **kwargs):

 super().__init__(**kwargs)

 self.page = page

 self.back_stack = [self]

 self.load_content()

 def load_content(self):

 month_list = ["January", "February", "March", "April", "May", "June",

"July", "August", "September", "October", "November", "December"]

 data = {'items': ['post_id', 'date']}

 post_response = request(sio, session).emit("post_get_memories", data)

 if dict_key_verify(post_response, 'posts'):

 posts = post_response['posts']

 post_months = {}

 for post in posts:

 if dict_key_verify(post, 'date'):

 date = post['date']

 date_list = date.split("-")

 if dict_key_verify(post_months, date):

 post_months[date].append(post)

 else:

 post_months[date] = [post]

 for post_group in post_months:

 date = post_group.split("-")

 month_name = month_list[int(date[1])-1]

 date_string = date[0] + ": " + month_name

 item = MonthListItem(date, post_months[post_group], self,

text=date_string)

 self.scroll.add_widget(item)

 else:

 item = OneLineAvatarIconListItem(text="No memories :(")

 self.scroll.add_widget(item)

Jack Leverett 7714 50639

432

class DayListItem(OneLineAvatarIconListItem):

 def __init__(self, date, post, day_list, **kwargs):

 super().__init__(**kwargs)

 self.day_list = day_list

 self.post = post

 self.date = date

 def post_open(self):

 memory = MemoryLayout(self.post, self.day_list)

 area = self.day_list.month_list.page.root_scroll

 area.clear_widgets()

 area.add_widget(memory)

class DayList(MDBoxLayout):

 def __init__(self, date, posts, month_list, **kwargs):

 super().__init__(**kwargs)

 self.month_list = month_list

 self.posts = posts

 self.date = date

 self.back_stack = self.month_list.back_stack

 self.back_stack.append(self)

 self.load_content()

 def load_content(self):

 for post in self.posts:

 date_string = self.date[2]

 item = DayListItem(self.date, post, self, text=date_string)

 self.scroll.add_widget(item)

 def back(self):

 last = len(self.back_stack)-1

 self.month_list.page.root_scroll.clear_widgets()

 self.month_list.page.root_scroll.add_widget(self.back_stack[last-1])

 self.back_stack.pop(last)

class MemoryLayout(MDBoxLayout):

 def __init__(self, post, day_list, **kwargs):

 super().__init__(**kwargs)

 self.post = post

 self.day_list = day_list

 self.page = self.day_list.month_list.page

 self.back_stack = self.day_list.back_stack

 self.back_stack.append(self)

 self.load_content()

Jack Leverett 7714 50639

433

 def remove_username(self, post):

 post.ids.username.text = self.post['date']

 post.ids.profile_area.remove_widget(post.ids.account_button)

 def load_content(self):

 post = HomeSwiper(self.page, self.post['post_id'])

 self.remove_username(post)

 self.post_area.add_widget(post)

class HomePage(MDScreen, WindowController):

 def __init__(self, username=None, app=None, **kwargs):

 super().__init__(**kwargs)

 post_login()

 self.username = username

 self.app = app

 self.account_screens = []

 self.notifications_screens = []

 self.settings_screen = None

 self.settings_screen_name = None

 self.posts_displayed = []

 self.post_exist = False

 self.camera_widget_exists = False

 self.camera_page_screen = None

 self.organisation_item_exists = False

 self.post_slot = request(sio, session).emit("post_slot_get")

 self.posted_today()

 self.load_content()

 self.selected_tab = "Home"

 self.help_tool = ["help", lambda x: self.open_help(self.app)]

 def login(self):

 login_cred()

 def load_content(self):

 self.load_home()

 self.load_memories()

 self.load_organisation()

 Clock.schedule_interval(self.check_post_time, 1)

 self.load_toolbar()

Jack Leverett 7714 50639

434

 def load_toolbar(self):

 if not setting_info("Help boxes").value:

 for i, option in enumerate(self.toolbar.right_action_items):

 if option[0].lower() == "help":

 self.toolbar.right_action_items.pop(i)

 else:

 toolbar_len = len(self.toolbar.right_action_items)

 for i in range(toolbar_len):

 if self.toolbar.right_action_items[i][0] == "help":

 return

 new_toolbar = [self.help_tool] + self.toolbar.right_action_items[0:]

 self.toolbar.right_action_items = new_toolbar

 def on_tab_press(self, name):

 self.selected_tab = name

 def open_help(self, app):

 level = request(sio, session).emit('auth_get')['level']

 if self.selected_tab == "Home":

 open_help(app, self, "Home")

 elif self.selected_tab == "Memories":

 open_help(app, self, "Memories")

 elif self.selected_tab == "Organisation" and level == "member":

 open_help(app, self, "Organisation")

 elif self.selected_tab == "Organisation" and level != "member":

 open_help(app, self, "Organisation-admin")

 # SWITCHING

 def switch_to_settings(self, app, direction='left'):

 settings_screen_name = "SettingsPageScreen"

 settings_screen = SettingsPage(self, name=settings_screen_name)

 app.sm.add_widget(settings_screen)

 app.set_screen(settings_screen_name, direction)

 def switch_to_account(self, app, username=None, direction='right', *args,

**kwargs):

 if not username:

 username = self.username

 account_screen_name = "AccountPageScreen_"+username

 account_screen = AccountPage(username, self, name=account_screen_name)

 app.sm.add_widget(account_screen)

 app.set_screen(account_screen_name, direction)

Jack Leverett 7714 50639

435

 def switch_to_notifications(self, app, username=None, direction='right', *args,

**kwargs):

 if not username:

 username = self.username

 notifications_screen_name = "NotificationsScreen-"+username

 notifications_screen = NotificationsPage(username, self, name=notifica-

tions_screen_name)

 app.sm.add_widget(notifications_screen)

 app.set_screen(notifications_screen_name, direction)

 # FETCHING DATA

 def fetch_posts(self):

 data = {'items': ['post_id']}

 posts = request(sio, session).emit('post_get_feed', data)['posts']

 post_list = []

 if self.post_made:

 post = request(sio, session).emit("post_get_user")

 if dict_key_verify(post, "posts"):

 post = post['posts']

 if dict_key_verify(post, "post_id"):

 if post['post_id'] not in self.posts_displayed:

 post_list.append(post)

 if posts:

 for i, post in enumerate(posts):

 if post:

 post_list.append(post)

 return post_list

 # HOME

 def load_home(self):

 posts = self.fetch_posts()

 post_list = []

 if posts:

 for i, post in enumerate(posts):

 if post['post_id'] not in self.posts_displayed:

 exists = False

 for existing_post in post_list:

 if existing_post['post_id'] == post['post_id']:

 exists = True

 if not exists:

 post_list.append(post)

Jack Leverett 7714 50639

436

 posts = post_list

 for i, post in enumerate(posts):

 if not self.post_exist:

 self.home_swiper_grid.clear_widgets()

 self.post_exist = True

 home_swiper = HomeSwiper(self, post['post_id'])

 if i == 0:

 first_home_swiper = home_swiper

 # adds your own post to the top of the post list

 # its done in this way below because there is no way to pre-pend

with kivy widgets

 # the only way is to manually modify the child list which is not

recomended

 if home_swiper.username == self.username:

 # saves the previous post list

 old_grid = self.home_swiper_grid.children[1:]

 # clears the grid

 self.home_swiper_grid.clear_widgets()

 # adds your new post at the top

 self.home_swiper_grid.add_widget(home_swiper)

 # adds the rest of the previous posts

 for old_post in old_grid:

 self.home_swiper_grid.add_widget(old_post)

 first_home_swiper = home_swiper

 else:

 self.home_swiper_grid.add_widget(home_swiper)

 self.posts_displayed.append(post['post_id'])

 if i == 4:

 break

 if "first_home_swiper" in locals():

 self.home_swiper_scroll.scroll_to(first_home_swiper)

 if not posts:

 Snackbar(text="Sorry, no more posts").open()

 else:

 if not self.post_exist:

 self.home_swiper_grid.clear_widgets()

 self.home_swiper_grid.add_widget(NoPostLabel())

Jack Leverett 7714 50639

437

 self.load_more_button = HomeLoadButton(home_obj=self)

 self.home_swiper_grid.add_widget(self.load_more_button)

 def get_home_swiper_height(self):

 swiper_height = Window.height * 0.70

 return swiper_height

 # MEMORIES

 def get_memories_swiper_height(self):

 month_height = self.get_memories_month_height()

 swiper_height = month_height * 0.8 * 0.02

 return swiper_height

 def get_memories_month_height(self):

 month_height = Window.height * 2

 return month_height

 def load_memories(self):

 self.root_scroll.clear_widgets()

 item = MonthList(self)

 self.root_scroll.add_widget(item)

 # STATS

 def load_stats(self):

 pass

 # ORGANISATION

 def load_organisation(self):

 if not self.organisation_item_exists:

 self.organisation_item_exists = True

 self.bottom_navigation.add_widget(OrganisationBottomItem(self,

self.username))

 # SIZE

 def update(self):

 self.home_swiper_grid.row_default_height = self.get_home_swiper_height()

 def on_size(self, *args):

 self.update()

 # Post time

 def posted_today(self):

 date = {'items': ['date']}

 posts = request(sio, session).emit("post_get_memories", date)['posts']

 if posts:

 date = request(sio, session).emit("get_date")['date']

 for post in posts:

Jack Leverett 7714 50639

438

 if date == post['date']:

 self.post_made = True

 return

 self.post_made = False

 def check_post_time(self, dt):

 now = timestamp().now

 if self.post_slot['post_slot_start'] < now and

self.post_slot['post_slot_end'] > now and not self.post_made:

 if not self.camera_widget_exists:

 self.toolbar.right_action_items.append(["camera", lambda x:

self.switch_to_camera(self.app, direction='up')])

 self.camera_widget_exists = True

 else:

 for i, action_item in enumerate(self.toolbar.right_action_items):

 if "camera" in action_item:

 self.toolbar.right_action_items.pop(i)

 break

 def switch_to_camera(self, app, direction="up"):

 camera_page_screen_name = "CameraPageScreen"

 self.camera_page_screen = CameraPage(self, name=camera_page_screen_name)

 app.sm.add_widget(self.camera_page_screen)

 app.set_screen(camera_page_screen_name, direction)

 # First time

 def check_first_time(self, app):

 occupation = request(sio, session).emit("occupation_get")

 profile = request(sio, session).emit("profile_get", {'items': ['role',

'name']})

 friends = request(sio, session).emit("friend_get")['friends']

 if not occupation['occupation_id'] and not friends and not profile['role']

and not profile['name']:

 first_time_page_screen_name = "FirstTimePage"

 first_time_page_screen =

FirstTimePage(name=first_time_page_screen_name)

 app.sm.add_widget(first_time_page_screen)

 app.set_screen(first_time_page_screen_name, "down")

HomePage END

Comments START

class CommentContainer(IRightBodyTouch, MDBoxLayout):

 pass

class Comment(TwoLineAvatarIconListItem):

 def __init__(self, username, comment_id, page, **kwargs):

Jack Leverett 7714 50639

439

 super().__init__(**kwargs)

 self.username = username

 self.comment_id = comment_id

 self.page = page

 self.screen_prefix = "comment"

 self.action_menu = None

 self.load_content()

 def liked_previously(self):

 data = {'comment_id': self.comment_id}

 impressions = request(sio, session).emit("comment_impression_get_comment",

data)['impressions']

 if impressions:

 for impression in impressions:

 if dict_key_verify(impression, "username"):

 if session.username == impression['username']:

 self.impression_id = impression['impression_id']

 return True

 return False

 def load_content(self):

 if self.liked_previously():

 self.like_button.icon = "heart"

 data = {'impression_type': "like", 'comment_id': self.comment_id}

 count = request(sio, session).emit("comment_impression_count", data)['im-

pression_count']

 self.like_count.text = str(count)

 def expand(self, app):

 expand_page_name = f"{self.screen_prefix}_expand_page_{self.username}"

 expand_page = ExpandPage(self.secondary_text, self.text+"'s comment",

self.page, name=expand_page_name)

 app.sm.add_widget(expand_page)

 app.set_screen(expand_page_name, "left")

 def like(self):

 if self.like_button.icon == "heart-outline":

 data = {'impression_type': "like", 'comment_id': self.comment_id}

 request(sio, session).emit('comment_impression_set', data, None)

 if self.liked_previously():

 self.like_button.icon = "heart"

 self.like_count.text = str(int(self.like_count.text)+1)

 else:

 self.like_button.icon = "heart-outline"

Jack Leverett 7714 50639

440

 data = {'impression_id': self.impression_id}

 request(sio, session).emit("comment_impression_delete", data, None)

 self.like_count.text = str(int(self.like_count.text)-1)

 def profile(self, app):

 if self.action_menu:

 self.action_menu.dismiss()

 account_page_name = f"{self.screen_prefix}_account_page_{self.username}"

 account_page = AccountPage(self.username, self.page, remove_on_exit=True,

name=account_page_name)

 app.sm.add_widget(account_page)

 app.set_screen(account_page_name, "right")

 def delete_comment(self):

 if self.action_menu:

 self.action_menu.dismiss()

 data = {'comment_id': self.comment_id}

 request(sio, session).emit("comment_delete", data, None)

 self.page.comment_stack.remove_widget(self)

 if not self.page.comment_stack.children:

 self.page.load_content()

 def action_options(self, app):

 data = {'comment_id': self.comment_id}

 delete_allowed = request(sio, session).emit("comment_get_permissions",

data)['delete']

 if delete_allowed:

 profile_item = {'text': "view profile", 'viewclass': "OneLineListItem",

'on_release': lambda x=app: self.profile(app)}

 delete_item = {'text': "delete comment", 'viewclass': "OneLineLis-

tItem", 'on_release': lambda: self.delete_comment()}

 items = [profile_item, delete_item]

 self.action_menu = MDDropdownMenu(caller=self.profile_button,

items=items, width_mult=3)

 self.action_menu.open()

 else:

 self.profile(app)

class CommentsPage(MDScreen):

 def __init__(self, post_id, **kwargs):

 super(CommentsPage, self).__init__(**kwargs)

 self.post_id = post_id

 self.comments = []

 self.comments_exist = False

 self.load_content()

Jack Leverett 7714 50639

441

 def get_comments(self):

 data = {'post_id': self.post_id}

 comments = request(sio, session).emit("comment_get_post", data)['comments']

 return comments

 def add_comment(self, comment):

 if not self.comments:

 self.comment_stack.clear_widgets()

 comment_id = comment['comment_id']

 username = comment['username']

 comment_item = Comment(username, comment_id, self, text=username, second-

ary_text=comment['content'])

 self.comments.append(comment_id)

 self.comment_stack.add_widget(comment_item)

 # LOADING

 def load_content(self):

 self.comment_stack.clear_widgets()

 comments = self.get_comments()

 if comments:

 for comment in comments:

 self.add_comment(comment)

 else:

 item = OneLineAvatarIconListItem(text="No comments :(")

 self.comment_stack.add_widget(item)

 def submit(self):

 content = self.comment_field.text

 data = {'post_id': self.post_id, 'content': content}

 request(sio, session).emit("comment_set", data, None)

 self.comment_field.text = ""

 comments = self.get_comments()

 for comment in comments:

 if comment['username'] == session.username and comment['content'] ==

content and comment['comment_id'] not in self.comments:

 self.add_comment(comment)

 break

 # SWITCHING

 def switch_to_home(self, app):

 app.set_screen("HomePageScreen", 'down')

 app.sm.remove_widget(self)

Comments END

Jack Leverett 7714 50639

442

Post START

class CameraPage(MDScreen):

 def __init__(self, previous_page, **kwargs):

 super(CameraPage, self).__init__(**kwargs)

 self.path = "data/images/post.png"

 self.post_slot = request(sio, session).emit("post_slot_get")

 self.previous_page = previous_page

 Window.size = (800, 600)

 self.load_content()

 self.refresh_time()

 Clock.schedule_interval(self.refresh_time, 1)

 def load_content(self):

 self.camera = Camera(play=True)

 self.camera_area.add_widget(self.camera)

 if not setting_info("Help boxes").value:

 for i, option in enumerate(self.toolbar.right_action_items):

 if option[0].lower() == "help":

 self.toolbar.right_action_items.pop(i)

 def open_help(self, app):

 open_help(app, self, "Camera")

 def format_time(self, time_left):

 time_left = int(time_left)

 seconds = time_left%60

 minutes = time_left//60

 hours = 0

 if minutes > 60:

 hours = minutes//60

 minutes = minutes - hours*60

 time_format = f"{hours}:{minutes}:{seconds}"

 return time_format

 def refresh_time(self, dt=None):

 length = self.post_slot['post_slot_end'] -

self.post_slot['post_slot_start']

 time_in = timestamp().now - self.post_slot['post_slot_start']

 time_left = round(length - time_in, 2)

 time_format = self.format_time(time_left)

 self.toolbar.title = f"Time left: {time_format}"

 def capture(self, app):

 self.camera.export_to_png(self.path)

 self.camera_to_post(app)

Jack Leverett 7714 50639

443

 def camera_to_post(self, app):

 post_review_page_screen_name = "PostReviewPage"

 post_review_page_screen = PostReviewPage(self, self.path, name=post_re-

view_page_screen_name)

 app.sm.add_widget(post_review_page_screen)

 app.set_screen(post_review_page_screen_name, "left")

 def exit(self, app):

 app.set_screen("HomePageScreen", "down")

 app.sm.remove_widget(self)

 Window.size = (800, 1000)

class PostReviewPage(MDScreen):

 def __init__(self, camera_page, path, **kwargs):

 super(PostReviewPage, self).__init__(**kwargs)

 self.path = path

 self.camera_page = camera_page

 self.post_slot = request(sio, session).emit("post_slot_get")

 self.load_content()

 self.refresh_time()

 Clock.schedule_interval(self.refresh_time, 1)

 def load_content(self):

 self.image.source = self.path

 if not setting_info("Help boxes").value:

 for i, option in enumerate(self.toolbar.right_action_items):

 if option[0].lower() == "help":

 self.toolbar.right_action_items.pop(i)

 def open_help(self, app):

 open_help(app, self, "PostReview")

 def refresh_time(self, dt=None):

 length = self.post_slot['post_slot_end'] -

self.post_slot['post_slot_start']

 time_in = timestamp().now - self.post_slot['post_slot_start']

 time_left = round(length - time_in, 2)

 time_format = self.camera_page.format_time(time_left)

 self.toolbar.title = f"Time left: {time_format}"

 def post(self, app):

 with open(self.path, "rb") as image:

 image_data = image.read()

 data = {'content': image_data, 'caption': self.caption.text}

Jack Leverett 7714 50639

444

 request(sio, session).emit("post_set", data, None)

 self.camera_page.previous_page.post_made = True

 self.image.source = ""

 os.remove(self.path)

 self.exit(app, "down")

 self.camera_page.previous_page.load_memories()

 self.camera_page.previous_page.load_home()

 def retake(self, app):

 os.remove(self.path)

 self.post_to_camera(app)

 def post_to_camera(self, app, direction="right"):

 app.set_screen(self.camera_page.name, direction)

 self.ids.image_area.remove_widget(self.image)

 app.sm.remove_widget(self)

 def exit(self, app, direction="down"):

 app.set_screen("HomePageScreen", "down")

 if not self.camera_page.previous_page.post_made:

 os.remove(self.path)

 app.sm.remove_widget(self.camera_page)

 app.sm.remove_widget(self)

 Window.size = (800, 1000)

Post END

Acccount START

class ProfileInfo(TwoLineAvatarIconListItem):

 def __init__(self, account_page=None, info_type=None, **kwargs):

 super().__init__(**kwargs)

 self.info_type = info_type

 self.account_page = account_page

 def set_title(self, text):

 if text and type(text) == str:

 text = (text.replace("_", " ")).capitalize()

 self.text = text

 def set_content(self, text):

 if text and type(text) == str:

 self.secondary_text = text

 def make_editable(self):

 button = InfoEditButton(self.account_page, self.info_type)

 self.add_widget(button)

Jack Leverett 7714 50639

445

class InfoEditButton(IconRightWidget):

 def __init__(self, account_page_obj=None, info_type=None, **kwargs):

 super().__init__(**kwargs)

 self.info_type = info_type

 self.account_page_obj = account_page_obj

 self.account_page_obj.currently_editing = None

 def change_info(self):

 if self.icon == "pencil":

 if self.account_page_obj.currently_editing:

 self.account_page_obj.currently_editing.icon = "pencil"

 self.account_page_obj.currently_editing = self

 self.account_page_obj.picture_to_textbox(self.info_type)

 else:

 self.account_page_obj.textbox_to_picture()

class BioEditButton(MDIconButton):

 def __init__(self, account_page_obj=None, info_type="biography", **kwargs):

 super().__init__(**kwargs)

 self.info_type = info_type

 self.account_page_obj = account_page_obj

 self.account_page_obj.currently_editing = None

 def change_info(self):

 if self.icon == "pencil":

 if self.account_page_obj.currently_editing:

 self.account_page_obj.currently_editing.icon = "pencil"

 self.account_page_obj.currently_editing = self

 self.account_page_obj.picture_to_textbox(self.info_type)

 else:

 self.account_page_obj.textbox_to_picture()

class ProfilePicture(FitImage):

 pass

class InfoChangeBox(MDBoxLayout):

 def __init__(self, page, info_type, username=session.username, **kwargs):

 super().__init__(**kwargs)

 self.username = username

 self.info_type = info_type

 self.page = page

 self.load_content()

 def load_content(self):

 self.text_field.text = self.page.info[self.info_type]

Jack Leverett 7714 50639

446

 def save(self):

 new_value = self.text_field.text

 self.page.info[self.info_type] = new_value

 account_page(sio).set_profile(self.info_type, new_value, self.username)

 self.page.textbox_to_picture()

class OccupationChange(MDBoxLayout):

 def __init__(self, page=None, **kwargs):

 super().__init__(**kwargs)

 self.occupations = request(sio, session).emit('occupation_get_all')

 self.current_selection = None

 self.occupations_info = []

 self.menu = None

 if page:

 self.page = page

 def selection_menu(self):

 if dict_key_verify(self.occupations, 'occupations'):

 self.occupations_info = self.occupations['occupations']

 items = []

 for i, occupation in enumerate(self.occupations_info):

 item = {'text': occupation['name'], 'viewclass': "OneLineListItem",

'on_release': lambda x=i: self.selection(x)}

 items.append(item)

 self.menu = MDDropdownMenu(caller=self.occupation_select, items=items,

width_mult=2)

 self.menu.open()

 else:

 message = "No occupations"

 Snackbar(text=message).open()

 def selection(self, item_num):

 self.occupation_select.text = self.occupations_info[item_num]['name']

 self.occupation_description.text = self.occupations_info[item_num]['de-

scription']

 self.current_selection = item_num

 self.menu.dismiss()

class UserOccupationChange(OccupationChange):

 def __init__(self, page=None, **kwargs):

 super().__init__(page, **kwargs)

 self.load_content()

 def cancel(self):

 request(sio, session).emit('occupation_delete_request', {}, None)

 message = f"{session.status['level']}: {session.status['message']}"

Jack Leverett 7714 50639

447

 Snackbar(text=message).open()

 self.load_content()

 self.page.textbox_to_picture()

 def submit(self):

 if self.current_selection or self.current_selection == 0:

 data = {'occupation_id': self.occupations_info[self.current_selec-

tion]['occupation_id']}

 request(sio, session).emit('occupation_set_request', data, None)

 else:

 message = "No selection made"

 Snackbar(text=message).open()

 self.load_content()

 self.occupation_select.text = "Select an occupation"

 self.occupation_description.text = ""

 self.page.textbox_to_picture()

 def load_content(self):

 occupation_request = request(sio, session).emit('occupation_get_request')

 if dict_key_verify(occupation_request, 'occupation_id'):

 occupation = request(sio, session).emit('occupation_get', {'occupa-

tion_id': occupation_request['occupation_id']})

 if occupation:

 self.request_occupation.text = occupation['name']

 if occupation_request['approved']:

 request_status = "Approved"

 else:

 request_status = "Pending"

 self.request_status.text = "Status: "+request_status

 else:

 Snackbar(text=session.status).open()

class ManagementOccupationChange(OccupationChange):

 def __init__(self, page, **kwargs):

 super().__init__(**kwargs)

 self.page = page

 def submit(self):

 if self.occupations_info:

 data = {'occupation_id': self.occupations_info[self.current_selec-

tion]['occupation_id']}

 request(sio, session).emit('occupation_set', data, None)

 message = f"{session.status['message']}"

 self.occupation_select.text = "Select an occupation"

Jack Leverett 7714 50639

448

 self.occupation_description.text = ""

 else:

 message = f"No occupation selected"

 Snackbar(text=message).open()

 if self.occupations_info:

 self.page.textbox_to_picture()

class AccountPage(MDScreen):

 def __init__(self, username=session.username, previous_page=None, re-

move_on_exit=True, **kwargs):

 super(AccountPage, self).__init__(**kwargs)

 self.username = username

 self.info_objs = []

 self.bio_edit_button = None

 self.load_content()

 self.friend_page_screen = None

 self.remove_on_exit = remove_on_exit

 if previous_page == None:

 self.previous_page = "HomePageScreen"

 else:

 self.previous_page = previous_page.name

 def load_content(self):

 self.above_info.clear_widgets()

 self.profile_info_view.clear_widgets()

 if self.bio_edit_button:

 self.profile_bio_view.remove_widget(self.bio_edit_button)

 req = request(sio, session)

 data = {'username': self.username}

 self.info = req.emit("profile_get", data)

 permissions_data = {'username': session.username, 'target_username':

self.username}

 self.permissions = req.emit("profile_get_permissions", permissions_data)

 if self.username != session.username:

 self.toolbar.title = self.username+"'s Profile"

 level = req.emit('auth_get')['level']

 if level == "member":

 self.toolbar.left_action_items = []

 if dict_key_verify(self.info, "occupation_id"):

 team_data = {'occupation_id': self.info['occupation_id'], 'items':

["name"]}

Jack Leverett 7714 50639

449

 self.info['team'] = req.emit("team_get", team_data)['name']

 occupation_data = {'occupation_id': self.info['occupation_id'],

'items': ["name"]}

 self.info['occupation'] = req.emit("occupation_get", occupa-

tion_data)['name']

 else:

 self.info['team'] = ""

 self.info['occupation'] = ""

 del self.info['occupation_id']

 self.info['username'] = self.username

 order = ['username', 'name', 'role', 'occupation', 'team']

 self.bio_edit_button = BioEditButton(self)

 if self.info['biography']:

 self.biography_content.text = self.info['biography']

 else:

 self.biography_content.text = ""

 self.info['biography'] = ""

 if self.permissions['edit']:

 self.profile_bio_view.add_widget(self.bio_edit_button)

 for key in order:

 if not self.info[key]:

 self.info[key] = ""

 profile_info = ProfileInfo(self, key)

 if self.permissions['edit'] and key in ['name', 'role', 'occupation',

'team']:

 profile_info.make_editable()

 profile_info.set_title(key)

 profile_info.set_content(self.info[key])

 self.profile_info_view.add_widget(profile_info)

 self.info_objs.append(profile_info)

 self.profile_picture = ProfilePicture()

 self.above_info.add_widget(self.profile_picture)

 if not setting_info("Help boxes").value:

 for i, option in enumerate(self.toolbar.right_action_items):

 if option[0].lower() == "help":

 self.toolbar.right_action_items.pop(i)

 def open_help(self, app):

 open_help(app, self, "Profile")

 def refresh_content(self):

Jack Leverett 7714 50639

450

 self.load_content()

 def picture_to_textbox(self, info_type):

 self.currently_editing.icon = "close"

 self.above_info.clear_widgets()

 level = request(sio, session).emit('auth_get')['level']

 if info_type == 'occupation' or info_type == 'team':

 if level == "member":

 self.change = UserOccupationChange(self)

 else:

 self.change = ManagementOccupationChange(self)

 else:

 self.change = InfoChangeBox(self, info_type, self.username)

 self.above_info.add_widget(self.change)

 def textbox_to_picture(self):

 self.above_info.clear_widgets()

 self.above_info.add_widget(self.profile_picture)

 self.currently_editing.icon = "pencil"

 self.refresh_content()

 def switch_to_friend(self, app, direction="right"):

 friend_page_screen_name = "FriendPageScreen_" + self.username

 friend_page_screen = FriendPage(self, self.username,

name=friend_page_screen_name)

 app.sm.add_widget(friend_page_screen)

 app.set_screen(friend_page_screen_name, direction)

 def back(self, app, direction="left"):

 app.set_screen(self.previous_page, direction)

 if self.remove_on_exit:

 app.sm.remove_widget(self)

Acccount END

Settings START

class SettingRoot(MDBoxLayout):

 def __init__(self, title, page, **kwargs):

 super().__init__(**kwargs)

 self.title = title

 self.page = page

 self.load_content()

 def load_content(self):

 self.setting = setting_info(self.title)

 self.set_title(self.setting.title)

 self.set_description(self.setting.description)

Jack Leverett 7714 50639

451

 self.setting_icon.icon = self.setting.icon

 def set_title(self, text):

 if text and type(text) == str:

 self.setting_title.text = text

 def set_description(self, text):

 if text and type(text) == str:

 self.setting_description.text = text

class SettingSwitch(SettingRoot):

 def load_content(self):

 super().load_content()

 self.toggle.active = self.setting.value

 def on_toggle(self, app):

 self.page.help_tool = ["help", lambda app: self.page.open_help(app)]

 self.setting.change_value(self.toggle.active)

 self.page.load_toolbar()

 app.homepage_screen.load_toolbar()

class SettingTextField(SettingRoot):

 def __init__(self, title, **kwargs):

 super().__init__(title, **kwargs)

 self.submission_func = self.submit_url

 def load_content(self):

 super().load_content()

 self.input_field.text = self.setting.value

 def submit_func(self):

 self.setting.change_value(self.input_field.text)

 self.submission_func()

 self.page.load_toolbar()

 app.homepage_screen.load_toolbar()

 def submit_url(self):

 self.error = True

 try:

 result = urlopen(self.text)

 except HTTPError as e:

 pass

 except URLError as e:

 pass

 except ValueError as e:

 pass

Jack Leverett 7714 50639

452

 else:

 self.error = False

class ShutdownButton(MDRaisedButton):

 def __init__(self, page, **kwargs):

 super().__init__(**kwargs)

 self.page = page

 def shutdown(self, app):

 request(sio, session).emit("shutdown", None, None)

 #app.disconnected()

class SettingsPage(MDScreen):

 def __init__(self, previous_page, **kwargs):

 super(SettingsPage, self).__init__(**kwargs)

 self.previous_page = previous_page

 self.load_content()

 def load_content(self):

 self.settings_stack.clear_widgets()

 settings = db().execute("SELECT title, state FROM settings")

 if settings:

 for setting in settings:

 if setting[1] != None:

 setting_obj = SettingSwitch(setting[0], self)

 else:

 setting_obj = SettingTextField(setting[0], self)

 self.settings_stack.add_widget(setting_obj)

 self.level = request(sio, session).emit('auth_get')['level']

 if self.level == "admin":

 button = ShutdownButton(self)

 self.static_buttons.add_widget(button)

 self.load_toolbar()

 def load_toolbar(self):

 if not self.toolbar.right_action_items:

 self.toolbar.right_action_items = [self.help_tool]

 if not setting_info("Help boxes").value:

 for i, option in enumerate(self.toolbar.right_action_items):

 if option[0].lower() == "help":

 self.toolbar.right_action_items.pop(i)

Jack Leverett 7714 50639

453

 def open_help(self, app):

 open_help(app, self, "Settings")

 def logout(self, app):

 clean_directories()

 session.clear()

 app.switch_to_login()

 def back(self, app):

 app.sm.remove_widget(self)

 self.previous_page.load_content()

 app.set_screen(self.previous_page.name, "right")

Settings END

Notification START

class NotificationItem(TwoLineAvatarIconListItem):

 def __init__(self, page, notification_id, username, **kwargs):

 super().__init__(**kwargs)

 self.notification_id = notification_id

 self.username = username

 self.page = page

 self.content = ""

 def set_title(self, text):

 if text and type(text) == str:

 self.text = text

 self.title = text

 def set_content(self, text):

 if text and type(text) == str:

 self.secondary_text = text

 self.content = text

 def delete(self):

 data = {'notification_id': self.notification_id, 'username': self.username}

 request(sio, session).emit('notification_remove', data, None)

 self.page.notification_stack.remove_widget(self)

 self.page.load_content()

 def expand(self, app):

 expand_page = ExpandPage([self.title, self.content], app)

 app.sm.add_widget(expand_page)

class NotificationsPage(MDScreen):

 def __init__(self, username=None, previous_page=None, **kwargs):

 super(NotificationsPage, self).__init__(**kwargs)

Jack Leverett 7714 50639

454

 session.notification_page = self

 self.username = username

 self.previous_page = previous_page

 self.notifications = None

 self.load_content()

 def load_content(self):

 self.notifications = request(sio, session).emit('notification_get',

{'username': self.username})['notifications']

 self.notification_stack.clear_widgets()

 if self.notifications:

 for notification in self.notifications:

 notification_obj = NotificationItem(self, notification['notifica-

tion_id'], self.username)

 if dict_key_verify(notification, 'title'):

 notification_obj.set_title(notification['title'])

 if dict_key_verify(notification, 'content'):

 content_text = notification['content']

 notification_obj.set_content(content_text)

 self.notification_stack.add_widget(notification_obj)

 else:

 item = OneLineAvatarIconListItem(text="No notifications")

 self.notification_stack.add_widget(item)

 if self.username and self.username != session.username:

 self.toolbar.title = self.username+"'s Notifications"

 if not setting_info("Help boxes").value:

 for i, option in enumerate(self.toolbar.right_action_items):

 if option[0].lower() == "help":

 self.toolbar.right_action_items.pop(i)

 def open_help(self, app):

 open_help(app, self, "Notifications")

 def add_notification(self, notification):

 notification_item = NotificationItem(self, notification['notification_id'],

self.username)

 content_text = notification['title']

 if dict_key_verify(notification, 'content'):

 notification_item.set_content(notification['content'])

 self.notification_stack.add_widget(notification_item)

Jack Leverett 7714 50639

455

 def back(self, app, direction="left"):

 app.set_screen(self.previous_page.name, direction)

 app.sm.remove_widget(self)

Notification END

Friend START

class BaseFriendItem(OneLineAvatarIconListItem):

 def __init__(self, obj=None, **kwargs):

 super().__init__(**kwargs)

 self.page_obj = obj

 self.friend_profile_screen_name = None

 self.friend_profile_screen = None

 def refresh_content(self):

 if self.page_obj:

 self.page_obj.load_content()

 def profile(self, app):

 new_friend_profile_screen_name = self.profile_prefix+"ProfileP-

age"+self.text

 if new_friend_profile_screen_name != self.friend_profile_screen_name:

 if self.friend_profile_screen_name:

 app.sm.remove_widget(self.friend_profile_screen)

 self.friend_profile_screen_name = new_friend_profile_screen_name

 self.friend_profile_screen = AccountPage(self.text, self.page_obj,

name=self.friend_profile_screen_name)

 app.sm.add_widget(self.friend_profile_screen)

 app.set_screen(self.friend_profile_screen_name, "right")

class IncomingRequestItem(BaseFriendItem):

 def __init__(self, obj=None, **kwargs):

 super().__init__(obj, **kwargs)

 self.profile_prefix = "IncomingRequest"

 def accept(self):

 self.verdict('approve')

 def reject(self):

 self.verdict('reject')

 def verdict(self, verdict):

 data = {'friend_username': self.text}

 request(sio, session).emit('friend_'+verdict+'_request', data, None)

 self.refresh_content()

 self.page_obj.friend_page.load_content()

Jack Leverett 7714 50639

456

class OutgoingRequestItem(BaseFriendItem):

 def __init__(self, obj=None, **kwargs):

 super().__init__(obj, **kwargs)

 self.profile_prefix = "OutgoingRequest"

 def cancel(self):

 data = {'friend_username': self.text}

 request(sio, session).emit('friend_remove_request', data, None)

 self.refresh_content()

class RecomendationItem(BaseFriendItem):

 def __init__(self, obj=None, **kwargs):

 super().__init__(obj, **kwargs)

 self.profile_prefix = ""

 def add_friend(self):

 self.page_obj.add_friend(self.text)

class FriendItem(BaseFriendItem):

 def __init__(self, obj=None, **kwargs):

 super().__init__(obj, **kwargs)

 self.profile_prefix = "Friend"

 def remove(self):

 data = {'friend_username': self.text}

 request(sio, session).emit('friend_remove', data, None)

 self.refresh_content()

class FriendPage(MDScreen):

 def __init__(self, account_page, username, **kwargs):

 super(FriendPage, self).__init__(**kwargs)

 self.account_page = account_page

 self.username = username

 self.friend_request_screens = []

 self.load_content()

 def load_content(self):

 data = {'username': self.username}

 self.friends = request(sio, session).emit("friend_get")['friends']

 self.friend_list.clear_widgets()

 if self.friends:

 for friend in self.friends:

 friend_info = FriendItem(self, text=friend['username'])

 self.friend_list.add_widget(friend_info)

 else:

 friend_info = OneLineAvatarIconListItem(text="No friends")

Jack Leverett 7714 50639

457

 self.friend_list.add_widget(friend_info)

 if not setting_info("Help boxes").value:

 for i, option in enumerate(self.toolbar.left_action_items):

 if option[0].lower() == "help":

 self.toolbar.left_action_items.pop(i)

 self.account_page.load_content()

 def open_help(self, app):

 open_help(app, self, "Friends")

 def switch_to_friend_request(self, app, username=None, direction='right'):

 if not username:

 username = self.username

 friend_request_screen_name = "FriendRequestPageScreen_"+username

 friend_request_screen = FriendRequestPage(self, username, name=friend_re-

quest_screen_name)

 app.sm.add_widget(friend_request_screen)

 app.set_screen(friend_request_screen_name, direction)

 def switch_to_account(self, app):

 app.set_screen(self.account_page.name, "left")

 app.sm.remove_widget(self)

class FriendRequestPage(MDScreen):

 def __init__(self, friend_page, username, **kwargs):

 super(FriendRequestPage, self).__init__(**kwargs)

 self.username = username

 self.friend_page = friend_page

 self.load_content()

 def _get_request(self, mode="incoming", username=None):

 requests_data = request(sio, session).emit("friend_get_requests",

{'username': username, 'mode': mode})

 if dict_key_verify(requests_data, "requests"):

 requests = requests_data['requests']

 else:

 requests = []

 return requests

 def load_content(self):

 self.incoming_requests.clear_widgets()

 self.outgoing_requests.clear_widgets()

 self.recomendations.clear_widgets()

 self.incoming = self._get_request("incoming", self.username)

Jack Leverett 7714 50639

458

 if not self.incoming:

 self.incoming = []

 self.incoming_requests.add_widget(OneLineAvatarIconListItem(text="No

incoming requests"))

 self.outgoing = self._get_request("outgoing", self.username)

 if not self.outgoing:

 self.outgoing = []

 self.outgoing_requests.add_widget(OneLineAvatarIconListItem(text="No

outgoing requests"))

 for incoming in self.incoming:

 self.incoming_requests.add_widget(IncomingRequestItem(self, text=incom-

ing))

 for outgoing in self.outgoing:

 self.outgoing_requests.add_widget(OutgoingRequestItem(self, text=out-

going))

 data = {'amount': 5}

 self.friend_recomends = request(sio, session).emit('friend_get_recomenda-

tions', data)

 if dict_key_verify(self.friend_recomends, "recomended"):

 self.friend_recomends = self.friend_recomends["recomended"]

 else:

 self.friend_recomends = []

 self.recomendations.add_widget(OneLineAvatarIconListItem(text="No rec-

ommendations sorry"))

 for recomend in self.friend_recomends:

 self.recomendations.add_widget(RecomendationItem(self,

text=recomend['username']))

 def add_friend_search(self):

 message = "No username entered"

 if self.username_select.text:

 self.add_friend(self.username_select.text)

 if session.status['level'].lower() != "info":

 self.username_select.error = True

 else:

 self.username_select.text = ""

 else:

 self.username_select.error = True

 def add_friend(self, username):

 data = {'friend_username': username}

 request(sio, session).emit('friend_add_request', data, None)

 message = f"{session.status['level']}: {session.status['message']}"

Jack Leverett 7714 50639

459

 Snackbar(text=message).open()

 self.load_content()

 def switch_to_friend(self, app, username=None, direction='left'):

 app.set_screen(self.friend_page.name, direction)

 app.sm.remove_widget(self)

Friend END

OCCUPATION START

class ManageOccupationChange(OccupationChange):

 def submit(self):

 if self.current_selection:

 data = {'occupation_id': occupations[i]['occupation_id'], 'username':

self.username_select.text}

 request(sio, session).emit('occupation_set', data)

 message = f"{session.status['level']}: {session.status['message']}"

 Snackbar(text=message).open()

 if session.status['level'].lower() != "info":

 self.username_select.error = True

 else:

 message = "No selection made"

 Snackbar(text=message).open()

class BaseOccupationItem(ThreeLineAvatarIconListItem):

 def __init__(self, occupation_id, obj=None, **kwargs):

 super().__init__(**kwargs)

 self.occupation_id = occupation_id

 self.page_obj = obj

 data = {'occupation_id': self.occupation_id}

class OccupationItem(BaseOccupationItem):

 def edit(self):

 self.page_obj.occupation_edit(self.occupation_id, self.text, self.second-

ary_text)

 def delete(self):

 self.page_obj.occupation_delete(self.occupation_id)

 self.page_obj.load_content()

class OccupationRequestItem(BaseOccupationItem):

 def refresh_content(self):

 self.page_obj.load_content()

 def accept(self):

 self.verdict("approve")

Jack Leverett 7714 50639

460

 def reject(self):

 self.verdict("reject")

 def verdict(self, verdict):

 data = {'username': self.text}

 request(sio, session).emit('occupation_'+verdict+'_request', data, None)

 self.refresh_content()

class OccupationEdit(MDBoxLayout):

 def __init__(self, page, occupation_id, name, description, **kwargs):

 super().__init__(**kwargs)

 self.name = name

 self.description = description

 self.occupation_id = occupation_id

 self.page = page

 self.load_content()

 def load_content(self):

 self.ids.name.text = self.name

 self.ids.description.text = self.description

 def submit(self):

 data = {'name': self.ids.name.text, 'description': self.ids.descrip-

tion.text, 'occupation_id': self.occupation_id}

 request(sio, session).emit('occupation_edit', data, None)

 self.page.load_content()

 self.page.edit_area.clear_widgets()

 self.page.edit_area.add_widget(OccupationCreate(self))

class OccupationCreate(MDBoxLayout):

 def __init__(self, page, **kwargs):

 super().__init__(**kwargs)

 self.page = page

 def create(self):

 data = {'name': self.ids.name.text, 'description': self.ids.descrip-

tion.text}

 request(sio, session).emit('occupation_create', data, None)

 message = f"{session.status['level']}: {session.status['message']}"

 Snackbar(text=message).open()

 self.ids.name.text = ""

 self.ids.description.text = ""

 self.page.load_content()

class OccupationPage(MDScreen):

 def __init__(self, previous_page, **kwargs):

 super(OccupationPage, self).__init__(**kwargs)

Jack Leverett 7714 50639

461

 self.previous_page = previous_page

 self.load_content()

 def load_content(self):

 occupations = request(sio, session).emit('occupation_get_all')['occupa-

tions']

 self.occupations.clear_widgets()

 if occupations:

 for occupation in occupations:

 item = OccupationItem(occupation['occupation_id'], self, text=occu-

pation['name'], secondary_text=occupation['description'])

 self.occupations.add_widget(item)

 else:

 item = OneLineAvatarIconListItem(text="No occupations")

 self.occupations.add_widget(item)

 self.edit_area.clear_widgets()

 self.edit_area.add_widget(OccupationCreate(self))

 if not setting_info("Help boxes").value:

 for i, option in enumerate(self.toolbar.right_action_items):

 if option[0].lower() == "help":

 self.toolbar.right_action_items.pop(i)

 self.previous_page.load_toolbar()

 def open_help(self, app):

 open_help(app, self, "Occupation")

 def occupation_edit(self, occupation_id, name, description):

 edit_space = OccupationEdit(self, occupation_id, name, description)

 self.edit_area.clear_widgets()

 self.edit_area.add_widget(edit_space)

 def occupation_delete(self, occupation_id):

 data = {'occupation_id': occupation_id}

 request(sio, session).emit('occupation_delete_occupation', data, None)

 Snackbar(text="Occupation deleted").open()

 def switch_to_occupation_request(self, app, direction='left'):

 occupation_request_screen_name = "OccupationRequestPageScreen"

 occupation_request_screen = OccupationRequestPage(self, name=occupation_re-

quest_screen_name)

 app.sm.add_widget(occupation_request_screen)

 app.set_screen(occupation_request_screen_name, direction)

 def back(self, app, direction="right"):

Jack Leverett 7714 50639

462

 app.set_screen("HomePageScreen", direction)

 app.sm.remove_widget(self)

class OccupationRequestPage(MDScreen):

 def __init__(self, previous_page, **kwargs):

 super(OccupationRequestPage, self).__init__(**kwargs)

 self.previous_page = previous_page

 self.load_content()

 def load_content(self):

 requests = request(sio, session).emit('occupation_get_all_requests')['re-

quests']

 self.change_requests.clear_widgets()

 if requests:

 for request_info in requests:

 data = {'occupation_id': request_info['occupation_id']}

 occupation = request(sio, session).emit('occupation_get', data)

 occupation_request = OccupationRequestItem(request_info['occupa-

tion_id'], self, text=request_info['username'], secondary_text = occupa-

tion['name'], tertiary_text=occupation['description'])

 self.change_requests.add_widget(occupation_request)

 else:

 self.change_requests.add_widget(OneLineAvatarIconListItem(text="No re-

quests"))

 def back(self, app, direction='right'):

 app.set_screen(self.previous_page.name, direction)

 app.sm.remove_widget(self)

OCCUPATION END

TEAM START

class LeaderItem(OneLineAvatarIconListItem):

 def __init__(self, leader_username, page=None, **kwargs):

 super().__init__(**kwargs)

 self.page = page

 self.leader_username = leader_username

 self.text = leader_username

 def delete(self):

 data = {'leaders': [{'username': self.leader_username}]}

 request(sio, session).emit('team_delete_leaders', data, None)

 self.page.load_content()

class AddLeaderButton(MDRaisedButton):

 def __init__(self, page=None, **kwargs):

Jack Leverett 7714 50639

463

 super().__init__(**kwargs)

 self.page = page

 def add_leader(self):

 self.page.button_to_add()

class ChangeNameButton(MDRaisedButton):

 def __init__(self, page=None, **kwargs):

 super().__init__(**kwargs)

 self.page = page

 def change_name(self):

 self.page.button_to_add("name")

class AddLeader(MDBoxLayout):

 def __init__(self, page=None, **kwargs):

 super().__init__(**kwargs)

 self.page = page

 def submit(self):

 data = {'leaders': [{'username': self.ids.username.text}]}

 request(sio, session).emit('team_set', data, None)

 self.page.add_to_button()

class ChangeName(MDBoxLayout):

 def __init__(self, page=None, **kwargs):

 super().__init__(**kwargs)

 self.page = page

 def submit(self):

 team_data = {'name': self.ids.name.text}

 request(sio, session).emit('team_set', team_data, None)

 self.page.add_to_button()

class TeamPage(MDScreen):

 def __init__(self, previous_page, username, **kwargs):

 super(TeamPage, self).__init__(**kwargs)

 self.previous_page = previous_page

 self.username = username

 self.load_content()

 def load_content(self):

 server = request(sio, session)

 leaders = []

 members = []

 leaders_info = server.emit('team_get_leaders')

Jack Leverett 7714 50639

464

 if dict_key_verify(leaders_info, 'leaders'):

 leaders = leaders_info['leaders']

 members_info = server.emit('team_get_members')

 if dict_key_verify(members_info, 'members'):

 members = members_info['members']

 team = server.emit('team_get')

 self.members.clear_widgets()

 self.leaders.clear_widgets()

 self.edit_area.clear_widgets()

 if leaders:

 for leader in leaders:

 item = LeaderItem(leader['username'], self)

 self.leaders.add_widget(item)

 else:

 item = OneLineAvatarIconListItem(text="No members")

 self.leaders.add_widget(item)

 self.level = server.emit('auth_get')['level']

 if self.level != "member" or self.username in leaders:

 if members:

 self.edit_area.add_widget(ChangeNameButton(self))

 self.edit_area.add_widget(AddLeaderButton(self))

 if members:

 self.team_name.text = team['name']

 for member in members:

 item = OneLineAvatarIconListItem(text=member['username'])

 self.members.add_widget(item)

 if not self.members:

 item = OneLineAvatarIconListItem(text="No members")

 self.members.add_widget(item)

 else:

 item = OneLineAvatarIconListItem(text="No members")

 self.members.add_widget(item)

 if self.team_name.text == "":

 self.team_name.text = "No team"

 if not setting_info("Help boxes").value:

 for i, option in enumerate(self.toolbar.right_action_items):

 if option[0].lower() == "help":

 self.toolbar.right_action_items.pop(i)

 self.previous_page.load_toolbar()

 def button_to_add(self, input_mode="leader"):

Jack Leverett 7714 50639

465

 self.edit_area.clear_widgets()

 if input_mode == "leader":

 add_widget = AddLeader(self)

 elif input_mode == "name":

 add_widget = ChangeName(self)

 self.edit_area.add_widget(add_widget)

 def add_to_button(self):

 self.load_content()

 def open_help(self, app):

 open_help(app, self, "Team")

 def back(self, app, direction="right"):

 app.set_screen("HomePageScreen", direction)

 app.sm.remove_widget(self)

TEAM END

Auth START

class Auth():

 def load_content(self, obj, obj_id):

 for field in obj.fields:

 if "password" in field.lower():

 auth_field = PasswordField(info_type=field)

 else:

 auth_field = AuthField(info_type=field)

 obj_id.add_widget(auth_field)

 obj.auth_field_objs.append(auth_field)

class PasswordField(MDRelativeLayout):

 def __init__(self, info_type=None, **kwargs):

 super().__init__(**kwargs)

 self.info_type = info_type.lower()

 self.load_content()

 def load_content(self):

 self.ids.password_field.hint_text = self.info_type.capitalize()

class AuthField(MDTextField):

 def __init__(self, info_type=None, **kwargs):

 super().__init__(**kwargs)

 self.info_type = info_type.lower()

 self.load_content()

 def load_content(self):

 self.hint_text = self.info_type.capitalize()

Jack Leverett 7714 50639

466

 def change_hint(self, text):

 self.hint_text = text

class AuthButton(MDRaisedButton):

 def __init__(self, function=None, text=None, **kwargs):

 super().__init__(**kwargs)

 self.function = function

 self.text = text

 def action(self, app):

 self.function(app)

 def change_text(self, text):

 self.text = text

class LoginPage(MDScreen):

 def __init__(self, app, **kwargs):

 super(LoginPage, self).__init__(**kwargs)

 self.app = app

 self.fields = ["Username", "Password"]

 self.auth_field_objs = []

 self.register_page = None

 self.logged_in = False

 self.load_content()

 self.login_token()

 def load_content(self):

 Auth().load_content(self, self.login_view)

 self.login_view.add_widget(AuthButton(self.login, 'Login'))

 self.login_view.add_widget(AuthButton(self.register, 'Register'))

 def login_token(self):

 results = db().execute("SELECT * FROM tokens")

 data = {'logged_in': False}

 if results:

 for result in results:

 token = result[0]

 expire = float(result[2])

 if timestamp().now > float(expire):

 db().execute("DELETE FROM tokens WHERE token = ?", (token,))

 else:

 info = {'token': token}

 data = request(sio, session).emit("login", info)

 if data['logged_in']:

Jack Leverett 7714 50639

467

 username = request(sio, session).emit("auth_get", {'items':

['username']})['username']

 self.login_confirmation(self.app, data, username)

 def login(self, app):

 username = self.auth_field_objs[0].text

 password = self.auth_field_objs[1].text

 if not username and not password:

 username = "user"

 password = "pass"

 info = {'username': username, 'password': password}

 data = request(sio, session).emit('login', info)

 self.login_confirmation(app, data, username)

 def login_confirmation(self, app, data, username):

 message = f"{session.status['level']}: {session.status['message']}"

 if data['logged_in'] == True:

 app.switch_to_homepage("down", username)

 session.username = username

 session.level = request(sio, session).emit('auth_get')['level']

 self.logged_in = True

 else:

 for field in self.auth_field_objs:

 field.error = True

 self.logged_in = False

 Snackbar(text=message).open()

 def register(self, app):

 register_page = RegisterPage(name='RegisterPageScreen')

 app.sm.add_widget(register_page)

 app.set_screen('RegisterPageScreen', 'left')

class RegisterPage(MDScreen):

 def __init__(self, **kwargs):

 super(RegisterPage, self).__init__(**kwargs)

 self.fields = ["Username", "Password", "Re-enter Password", "Registration

Code"]

 self.auth_field_objs = []

 self.load_content()

 self.mode = "member"

 def load_content(self):

 Auth().load_content(self, self.register_view)

 self.register_view.add_widget(AuthButton(self.register, 'Register'))

 self.mode_button = AuthButton(self.mode, 'Admin Register')

 self.register_view.add_widget(self.mode_button)

Jack Leverett 7714 50639

468

 def register(self, app):

 info_points = ['username', 'password', 'repassword', 'key']

 info = {point: self.auth_field_objs[i].text for i, point in enumer-

ate(info_points)}

 if self.mode == "member":

 event = "register"

 else:

 event = "admin_register"

 data = request(sio, session).emit(event, info)

 self.register_confirmation(data, app)

 def register_confirmation(self, data, app):

 message = f"{session.status['level']}: {session.status['message']}"

 if data['is_registered'] == True:

 app.set_screen("LoginPageScreen", "right")

 app.sm.remove_widget(self)

 else:

 Snackbar(text=message).open()

 for field in self.auth_field_objs:

 field.error = True

 Snackbar(text=message).open()

 def mode(self, app):

 for field in self.auth_field_objs:

 if "code" in field.info_type:

 break

 if self.mode == "member":

 self.mode_button.change_text("Member Register")

 field.hint_text = "Admin Registration Code"

 self.mode = "admin"

 else:

 self.mode_button.change_text("Admin Register")

 field.hint_text = "Registration Code"

 self.mode = "member"

class ServerPage(MDScreen):

 def __init__(self, **kwargs):

 super(ServerPage, self).__init__(**kwargs)

 def get_server_code(self):

 response = request(sio, session).emit("server_code_get")

 if dict_key_verify(response, 'server_code'):

 session.server_code = response['server_code']

 else:

 message = "WARNING: Badly behaving server, please contact administra-

tor"

 Snackbar(text=message).open()

Jack Leverett 7714 50639

469

 def connect(self, app):

 connected = start_client(sio, self.url.text)

 if not connected:

 self.url.error = True

 message = "Unsuccessful connection"

 else:

 self.get_server_code()

 app.switch_to_decrypt()

 message = "Successful connection"

 Snackbar(text=message).open()

class ShareInput(MDBoxLayout):

 pass

class DecryptPage(MDScreen):

 def __init__(self, app, **kwargs):

 super(DecryptPage, self).__init__(**kwargs)

 self.share_inputs = []

 self.min_shares = None

 self.app = app

 self.load_content()

 def load_content(self):

 mode_info = request(sio, session).emit("get_mode")

 self.sss_enabled = mode_info['sss']

 if self.sss_enabled:

 self.min_shares = int(mode_info['min_shares'])

 for i in range(self.min_shares):

 share_input = ShareInput()

 self.share_inputs.append(share_input)

 self.input_area.add_widget(share_input)

 def submit(self):

 encrypt_data = {'shares': None, 'password': None}

 data = {'success': False}

 if self.en_password.text:

 encrypt_data['password'] = self.en_password.text

 data = request(sio, session).emit("decrypt", encrypt_data)

 elif self.sss_enabled:

 encrypt_data['shares'] = []

 for share in self.share_inputs:

 try:

 share_num = int(share.share_num.text)

 share_secret = int(share.share_secret.text)

 except:

 share.share_num.error = True

Jack Leverett 7714 50639

470

 share.share_secret.error = True

 continue

 encrypt_data['shares'].append({'num': share_num, 'secret':

share_secret})

 if len(encrypt_data['shares']) >= self.min_shares:

 data = request(sio, session).emit("decrypt", encrypt_data)

 if data['success']:

 self.app.sm.remove_widget(self)

 self.app.switch_to_login()

 else:

 self.en_password.error = True

 if encrypt_data['shares']:

 for share in self.share_inputs:

 share.share_num.error = True

 share.share_secret.error = True

Auth END

class FirstTimePage(MDScreen):

 def __init__(self, **kwargs):

 super(FirstTimePage, self).__init__(**kwargs)

 self.load_content()

 def load_content(self):

 data = {'items': ['level']}

 level = request(sio, session).emit("auth_get", data)['level']

 if level == "member":

 occupation_change = UserOccupationChange(self)

 occupation_change.ids.new_request_area.remove_widget(occupa-

tion_change.ids.new_request_title)

 elif level == "management" or level == "admin":

 occupation_change = ManagementOccupationChange(self)

 self.ids.step3.add_widget(occupation_change)

 ntfy_topic = request(sio, session).emit("get_ntfy_topic")['topic']

 self.ids.topic_name.text = ntfy_topic

 def set_role(self):

 if self.role_input.text:

 request(sio, session).emit("profile_set", {'role': self.role_in-

put.text}, None)

 def set_name(self):

 if self.name_input.text:

 request(sio, session).emit("profile_set", {'name': self.name_in-

put.text}, None)

Jack Leverett 7714 50639

471

 def textbox_to_picture(self):

 pass

 def done(self, app):

 self.set_name()

 self.set_role()

 app.set_screen("HomePageScreen", "down")

 app.sm.remove_widget(self)

class BeOpen(MDApp):

 def set_screen(self, screen, trans):

 self.sm.current = screen

 self.sm.transition.direction = trans

 def build(self):

 Builder.load_file('./modules/ui/beopen.kv')

 self.theme_cls.material_style = "M3"

 self.theme_cls.theme_style = "Light"

 self.theme_cls.primary_palette = "Orange"

 self.homepage_screen = None

 self.login_screen = None

 self.sm = MDScreenManager()

 self.sm.add_widget(ServerPage(name='ServerPageScreen'))

 Window.size = (800, 1000)

 return self.sm

 def disconnected(self):

 self.sm.clear_widgets()

 stop_client(sio)

 self.sm.add_widget(ServerPage(name='ServerPageScreen'))

 def switch_to_comments(self, transition='up'):

 self.comments_screen = CommentsPage(name='CommentsPageScreen')

 self.sm.add_widget(self.comments_screen)

 self.set_screen('CommentsPageScreen', transition)

 def switch_to_homepage(self, transition=None, username=None):

 if self.homepage_screen:

 self.sm.remove_widget(self.homepage_screen)

 self.homepage_screen = HomePage(username, self, name='HomePageScreen')

 self.sm.add_widget(self.homepage_screen)

Jack Leverett 7714 50639

472

 if self.first_time_login():

 first_time_page_screen_name = "FirstTimePage"

 first_time_page_screen =

FirstTimePage(name=first_time_page_screen_name)

 self.sm.add_widget(first_time_page_screen)

 self.set_screen(first_time_page_screen_name, "down")

 else:

 self.sm.switch_to(self.homepage_screen)

 def switch_to_decrypt(self):

 crypt_data = request(sio, session).emit("get_mode")

 if crypt_data['mode'] == "decrypt":

 decrypt_screen_name = 'DecryptPageScreen'

 decrypt_screen = DecryptPage(self, name=decrypt_screen_name)

 self.sm.add_widget(decrypt_screen)

 self.set_screen(decrypt_screen_name, "down")

 else:

 self.switch_to_login()

 def switch_to_login(self, transition="up"):

 login_screen_name = "LoginPageScreen"

 if self.login_screen:

 self.sm.remove_widget(self.login_screen)

 self.login_screen = LoginPage(self, name=login_screen_name)

 if not self.login_screen.logged_in:

 self.sm.add_widget(self.login_screen)

 self.set_screen(login_screen_name, transition)

 def comments_to_homepage(self, transition='down'):

 self.set_screen('HomePageScreen', transition)

 self.sm.remove_widget(self.comments_screen)

 def first_time_login(self):

 occupation = request(sio, session).emit("occupation_get")

 profile = request(sio, session).emit("profile_get", {'items': ['role',

'name']})

 friends = request(sio, session).emit("friend_get")['friends']

 if not occupation['occupation_id'] and not friends and not profile['role']

and not profile['name']:

 return True

 else:

 return False

 first_time_page_screen_name = "FirstTimePage"

 first_time_page_screen =

FirstTimePage(name=first_time_page_screen_name)

Jack Leverett 7714 50639

473

 self.sm.add_widget(first_time_page_screen)

 self.set_screen(first_time_page_screen_name, "down")

#================== kivy END ==================

def create_settings():

 settings = [{'title': "Help boxes",

 'description': "Turn of the help buttons that appear as clicka-

ble question marks",

 'default_value': True,

 'icon': "help"}]

 settings_db = db()

 saved_settings = settings_db.execute("SELECT title FROM settings")

 for setting in settings:

 if saved_settings:

 if (setting['title'],) in saved_settings:

 continue

 if isinstance(setting['default_value'], bool):

 settings_db.execute("INSERT INTO settings (title, description,

state, icon) VALUES (?, ?, ?, ?)", (setting['title'], setting['description'], set-

ting['default_value'], setting['icon']))

 else:

 settings_db.execute("INSERT INTO settings (title, description,

value, icon) VALUES (?, ?, ?, ?)", (setting['title'], setting['description'], set-

ting['default_value'], setting['icon']))

def create_directories():

 paths = ["data", "data/images"]

 for path in paths:

 if not os.path.exists(path):

 os.mkdir(path)

def clean_directories():

 paths = ["data/images"]

 for path in paths:

 for file in os.listdir(path):

 os.remove(os.path.join(path, file))

def setup():

 create_directories()

 clean_directories()

 create_settings()

def post_login():

 db().execute("DELETE FROM tokens WHERE username != ?", (session.username,))

Jack Leverett 7714 50639

474

def main():

 setup()

 BeOpen().run()

 stop_client(sio)

if __name__ == "__main__":

 main()

modules/handler/info.py

from PIL import Image

import io

class profile():

 def __init__(self):

 pass

 def username():

 pass

 def name(self, first_name=None, last_name=None):

 if first_name:

 self.first_name

 if last_name:

 self.last_name

 if first_name and last_name:

 pass

class image():

 def __init__(self, post_id):

 self.post_id = post_id

 self.path = None

 def load(self, image_bytes):

 image_formats = ['png', 'jpg']

 for form in image_formats:

 try:

 self.path = f"data/images/{self.post_id}.{form}"

 with Image.open(io.BytesIO(image_bytes)) as recieved:

 recieved.save(self.path)

 break

 except:

 self.path = None

Jack Leverett 7714 50639

475

 def delete(self):

 os.remove(self.path)

modules/handler/request.py

MODULES

from modules.session.session import wait

def dict_key_verify(dictionary, keys, mode="and", *args, **kwargs):

 if mode != "and" and mode != "or":

 mode = "and"

 if type(keys) != list:

 keys = [keys]

 verified = []

 if type(keys) != list:

 keys = [keys]

 for key in keys:

 if type(dictionary) != dict or key not in dictionary or not diction-

ary[key]:

 verified.append(False)

 else:

 verified.append(True)

 if mode == "and":

 if all(verified) == True:

 return True

 if mode == "or":

 if True in verified:

 return True

 return False

MODULES

class request():

 def __init__(self, sio, session=None, username=None):

 self.sio = sio

 self.session = session

 self.username = username

 def callback(self, callback, data):

 self.session.transfer = data

 def emit(self, event, info=None, callback_func="self.callback"):

 if callback_func == "self.callback":

 callback_func = self.callback

 if callback_func == None:

 self.sio.emit(event, info)

Jack Leverett 7714 50639

476

 return

 else:

 self.sio.emit(event, info, callback=callback_func)

 wait(self.session).wait()

 return self.session.transfer

class account_page(request):

 def refresh(self):

 info = self.get_profile()

 return info

 def get_profile(self):

 info = {'username': self.username, 'name': self.username, 'role': "", 'oc-

cupation_name': "", 'team_name': "", 'biography': ""}

 profile_data = {'username': self.username, 'items': ['name', 'role', 'biog-

raphy']}

 profile_info = self.emit('profile_get', profile_data)

 occupation_data = {'username': self.username, 'items': ['name']}

 occupation_info = self.emit('occupation_get', occupation_data)

 if dict_key_verify(occupation_info, 'name'):

 info['occupation_name'] = occupation_info['name']

 team_data = {'username': self.username, 'items': ['name']}

 team_info = self.emit('team_get', team_data)

 if dict_key_verify(team_info, 'name'):

 info['team_name'] = team_info['name']

 team_leader_info = self.emit('team_get_leaders')

 if dict_key_verify(team_leader_info, 'leaders'):

 if self.username in team_leader_info['leaders']:

 info['team_name'] += " (team lead)"

 for key in profile_info.keys():

 if dict_key_verify(profile_info, key):

 info[key] = profile_info[key]

 return info

 def set_profile(self, item, new_value, username=None):

 profile = ['name', 'role', 'biography']

 occupation = ['occupation_name']

 team = ['team_name']

 if item in profile:

 event = 'profile_set'

Jack Leverett 7714 50639

477

 if item == 'name':

 new_values = new_value.split(" ")

 if len(new_values) == 2:

 items = ['first_name', 'last_name']

 if item in occupation:

 event = 'occupation_set'

 item = 'name'

 if item in team:

 event = 'team_set'

 item = 'name'

 if type(item) != list:

 items = [item]

 if type(new_value) != list:

 new_values = [new_value]

 for value, item in zip(new_values, items):

 data = {'username': None,'items': [item], item: value}

 if username:

 data['username'] = username

 self.emit('profile_set', data, None)

modules/session/session.py

import time

import sqlite3

class session_info():

 def __init__(self):

 self._logged_in = False

 self.username = None

 self.server_code = None

 self.cycle_count = 0

 self.auth_tokens = []

 self.transfer = None

 self.status = None

 @property

 def logged_in(self):

 return self._logged_in

 @logged_in.setter

 def logged_in(self, value):

 self._logged_in = value

 self.cycle_count += 1

Jack Leverett 7714 50639

478

 @property

 def transfer(self):

 return self._transfer

 @transfer.setter

 def transfer(self, value):

 self._transfer = value

 self.cycle_count += 1

 def clear(self):

 db().execute("DELETE FROM tokens")

 self.__init__()

class wait():

 def __init__(self, session):

 self.session = session

 self.update()

 def update(self):

 self.last = self.session.cycle_count

 self.current = self.session.cycle_count

 def current_update(self):

 self.current = self.session.cycle_count

 def wait(self, status=None):

 while self.last == self.current:

 time.sleep(0.05)

 self.current_update()

 return

 def wait_username(self):

 while not self.session.username:

 time.sleep(0.05)

 return

class db():

 def __init__(self):

 self.path = "./data/database.db"

 self._create()

 def _create(self):

 con, cur = self._connect()

 cur.execute("""CREATE TABLE IF NOT EXISTS tokens (

 token TEXT NOT NULL PRIMARY KEY,

 username TEXT NOT NULL,

 expire TEXT NOT NULL

Jack Leverett 7714 50639

479

)""")

 cur.execute("""CREATE TABLE IF NOT EXISTS settings (

 title TEXT NOT NULL PRIMARY KEY,

 description TEXT,

 state BOOL,

 value TEXT,

 icon TEXT

)""")

 self._close(con)

 def _connect(self):

 con = sqlite3.connect(self.path)

 cur = con.cursor()

 return con, cur

 def execute(self, command, values=None):

 rez = None

 con, cur = self._connect()

 if values:

 cur.execute(command, values)

 else:

 cur.execute(command)

 if "SELECT" in command:

 rez = cur.fetchall()

 self._close(con)

 if rez:

 return rez

 def _commit(self, con):

 con.commit()

 def _close(self, con):

 con.commit()

 con.close()

class setting():

 def __init__(self, title):

 self.title = title

 self.db = db()

 self.__fetch()

 def __fetch(self):

Jack Leverett 7714 50639

480

 setting_data = self.db.execute("SELECT * FROM settings WHERE title = ?",

(self.title,))

 if setting_data:

 self.title = setting_data[0][0]

 self.description = setting_data[0][1]

 if not self.description:

 self.description = ""

 if setting_data[0][3] != None:

 self.value = setting_data[0][3]

 self.type = "text_field"

 else:

 self.value = setting_data[0][2]

 self.type = "swtich"

 if setting_data[0][4] != None:

 self.icon = setting_data[0][4]

 else:

 self.icon = "cog"

 def change_value(self, new_value):

 if self.type == "swtich" and isinstance(new_value, bool):

 self.db.execute("UPDATE settings SET state = ?", (new_value,))

 elif self.type == "text_field" and isinstance(new_value, str):

 self.db.execute("UPDATE settings SET value = ?", (new_value,))

modules/session/time.py

from datetime import date, timedelta, datetime

class timestamp():

 @property

 def start(self):

 value = self.get_date_timestamp()

 self._start = value

 return self._start

 @start.setter

 def start(self, value):

 value = self.get_date_timestamp()

 self._start = value

 @property

 def end(self):

 value = self.get_date_timestamp(day_mod=1) - 1

 self._end = value

Jack Leverett 7714 50639

481

 return self._end

 @end.setter

 def end(self, value):

 value = self.get_date_timestamp(day_mod=1) - 1

 self._end = value

 @property

 def now(self):

 value = self.get_timestamp()

 self._now = value

 return value

 @now.setter

 def now(self, value):

 value = self.get_timestamp()

 self._now = value

 @property

 def date(self):

 date = str(datetime.now().date())

 self._date = date

 return self._date

 @date.setter

 def date(self, value):

 self._date = value

 def get_date_timestamp(self, year_mod=0, month_mod=0, day_mod=0, *args,

**kwargs):

 modifier = [year_mod, month_mod, day_mod]

 now_mod = (datetime.now()+timedelta(days=day_mod))

 date = (str(now_mod.date()).replace("-0", "-")).split("-")

 date = [int(string) for string in date]

 timestamp = datetime(date[0], date[1], date[2]).timestamp()

 return timestamp

 def get_timestamp(self):

 now = (float(datetime.now().timestamp()))

 return now

 def get_date(self, timestamp):

 date = datetime.utcfromtimestamp(timestamp).strftime('%Y-%m-%d')

 return date

 def get_days_month(self, month, year):

 pass

Jack Leverett 7714 50639

482

modules/ui/beopen.kv

#UTILITY Widgets
<ScrollingView@MDScrollView>
 do_scroll_y: True
 do_scroll_x: False

<ScrollArea@MDFloatLayout>
 padding: 20
 size_hint_y: None

<ScrollAreaGrid@MDGridLayout>
 padding: 10
 cols: 1
 size_hint_y: None

<ScrollAreaBox@ScrollAreaGrid>
 MDBoxLayout:
 orientation: "vertical"

<ScrollAreaBoxLayout@ScrollAreaBox>

<HelpDialog>
 text: "Help box"
 text_color: "Black"

<ExpandText>
 text: "Expanded text"
 font_style: "H6"

<ExpandPage>:
 toolbar: toolbar
 text_area: text_area

 MDBoxLayout:
 orientation: "vertical"

 MDTopAppBar:
 id: toolbar
 title: ""
 anchor_title: "right"
 left_action_items: [["arrow-left", lambda x: root.back(app)]]

 MDBoxLayout:
 orientation: "vertical"
 padding: 10

Jack Leverett 7714 50639

483

 ScrollingView:
 ScrollArea:
 id: text_area

<SwiperMagicButton>
 opposite_colors: True
 icon_size: 35

<MemoriesSwiper>
 RelativeLayout:
 orientation: "horizontal"

 FitImage:
 source: ""
 radius: [20,]

 MDBoxLayout:
 adaptive_height: True
 orientation: "horizontal"
 pos_hint: {'top': 1}
 spacing: 12
 padding: 10

 MDLabel:
 text: "99"
 font_style: "H5"
 font_size: 20
 size_hint_y: None
 height: self.texture_size[1]
 pos_hint: {"center_y": .5}
 opposite_colors: True

<MemoriesMonth>
 orientation: "vertical"
 spacing: 10

 MDLabel:
 text: "Month placeholder"
 font_style: "H5"
 font_size: 40
 size_hint_y: 0.1

 MDGridLayout:
 size_hint_y: 0.9
 cols: 5
 spacing: 10
 row_default_height: root.get_memories_swiper_height()

Jack Leverett 7714 50639

484

<HomeSwiper>
 account_button: account_button
 profile_area: profile_area
 RelativeLayout:
 orientation: "horizontal"

 FitImage:
 id: content
 source: ""
 radius: [20,]

 MDBoxLayout:
 adaptive_height: True
 orientation: "horizontal"
 spacing: 12

 MDBoxLayout:
 orientation: "horizontal"
 adaptive_width: True
 adaptive_height: True

 SwiperMagicButton:
 id: like
 icon: "heart-outline"
 on_release:
 root.like()

 MDLabel:
 id: like_number
 text: "0"
 font_style: "H5"
 text_color: "white"
 theme_text_color: "Custom"
 pos_hint: {'center_x': 0.5, 'center_y': 0.5}

 MDBoxLayout:
 adaptive_height: True
 orientation: "horizontal"

 SwiperMagicButton:
 icon: "comment-outline"
 on_release:
 root.switch_to_comments(app)

 MDLabel:
 id: caption
 text: "Caption placeholder"

Jack Leverett 7714 50639

485

 adaptive_height: True
 font_style: "H5"
 text_color: "white"
 theme_text_color: "Custom"
 pos_hint: {'center_x': 0.5, 'center_y': 0.5}

 MDBoxLayout:
 id: profile_area
 adaptive_height: True
 orientation: "horizontal"
 pos_hint: {'top': 1}
 spacing: "12dp"

 SwiperMagicButton:
 id: account_button
 icon: "account-circle"
 on_release: root.post_options(app)

 MDLabel:
 id: username
 text: "Name Placeholder"
 font_style: "H5"
 size_hint_y: None
 height: self.texture_size[1]
 pos_hint: {"center_y": .5}
 opposite_colors: True

<NoPostLabel>
 MDBoxLayout:
 orientation: "vertical"

 MDLabel:
 text: "No posts :("
 font_style: "H4"
 halign: "center"

<HomeLoadButton>
 padding: 30

 MDRaisedButton:
 size_hint_x: 1
 pos_hint: {"center_x": .5, "center_y": .95}
 text: "Load more"
 on_release:
 root.load_content()

<OccupationPageButton>
 text: "Occupations"

Jack Leverett 7714 50639

486

 pos_hint: {'center_x': 0.5}
 on_release: root.switch_to_occupation(app)
 size_hint_x: 0.8

<OrganisationBottomItem>
 occupation_button_area: occupation_button_area
 team_button_area: team_button_area
 name: "Organisation"
 text: "Organisation"
 icon: "account-group"
 on_tab_press: root.page.on_tab_press(self.name)

 MDBoxLayout:
 orientation: "vertical"
 padding: 20

 ScrollingView:
 ScrollAreaBoxLayout:
 spacing: 50

 MDBoxLayout:
 id: occupation_button_area

 MDBoxLayout:
 id: team_button_area

 MDRaisedButton:
 text: "Teams"
 pos_hint: {'center_x': 0.5}
 on_release: root.switch_to_team(app)
 size_hint_x: 0.8

<MemoryLayout>
 post_area: post_area
 orientation: "vertical"
 spacing: 10

 MDIconButton:
 icon: "arrow-up"
 on_release: root.day_list.back()

 MDBoxLayout:
 id: post_area
 orientation: "vertical"

<MonthListItem>
 on_release: root.day_view()

Jack Leverett 7714 50639

487

<MonthList>
 scroll: scroll
 orientation: "vertical"
 spacing: 10

 MDScrollView:
 do_scroll_x: False
 do_scroll_y: True

 MDList:
 id: scroll

<DayListItem>
 on_release: root.post_open()

<DayList>
 scroll: scroll
 orientation: "vertical"
 spacing: 10

 MDIconButton:
 icon: "arrow-up"
 on_release: root.back()

 MDScrollView:
 do_scroll_x: False
 do_scroll_y: True

 MDList:
 id: scroll

<HomePage>:
 home_swiper_scroll:home_swiper_scroll
 home_swiper_grid:home_swiper_grid
 bottom_navigation: bottom_navigation
 toolbar: toolbar
 root_scroll: root_scroll

 MDBoxLayout:
 orientation: "vertical"

 MDTopAppBar:
 title: "BeOpen"
 id: toolbar
 anchor_title: "left"
 right_action_items: [["help", lambda x: root.open_help(app)], ["cog", lambda x:
root.switch_to_settings(app, 'left')]]

Jack Leverett 7714 50639

488

 left_action_items: [["account-circle", lambda x: root.switch_to_account(app,
direction='right')],["bell", lambda x: root.switch_to_notifications(app, direction='right')]]
 md_bg_color: app.theme_cls.primary_color

 MDBottomNavigation:
 id: bottom_navigation

 MDBottomNavigationItem:
 name: "Home"
 text: "Home"
 icon: "home"
 on_tab_press: root.on_tab_press(self.name)

 MDBoxLayout:
 padding: 20
 size_hint: 1, 1

 MDScrollView:
 id:home_swiper_scroll
 do_scroll_x: False
 do_scroll_y: True

 MDGridLayout:
 id:home_swiper_grid
 cols: 1
 spacing: 10
 adaptive_height: True

 MDBottomNavigationItem:
 name: "Memories"
 text: "Memories"
 icon: "image-multiple"
 on_tab_press: root.on_tab_press(self.name)

 MDBoxLayout:
 padding: 20

 MDBoxLayout:
 id: root_scroll
 orientation: "vertical"

 MDBottomNavigationItem:
 name: "Stats"
 text: "Stats"
 icon: "poll"
 on_tab_press: root.on_tab_press(self.name)

 MDLabel:

Jack Leverett 7714 50639

489

 text: "Coming Soon!"
 font_size: "50sp"
 halign: "center"

Comments Widgets
<Comment>
 like_button: like_button
 profile_button: profile_button
 like_count: like_count
 container: container
 text: ""
 secondary_text: ""
 on_release: root.expand(app)
 on_size:
 self.ids._right_container.width = container.width
 self.ids._right_container.x = container.width

 IconLeftWidget:
 id: profile_button
 icon: "account"
 on_release: root.action_options(app)

 CommentContainer:
 id: container
 adaptive_width: True

 MDIconButton:
 id: like_button
 icon: "heart-outline"
 on_release: root.like()

 MDLabel:
 id: like_count
 text: "3000"
 halign: "right"

<CommentsPage>:
 comment_stack: comment_stack
 comment_field: comment_field

 MDBoxLayout:
 orientation: "vertical"

 MDBoxLayout:
 padding: 10
 size_hint: 1, 0.15
 orientation: "vertical"

Jack Leverett 7714 50639

490

 AnchorLayout:
 anchor_x: 'center'
 anchor_y: 'top'

 MDIconButton:
 icon: "menu-up"
 icon_size: "64sp"
 icon_color: app.theme_cls.primary_color
 on_release:
 root.switch_to_home(app)

 MDBoxLayout:
 orientation: "vertical"
 padding: 10
 spacing: 20

 ScrollingView:
 MDList:
 id: comment_stack

 MDRelativeLayout:
 size_hint_y: None
 height: comment_field.height
 pos_hint: {"bottom": 0.5}

 MDTextField:
 id: comment_field
 hint_text: "Enter your comment here..."
 icon_left: "comment"
 mode: "rectangle"

 MDIconButton:
 icon: "send"
 post_hint: {"center_y": 0.5}
 pos: comment_field.width - self.width + dp(8), 0
 on_release: root.submit()

account widgets
<ProfilePicture>
 size_hint_x: 0.4
 pos_hint: {"center_x": .5}
 source: "data/assets/profile.png"

<InfoChangeBox>
 pos_hint: {"center_y": .5}
 text_field: text_field
 spacing: 10

Jack Leverett 7714 50639

491

 MDTextField:
 id: text_field
 hint_text: "Enter a new value"
 on_text_validate: root.save()
 mode: "rectangle"
 size_hint_x: 0.8
 pos_hint: {"center_y": .5}

 MDRaisedButton:
 text: "Save"
 on_release: root.save()
 size_hint_x: 0.2
 pos_hint: {"center_y": .5}

<InfoChangeBoxOld>
 pos_hint: {"center_y": .5}
 hint_text: "Enter a new value"
 mode: "rectangle"
 on_text_validate:
 self.submit_func()

<InfoEditButton>
 icon: "pencil"
 on_release:
 self.change_info()

<BioEditButton>
 icon: "pencil"
 size_hint_x: 0.1
 pos_hint: {"center_y": .5}
 on_release:
 self.change_info()

<ProfileInfo>
 text: ""
 secondary_text: "None"

<UserOccupationChange>
 orientation: "vertical"
 spacing: 20
 occupation_select: occupation_select
 request_title: request_title
 request_occupation: request_occupation
 request_status: request_status
 request_cancel: request_cancel
 request_button: request_button
 occupation_description: occupation_description

Jack Leverett 7714 50639

492

 MDBoxLayout:
 id: new_request_area
 orientation: "vertical"

 MDLabel:
 id: new_request_title
 text: "new request"
 font_style: 'H5'
 pos_hint: {'center_x': .5}
 size_hint_y: 0.1

 MDBoxLayout:
 orientation: "horizontal"
 size_hint_y: 0.9
 spacing: 10

 MDRaisedButton:
 id: occupation_select
 text: "Select an occupation"
 pos_hint: {'center_x': .5, 'center_y': .5}
 on_release: root.selection_menu()

 MDLabel:
 id: occupation_description
 text: ""
 font_style: 'H6'
 pos_hint: {'center_x': .5, 'center_y': .5}

 MDRaisedButton:
 id: request_button
 text: "Create request"
 pos_hint: {'center_y': .5}
 on_release: root.submit()

 MDBoxLayout:
 orientation: "horizontal"

 MDBoxLayout:
 orientation: "vertical"
 spacing: 10

 MDLabel:
 id: request_title
 text: "current request"
 font_style: 'H5'
 MDLabel:
 id: request_occupation
 text: ""

Jack Leverett 7714 50639

493

 font_style: 'H5'

 MDLabel:
 id: request_status
 text: "Status: No request"
 font_style: 'H6'
 pos_hint: {'right': 1}

 MDRaisedButton:
 id: request_cancel
 text: "Cancel"
 pos_hint: {"center_y": .5}
 on_release: root.cancel()

<ManagementOccupationChange>
 orientation: "vertical"
 spacing: 20
 occupation_select: occupation_select
 occupation_description: occupation_description
 set_button: set_button

 MDBoxLayout:
 orientation: "vertical"

 MDLabel:
 text: "Change occupation"
 font_style: 'H5'
 pos_hint: {'center_x': .5}
 size_hint_y: 0.1

 MDBoxLayout:
 orientation: "horizontal"
 size_hint_y: 0.9
 spacing: 10

 MDRaisedButton:
 id: occupation_select
 text: "Select an occupation"
 pos_hint: {'center_x': .5, 'center_y': .5}
 on_release: root.selection_menu()

 MDLabel:
 id: occupation_description
 text: "Occupation description"
 font_style: 'H6'
 pos_hint: {'center_x': .5, 'center_y': .5}

 MDRaisedButton:

Jack Leverett 7714 50639

494

 id: set_button
 text: "Create request"
 pos_hint: {'center_y': .5}
 on_release: root.submit()

<AccountPage>:
 name: 'account_page_screen'

 toolbar: toolbar
 profile_info_view: profile_info_view
 profile_bio_view: profile_bio_view
 biography_content: biography_content
 above_info: above_info

 MDBoxLayout:
 orientation: "vertical"
 spacing: 10

 MDTopAppBar:
 id: toolbar
 title: "Profile"
 anchor_title: "center"
 left_action_items: [["account-multiple", lambda x: root.switch_to_friend(app)]]
 right_action_items: [["help", lambda x: root.open_help(app)], ["arrow-right", lambda x:
root.back(app, "left")]]
 md_bg_color: app.theme_cls.primary_color

 MDBoxLayout:
 orientation: "vertical"
 size_hint_y: 0.8

 MDBoxLayout:
 orientation: "vertical"
 size_hint_y: 0.70
 padding: 15
 spacing: 10

 MDBoxLayout:
 id: above_info
 size_hint_y: 0.3

 MDScrollView:
 size_hint_y: 0.45

 MDList:
 id: profile_info_view

 MDBoxLayout:

Jack Leverett 7714 50639

495

 size_hint_y: 0.25
 orientation: "vertical"
 spacing: 10

 MDLabel:
 size_hint_y: 0.1
 text: "Biography"
 font_style: "H5"

 MDBoxLayout:
 id: profile_bio_view
 orientation: "horizontal"
 size_hint_y: 0.9

 ScrollView:
 size_hint_x: 0.9
 do_scroll_x: False
 do_scroll_y: True

 MDLabel:
 id: biography_content
 size_hint_y: None
 size: self.texture_size
 text: ""
 font_style: "H6"

Settings widgets
<SettingSwitch>
 setting_title: setting_title
 setting_description: setting_description
 toggle: toggle
 setting_icon: setting_icon

 AnchorLayout:
 anchor_x: 'right'
 anchor_y: 'center'
 padding: 20

 MDBoxLayout:
 orientation: "horizontal"
 adaptive_height: True
 spacing: 20

 MDIcon:
 id: setting_icon
 icon: "language-python"

 MDBoxLayout:

Jack Leverett 7714 50639

496

 orientation: "vertical"
 spacing: 20

 MDLabel:
 id: setting_title
 text: "switch 1"
 font_size: "30sp"
 text_color: 0, 1, 1, 1

 MDLabel:
 id: setting_description
 text: "description text"
 text_color: 0, 0, 1, 1

 MDSwitch:
 id: toggle
 on_active: root.on_toggle(app)

<SettingTextField>
 setting_title: setting_title
 setting_description: setting_description
 input_field: input_field
 setting_icon: setting_icon

 AnchorLayout:
 anchor_x: 'right'
 anchor_y: 'center'
 padding: 20

 MDBoxLayout:
 orientation: "horizontal"
 adaptive_height: True
 spacing: 20

 MDIcon:
 id: setting_icon
 icon: "language-python"

 MDBoxLayout:
 orientation: "vertical"
 spacing: 20

 MDLabel:
 id: setting_title
 text: "switch 1"
 font_size: "30sp"
 text_color: 0, 1, 1, 1

Jack Leverett 7714 50639

497

 MDLabel:
 id: setting_description
 text: "description text"
 text_color: 0, 0, 1, 1

 MDTextField:
 id: input_field
 hint_text: "default hint text"
 helper_text_mode: "on_error"
 helper_text: "default helper text"
 on_text_validate: root.submit_func()

<SettingTextFieldOld>
 hint_text: "default hint text"
 helper_text_mode: "on_error"
 helper_text: "default helper text"
 on_text_validate: root.submit_func()

<ShutdownButton>
 text: "Shutdown server"
 size_hint_x: 0.8
 pos_hint: {'center_x': 0.5}
 on_release: root.shutdown(app)

<SettingsPage>:
 settings_stack: settings_stack
 static_buttons: static_buttons
 toolbar: toolbar

 MDBoxLayout:
 orientation: "vertical"

 MDTopAppBar:
 id: toolbar
 title: "Settings"
 anchor_title: "center"
 left_action_items: [["arrow-left", lambda x: root.back(app)]]
 right_action_items: [["help", lambda x: root.open_help(app)]]
 md_bg_color: app.theme_cls.primary_color

 MDBoxLayout:
 orientation: "vertical"
 padding: 20
 spacing: 10

 MDBoxLayout:
 id: settings_stack
 orientation: "vertical"

Jack Leverett 7714 50639

498

 spacing: 10

 MDBoxLayout:
 orientation: "vertical"
 spacing: 10
 id: static_buttons

 MDRaisedButton:
 text: "Log out"
 size_hint_x: 0.8
 pos_hint: {'center_x': 0.5}
 on_release: root.logout(app)

notification widgets
<NotificationItem>
 text: ""
 secondary_text: ""
 on_release:
 root.expand()

 IconRightWidget:
 icon: "close"
 on_release:
 root.delete()

<NotificationsPage>:
 toolbar: toolbar
 notification_layout: notification_layout
 notification_stack: notification_stack

 MDBoxLayout:
 orientation: "vertical"
 spacing: 10

 MDTopAppBar:
 id: toolbar
 title: "Notifications"
 anchor_title: "center"
 left_action_items: [["refresh", lambda x: root.load_content()]]
 right_action_items: [["help", lambda x: root.open_help(app)], ["arrow-right", lambda x:
root.back(app)]]

 MDBoxLayout:
 id: notification_layout
 orientation: "vertical"
 size_hint_y: 0.9

 MDScrollView:

Jack Leverett 7714 50639

499

 size_hint_y: 1
 do_scroll_y: True

 MDList:
 id: notification_stack

friends widgets
<FriendItem>
 text: "Friend"
 on_release: root.profile(app)

 IconRightWidget:
 icon: "account-remove"
 on_release:
 root.remove()

<FriendPage>:
 toolbar: toolbar
 friend_list: friend_list

 MDBoxLayout:
 orientation: "vertical"
 spacing: 10

 MDTopAppBar:
 id: toolbar
 title: "Friends"
 anchor_title: "center"
 left_action_items: [["help", lambda x: root.open_help(app)]]
 right_action_items: [["arrow-right", lambda x: root.switch_to_account(app)]]

 MDBoxLayout:
 orientation: "vertical"

 MDRaisedButton:
 text: "Requests"
 on_release: root.switch_to_friend_request(app)
 size_hint_x: 0.9
 pos_hint: {'center_x': 0.5}

 ScrollingView:
 MDList:
 id: friend_list

<IncomingRequestItem>
 text: "Incoming Request"
 on_release: root.profile(app)

Jack Leverett 7714 50639

500

 IconLeftWidget:
 icon: "check"
 on_release:
 root.accept()
 IconRightWidget:
 icon: "close"
 on_release:
 root.reject()

<OutgoingRequestItem>
 text: "Outgoing Request"
 on_release: root.profile(app)

 IconRightWidget:
 icon: "close"
 on_release:
 root.cancel()

<RecomendationItem>
 text: "Recomended friend"
 on_release: root.profile(app)

 IconRightWidget:
 icon: "account-plus"
 on_release:
 root.add_friend()

<FriendRequestPage>:
 toolbar: toolbar
 incoming_requests: incoming_requests
 outgoing_requests: outgoing_requests
 recomendations: recomendations
 username_select: username_select

 MDBoxLayout:
 orientation: "vertical"

 MDTopAppBar:
 id: toolbar
 title: "Requests"
 anchor_title: "center"
 left_action_items: [["refresh", lambda x: root.load_content()]]
 right_action_items: [["arrow-right", lambda x: root.switch_to_friend(app)]]

 MDBoxLayout:
 size_hint_y: 0.1
 orientation: "horizontal"
 spacing: 10

Jack Leverett 7714 50639

501

 padding: 10

 MDTextField:
 id: username_select
 mode: "rectangle"
 hint_text: "Enter a username"
 pos_hint: {'center_y': 0.5}

 MDRaisedButton:
 text: "Request"
 on_release: root.add_friend_search()
 pos_hint: {'center_y': 0.5}

 MDBoxLayout:
 orientation: "vertical"
 size_hint_y: 0.2

 MDBoxLayout:
 orientation: "vertical"
 padding: 10
 MDLabel:
 text: "Recomendations"
 font_style: "H5"
 size_hint_y: 0.1

 MDBoxLayout:
 size_hint_y: 0.9
 padding: 10
 ScrollingView:
 MDList:
 id: recomendations

 MDBoxLayout:
 orientation: "vertical"
 padding: 10
 size_hint_y: 0.7

 MDBoxLayout:
 orientation: "vertical"
 MDLabel:
 text: "Incoming Requests"
 font_style: "H5"
 size_hint_y: 0.1

 MDBoxLayout:
 size_hint_y: 0.9
 padding: 10
 ScrollingView:

Jack Leverett 7714 50639

502

 MDList:
 id: incoming_requests

 MDBoxLayout:
 orientation: "vertical"
 MDLabel:
 text: "Outgoing Requests"
 font_style: "H5"
 size_hint_y: 0.1

 MDBoxLayout:
 size_hint_y: 0.9
 padding: 10
 ScrollingView:
 MDList:
 id: outgoing_requests

management widgets
<ManageOccupationChange>
 orientation: "vertical"
 change_button: change_button
 occupation_select: occupation_select
 occupation_description: occupation_description
 username_select: username_select

 MDLabel:
 text: "Change a users occupation (this will change their team)"
 font_style: 'H5'
 pos_hint: {'center_x': .5}
 size_hint_y: 0.1

 MDBoxLayout:
 orientation: "horizontal"
 size_hint_y: 0.9

 MDTextField:
 id: username_select
 hint_text: "Enter a username"

 MDRaisedButton:
 id: occupation_select
 text: "Select an occupation"
 pos_hint: {'center_x': .5, 'center_y': .5}
 on_release: root.selection_menu()

 MDLabel:
 id: occupation_description
 text: "Occupation description"

Jack Leverett 7714 50639

503

 font_style: 'H6'
 pos_hint: {'center_x': .5, 'center_y': .5}

 MDRaisedButton:
 id: change_button
 text: "Change occupation"
 pos_hint: {'center_y': .5}
 on_release: root.submit()

<OccupationItem>
 text: "Occupation name"
 secondary_text: "Description"

 IconLeftWidget:
 icon: "close"
 on_release:
 root.delete()
 IconRightWidget:
 icon: "pencil"
 on_release:
 root.edit()

<OccupationRequestItem>
 text: "Username"
 secondary_text: "Occupation name"
 tirtiary_text: "Description"

 IconRightWidget:
 icon: "check"
 on_release:
 root.accept()

 IconLeftWidget:
 icon: "close"
 on_release:
 root.reject()

<OccupationEdit>
 orientation: "vertical"
 spacing: 10

 MDLabel:
 text: "Edit occupation"
 font_style: "H5"
 size_hint_y: 0.1
 MDTextField:
 id: name
 mode: "rectangle"

Jack Leverett 7714 50639

504

 hint_text: "Name"
 size_hint_x: 1
 size_hint_y: 0.35
 MDTextField:
 id: description
 mode: "rectangle"
 hint_text: "Description"
 size_hint_x: 1
 size_hint_y: 0.35
 MDRaisedButton:
 text: "Done"
 size_hint_x: 1
 on_release: root.submit()
 size_hint_y: 0.2

<OccupationCreate>
 orientation: "vertical"
 spacing: 10

 MDLabel:
 text: "Create an occupation"
 font_style: "H5"
 size_hint_y: 0.1
 MDTextField:
 id: name
 mode: "rectangle"
 hint_text: "Name"
 size_hint_x: 1
 size_hint_y: 0.35
 MDTextField:
 id: description
 mode: "rectangle"
 hint_text: "Description"
 size_hint_x: 1
 size_hint_y: 0.35
 MDRaisedButton:
 text: "Done"
 size_hint_x: 1
 on_release: root.create()
 size_hint_y: 0.2

<OccupationPage>:
 toolbar: toolbar
 occupations: occupations
 edit_area: edit_area

 MDBoxLayout:
 orientation: "vertical"

Jack Leverett 7714 50639

505

 spacing: 10

 MDTopAppBar:
 id: toolbar
 title: "Occupation"
 anchor_title: "center"
 left_action_items: [["arrow-left", lambda x: root.back(app)]]
 right_action_items: [["help", lambda x: root.open_help(app)]]

 MDRaisedButton:
 text: "Requests"
 on_release: root.switch_to_occupation_request(app)
 size_hint_x: 0.9
 pos_hint: {'center_x': 0.5, 'center_y': 0.5}

 MDBoxLayout:
 id: edit_area
 orientation: "vertical"
 padding: 15

 MDBoxLayout:
 orientation: "vertical"
 padding: 15

 MDLabel:
 text: "Occupations"
 font_style: "H5"
 size_hint_y: 0.1

 MDBoxLayout:
 size_hint_y: 0.9
 padding: 10
 ScrollingView:
 MDList:
 id: occupations

<OccupationRequestPage>:
 toolbar: toolbar
 change_requests: change_requests

 MDBoxLayout:
 orientation: "vertical"
 spacing: 10

 MDTopAppBar:
 id: toolbar
 title: "Requests"
 anchor_title: "center"

Jack Leverett 7714 50639

506

 left_action_items: [["arrow-left", lambda x: root.back(app)]]
 right_action_items: [["refresh", lambda x: root.load_content()]]

 MDBoxLayout:
 orientation: "vertical"
 padding: 10

 MDLabel:
 text: "Occupation change requests"
 font_style: "H5"
 size_hint_y: 0.1

 MDBoxLayout:
 size_hint_y: 0.9
 padding: 10
 ScrollingView:
 MDList:
 id: change_requests

<LeaderItem>
 IconRightWidget:
 icon: "close"
 on_release: root.delete()

<AddLeaderButton>
 text: "Add leader"
 size_hint_x: 0.8
 on_release: root.add_leader()
 pos_hint: {'center_x': 0.5}

<AddLeader>
 orientation: "vertical"
 spacing: 10

 MDLabel:
 text: "Add a leader"
 font_style: "H5"
 size_hint_y: 0.2
 MDTextField:
 id: username
 mode: "rectangle"
 hint_text: "Name"
 size_hint_y: 0.5
 MDRaisedButton:
 text: "Done"
 on_release: root.submit()
 size_hint_y: 0.3
 size_hint_x: 1

Jack Leverett 7714 50639

507

<ChangeNameButton>
 text: "Change team name"
 size_hint_x: 0.8
 on_release: root.change_name()
 pos_hint: {'center_x': 0.5}

<ChangeName>
 orientation: "vertical"
 spacing: 10

 MDLabel:
 text: "Change team name"
 font_style: "H5"
 size_hint_y: 0.2
 MDTextField:
 id: name
 mode: "rectangle"
 hint_text: "Name"
 size_hint_y: 0.5
 MDRaisedButton:
 text: "Done"
 on_release: root.submit()
 size_hint_y: 0.3
 size_hint_x: 1

<TeamPage>:
 toolbar: toolbar
 members: members
 leaders: leaders
 team_name: team_name
 edit_area: edit_area

 MDBoxLayout:
 orientation: "vertical"
 spacing: 10

 MDTopAppBar:
 id: toolbar
 title: "Team"
 anchor_title: "center"
 left_action_items: [["arrow-left", lambda x: root.back(app)]]
 right_action_items: [["help", lambda x: root.open_help(app)], ["refresh", lambda x:
root.load_content()]]

 MDBoxLayout:
 orientation: "vertical"
 padding: 10

Jack Leverett 7714 50639

508

 spacing: 10

 MDBoxLayout:
 orientation: "vertical"

 MDLabel:
 id: team_name
 text: ""
 font_style: "H5"
 font_size: 30
 pos_hint: {'center_x': 0.93}
 size_hint_y: 0.1

 MDBoxLayout:
 id: edit_area
 orientation: "vertical"
 size_hint_y: 0.9
 spacing: 10

 MDBoxLayout:
 orientation: "vertical"
 MDLabel:
 text: "Leader"
 font_style: "H5"
 size_hint_y: 0.1

 MDBoxLayout:
 size_hint_y: 0.9
 padding: 10
 ScrollingView:
 MDList:
 id: leaders

 MDBoxLayout:
 orientation: "vertical"
 MDLabel:
 text: "Members"
 font_style: "H5"
 size_hint_y: 0.1

 MDBoxLayout:
 size_hint_y: 0.9
 padding: 10
 ScrollingView:
 MDList:
 id: members

auth widgets

Jack Leverett 7714 50639

509

<PasswordField>
 size_hint_y: None
 height: password_field.height
 text: password_field.text

 MDTextField:
 id: password_field
 hint_text: "Password"
 text: ""
 password: True
 mode: "rectangle"
 icon_left: "key-variant"

 MDIconButton:
 icon: "eye-off"
 pos_hint: {"center_y": 0.45}
 pos: password_field.width - self.width + dp(8), 0
 theme_text_color: "Hint"
 on_release:
 self.icon = "eye" if self.icon == "eye-off" else "eye-off"
 password_field.password = False if password_field.password is True else True

<AuthField>
 adaptive_height: True
 mode: "rectangle"
 hint_text: ""

<AuthButton>
 text: "auth"
 pos_hint: {'center_x': 0.5}
 size_hint_x: 0.5
 on_release:
 self.action(app)

<LoginPage>:
 login_view: login_view

 MDBoxLayout:
 orientation: "vertical"
 spacing: 10

 MDTopAppBar:
 title: "Login"
 anchor_title: "center"

 MDGridLayout:
 id: login_view
 padding: 20

Jack Leverett 7714 50639

510

 spacing: 10
 row_default_height: 50
 cols: 1
 rows: 4

<RegisterPage>:
 register_view: register_view

 MDBoxLayout:
 orientation: "vertical"
 spacing: 10

 MDTopAppBar:
 title: "Register"
 anchor_title: "center"
 left_action_items: [["arrow-left", lambda x: app.set_screen("LoginPageScreen",
"right")]]

 MDGridLayout:
 id: register_view
 padding: 20
 spacing: 10
 row_default_height: 50
 cols: 1
 rows: 6

<ServerPage>:
 url: url
 MDBoxLayout:
 orientation: "vertical"
 spacing: 10

 MDTopAppBar:
 title: "Select Server"
 anchor_title: "center"

 MDGridLayout:
 padding: 20
 spacing: 10
 row_default_height: 50
 cols: 1
 rows: 2

 MDTextField:
 id: url
 adaptive_height: True
 mode: "rectangle"
 hint_text: "Server URL"

Jack Leverett 7714 50639

511

 helper_text: "Remember to start with http:// or https://"

 MDRaisedButton:
 text: "Connect"
 pos_hint: {'center_x': 0.5}
 size_hint_x: 0.5
 on_release:
 root.connect(app)

<ShareInput>
 pos_hint: {'center_y': 0.5}
 spacing: 10
 share_num: share_num
 share_secret: share_secret

 MDTextField:
 id: share_num
 mode: "rectangle"
 hint_text: "Share Number"
 size_hint_x: 0.2

 MDTextField:
 id: share_secret
 password: True
 mode: "rectangle"
 hint_text: "Share Secret"
 helper_text: "This is the secret provided by the admin"
 size_hint_x: 0.8

<DecryptPage>:
 input_area: input_area
 en_password: en_password
 MDBoxLayout:
 orientation: "vertical"
 spacing: 10

 MDTopAppBar:
 title: "Decrypt Server Database"
 anchor_title: "center"

 MDBoxLayout:
 orientation: "vertical"
 padding: 20
 spacing: 20

 MDTextField:
 id: en_password
 password: True

Jack Leverett 7714 50639

512

 mode: "rectangle"
 hint_text: "Master password"
 helper_text: "This can still be used even if Shamir Secret Sharing is enabled"
 size_hint_x: 0.8
 pos_hint: {'center_x': 0.5}

 MDBoxLayout:
 id: input_area
 orientation: "vertical"

 MDRaisedButton:
 text: "Submit"
 pos_hint: {'center_x': 0.5}
 size_hint_x: 0.8
 on_release: root.submit()

<CameraPage>:
 camera_area: camera_area
 toolbar: toolbar

 MDBoxLayout:
 orientation: "vertical"
 spacing: 10

 MDTopAppBar:
 id: toolbar
 title: "Time left: "
 anchor_title: "center"
 left_action_items: [["arrow-up", lambda x: root.exit(app)]]
 right_action_items: [["help", lambda x: root.open_help(app)]]

 MDBoxLayout:
 id: camera_area
 orientation: "vertical"
 size_hint_y: 0.7
 padding: 10

 MDBoxLayout:
 orientation: "vertical"
 size_hint_y: 0.2
 padding: 10

 MDIconButton:
 icon: "camera"
 on_release: root.capture(app)
 pos_hint: {'center_x': 0.5, 'center_y': 0.5}

<PostReviewPage>:

Jack Leverett 7714 50639

513

 image: image
 caption: caption
 toolbar: toolbar

 MDBoxLayout:
 orientation: "vertical"
 spacing: 10

 MDTopAppBar:
 id: toolbar
 title: "Time left: "
 anchor_title: "center"
 left_action_items: [["arrow-up", lambda x: root.exit(app)]]
 right_action_items: [["help", lambda x: root.open_help(app)]]

 MDBoxLayout:
 orientation: "vertical"
 size_hint_y: 0.1
 padding: 10

 MDRaisedButton:
 text: "Retake photo?"
 on_release: root.retake(app)
 size_hint_x: 1
 pos_hint: {'center_y': 0.5}

 MDBoxLayout:
 id: image_area
 orientation: "vertical"
 size_hint_y: 0.5
 padding: 10

 FitImage:
 id: image
 source: ""

 MDBoxLayout:
 orientation: "vertical"
 size_hint_y: 0.3
 padding: 15
 spacing:10

 MDTextField:
 id: caption
 hint_text: "Caption"
 helper_text: "This text will appear alongside your photo"
 size_hint_x: 1

Jack Leverett 7714 50639

514

 MDRaisedButton:
 text: "Post"
 size_hint_x: 1
 on_release: root.post(app)

<FirstTimePage>:
 name_input: name_input
 role_input: role_input

 MDBoxLayout:
 orientation: "vertical"
 spacing: 10
 padding: 20

 MDBoxLayout:
 id: step0
 orientation: "vertical"
 size_hint_y: 0.1

 MDLabel:
 text: "Before doing anything else, please download the ntfy app or navigate to your
organisations ntfy site. Then subscribe to the topic:"
 font_style: "H6"

 MDLabel:
 id: topic_name
 text: "Could not fetch topic name"
 font_style: "H5"

 MDBoxLayout:
 id: step1
 orientation: "vertical"
 size_hint_y: 0.15

 MDLabel:
 text: "Step 1: Tell us your name"

 MDTextField:
 id: name_input
 hint_text: "Name"

 MDBoxLayout:
 id: step2
 orientation: "vertical"
 size_hint_y: 0.15

 MDLabel:
 text: "Step 2: Let everyone know your role in the organisation"

Jack Leverett 7714 50639

515

 MDTextField:
 id: role_input
 hint_text: "Role"

 MDBoxLayout:
 id: step3
 orientation: "vertical"
 size_hint_y: 0.3

 MDLabel:
 text: "Step 3: Request to set your occupation, people with the same occupation will be
grouped together into the same team. People in the same team will be able to see
eachothers posts"

 MDBoxLayout:
 id: summary
 orientation: "vertical"
 size_hint_y: 0.3

 MDLabel:
 text: "Management or an admin will approve your request soon!\nFor now head over
to the friends page and send some friend requests"
 MDLabel:
 text: "To get there click the profile button in the top left hand corner the homepage,
and then click the friends button in the top left hand corner on the profile page"

 MDRaisedButton:
 text: "Done"
 size_hint_x: 0.8
 pos_hint: {'center_x': 0.5}
 on_release: root.done(app)

data/assets/help.txt

[Home:START]
 (title:START)
 Home page
 (title:END)

 (body:START)
 This is your home page, below you will is where you will see your friends posts.
 In the top left corner is your "profile" there you will be able to see all about you, and find
friends
 Next to that is yout notifications to keep you up-to-date with your colleges
 Your settings panel is in the top left and additional areas are available in the navigation
panel at the bottom of the page
 (body:END)

Jack Leverett 7714 50639

516

[Home:END]

[Memories:START]
 (title:START)
 Memories page
 (title:END)

 (body:START)
 Here is where you will see your own historical posts. This means posts from previous
days.
 Just select a month and then the day of the month and you will see your old post. You
can still like
 and comment on it but others will not be able to see these interactions.
 (body:END)
[Memories:END]

[Organisation:START]
 (title:START)
 Organisation page
 (title:END)

 (body:START)
 Here you will see the navigation to your teams panel, and soon some infomation about
your organisations
 Your teams panel is where you will be able to see all about your team.

 You can only be part of one organisation, since your account is specifically tied to it.
 (body:END)
[Organisation:END]

[Organisation-admin:START]
 (title:START)
 Organisation page
 (title:END)

 (body:START)
 Here you will see the navigation to your teams panel, and soon some infomation about
your organisations
 Your teams panel is where you will be able to see all about your team.
 Additionally since your are management/admin staff you can see the occupation area
here you can accept and reject occupation change requests, create new occupations and
edit or delete current ones.
 (body:END)
 [Organisation-admin:END]

[Profile:START]
 (title:START)
 Profile page

Jack Leverett 7714 50639

517

 (title:END)

 (body:START)
 This page you can see all the infomation about the profile your viewing. For your own
profile you should see edit buttons next to some of infomation this means you can change
or request to change this info.

 Your role is simply how you describe your role in your team for instance "assistant"
 Your occupation determines what team you are put into, you can only be part of 1 team
at a time.
 (body:END)
[Profile:END]

[Notifications:START]
 (title:START)
 Notifications page
 (title:END)

 (body:START)
 Here you will see notifications from your organisations admins and management, as
well notifications about people interacting with your posts and when its time to make your
post.
 (body:END)
[Notifications:END]

[Settings:START]
 (title:START)
 Settings page
 (title:END)

 (body:START)
 This is where you can configure some options, for instance to stop seeing these help
buttons toggle "Help Dialogs".
 (body:END)
[Settings:END]

[Team:START]
 (title:START)
 Teams page
 (title:END)

 (body:START)
 Your sorted into a team via your occupation, each occupation will have a team
associated with it.
 People in the same team as you will see your posts and you will see theres. This means
you will see posts from
 your team alongside posts from your friends.

Jack Leverett 7714 50639

518

 Team leaders act as the moderator for the team. This means they can delete your posts
and comments even if your
 commenting on your friends posts.
 (body:END)
[Team:END]

[Occupation:START]
 (title:START)
 Occupations page
 (title:END)

 (body:START)
 Here you can change edit and delete the occupations in your organisation, this panel is
only available for management and admins.
 You can also approve and deny occupation change requests here. For a member to
change their occupation they have to submit an occupation change request including what
occupation they want to switch to. This request must be approved by management or
above. Once approved the member is switched to their new team.
 (body:END)
[Occupation:END]

[Friends:START]
 (title:START)
 Friends page
 (title:END)

 (body:START)
 In BeOpen you dont follow people but friend people, this means both people accepted
to be friends with eachother. Meaning you both see eachothers posts in your feed.
 On this page you will be able to see your current friends and remove them if wanted. On
the requests page (button below) you can send new friend requests, and approve or deny
current friend requests. On that page is also a list of recomended friends based on mutal
friends.

 To send a friend request to someone (who isnt in the recomended) type their username
into the request box, their username has to match exactly.
 (body:END)
[Friends:END]

[Camera:START]
 (title:START)
 Making a post
 (title:END)

 (body:START)
 You will be able to make one of these posts once a day, you will see the countdown at
the top this is how long you have to post. After this time has run out you will not be able to
post for that day.

Jack Leverett 7714 50639

519

 To make a post just take a picture of whatever your doing right now and head onto the
next screen.
 (body:END)
[Camera:END]

[PostReview:START]
 (title:START)
 Making a post
 (title:END)

 (body:START)
 Here you can review the image you just took and retake it if needed.
 You can also add a caption to your post, note that you cannot edit a post after its been
created you can however delete it. So be sure this is what you want to post today since
deleting means you will have to wait till tomorrow to post again.
 When your ready just hit post!
 (body:END)
[PostReview:END]

org.flatpak.BeOpen.yml

id: org.flatpak.BeOpen

runtime: org.freedesktop.Platform

runtime-version: '23.08'

sdk: org.freedesktop.Sdk

command: runner.sh

modules:

 - python3-requirements.json

 - name: cpython

 sources:

 - type: archive

 url: https://www.python.org/ftp/python/3.6.5/Python-3.6.5.tar.xz

 sha256: f434053ba1b5c8a5cc597e966ead3c5143012af827fd3f0697d21450bb8d87a6

 - name: runner

 buildsystem: simple

 build-commands:

 - install -D main.py /app/main.py

 - install -D modules /app/modules

 - install -D runner.sh /app/bin/runner.sh

 sources:

 - type: file

 path: ../runner.sh

 - type: file

 path: ../main.py

 - type: dir

 path: ../modules

Jack Leverett 7714 50639

520

python3-requirements.json

{

 "name": "python3-requirements",

 "buildsystem": "simple",

 "build-commands": [],

 "modules": [

 {

 "name": "python3-python-socketio",

 "buildsystem": "simple",

 "build-commands": [

 "pip3 install --verbose --exists-action=i --no-index --find-

links=\"file://${PWD}\" --prefix=${FLATPAK_DEST} \"python-socketio==5.8.0\" --no-

build-isolation"

],

 "sources": [

 {

 "type": "file",

 "url": "https://files.pythonhosted.org/pack-

ages/b5/82/ce0b6380f35f49d3fe687979a324c342cfa3588380232f3801db9dd62f9e/bidict-

0.22.1-py3-none-any.whl",

 "sha256":

"6ef212238eb884b664f28da76f33f1d28b260f665fc737b413b287d5487d1e7b"

 },

 {

 "type": "file",

 "url": "https://files.pythonhosted.org/pack-

ages/95/04/ff642e65ad6b90db43e668d70ffb6736436c7ce41fcc549f4e9472234127/h11-0.14.0-

py3-none-any.whl",

 "sha256":

"e3fe4ac4b851c468cc8363d500db52c2ead036020723024a109d37346efaa761"

 },

 {

 "type": "file",

 "url": "https://files.pythonhosted.org/pack-

ages/4f/ca/b14136484c9a10230abbf44a89041ccd2c696d0cb425e53f48ca0de0d1e7/python_en-

gineio-4.8.2-py3-none-any.whl",

 "sha256":

"a357f0aba275c311b66f22181472ed5b174bbc541742eea1d16feae2fa1afabd"

 },

 {

 "type": "file",

 "url": "https://files.pythonhosted.org/pack-

ages/5d/e9/f296186e2a91f1472b9da74346163411196dc1b17f425acf088f293b32cc/py-

thon_socketio-5.8.0-py3-none-any.whl",

Jack Leverett 7714 50639

521

 "sha256":

"7adb8867aac1c2929b9c1429f1c02e12ca4c36b67c807967393e367dfbb01441"

 },

 {

 "type": "file",

 "url": "https://files.pythonhosted.org/pack-

ages/6d/ea/288a8ac1d9551354488ff60c0ac6a76acc3b6b60f0460ac1944c75e240da/simple_web-

socket-1.0.0-py3-none-any.whl",

 "sha256":

"1d5bf585e415eaa2083e2bcf02a3ecf91f9712e7b3e6b9fa0b461ad04e0837bc"

 },

 {

 "type": "file",

 "url": "https://files.pythonhosted.org/pack-

ages/78/58/e860788190eba3bcce367f74d29c4675466ce8dddfba85f7827588416f01/wsproto-

1.2.0-py3-none-any.whl",

 "sha256": "b9ac-

ddd652b585d75b20477888c56642fdade28bdfd3579aa24a4d2c037dd736"

 }

]

 },

 {

 "name": "python3-eventlet",

 "buildsystem": "simple",

 "build-commands": [

 "pip3 install --verbose --exists-action=i --no-index --find-

links=\"file://${PWD}\" --prefix=${FLATPAK_DEST} \"eventlet==0.33.3\" --no-build-

isolation"

],

 "sources": [

 {

 "type": "file",

 "url": "https://files.pythonhosted.org/pack-

ages/f6/b4/0a9bee52c50f226a3cbfb54263d02bb421c7f2adc136520729c2c689c1e5/dnspython-

2.4.2-py3-none-any.whl",

 "sha256": "57c6fbaae-

aaf39c891292012060beb141791735dbb4004798328fc2c467402d8"

 },

 {

 "type": "file",

 "url": "https://files.pythonhosted.org/pack-

ages/90/97/928b89de2e23cc67136eccccf1c122adf74ffdb65bbf7d2964b937cedd4f/eventlet-

0.33.3-py2.py3-none-any.whl",

 "sha256":

"e43b9ae05ba4bb477a10307699c9aff7ff86121b2640f9184d29059f5a687df8"

 },

 {

Jack Leverett 7714 50639

522

 "type": "file",

 "url": "https://files.pythonhosted.org/pack-

ages/17/14/3bddb1298b9a6786539ac609ba4b7c9c0842e12aa73aaa4d8d73ec8f8185/greenlet-

3.0.3.tar.gz",

 "sha256":

"43374442353259554ce33599da8b692d5aa96f8976d567d4badf263371fbe491"

 }

]

 },

 {

 "name": "python3-pathlib",

 "buildsystem": "simple",

 "build-commands": [

 "pip3 install --verbose --exists-action=i --no-index --find-

links=\"file://${PWD}\" --prefix=${FLATPAK_DEST} \"pathlib==1.0.1\" --no-build-iso-

lation"

],

 "sources": [

 {

 "type": "file",

 "url": "https://files.pythonhosted.org/pack-

ages/78/f9/690a8600b93c332de3ab4a344a4ac34f00c8f104917061f779db6a918ed6/pathlib-

1.0.1-py3-none-any.whl",

 "sha256": "f35f95ab8b0f59e6d354090350b44a80a80635d22ef-

dedfa84c7ad1cf0a74147"

 }

]

 },

 {

 "name": "python3-configparser",

 "buildsystem": "simple",

 "build-commands": [

 "pip3 install --verbose --exists-action=i --no-index --find-

links=\"file://${PWD}\" --prefix=${FLATPAK_DEST} \"configparser\" --no-build-isola-

tion"

],

 "sources": [

 {

 "type": "file",

 "url": "https://files.pythonhosted.org/pack-

ages/81/a3/0e5ed11da4b7770c15f6f319abf053f46b5a06c7d4273c48469b7899bd89/con-

figparser-6.0.0-py3-none-any.whl",

 "sha256":

"900ea2bb01b2540b1a644ad3d5351e9b961a4a012d4732f619375fb8f641ee19"

 }

]

 },

Jack Leverett 7714 50639

523

 {

 "name": "python3-datetime",

 "buildsystem": "simple",

 "build-commands": [

 "pip3 install --verbose --exists-action=i --no-index --find-

links=\"file://${PWD}\" --prefix=${FLATPAK_DEST} \"datetime\" --no-build-isolation"

],

 "sources": [

 {

 "type": "file",

 "url": "https://files.pythonhosted.org/pack-

ages/ff/d5/f508192a563ab7415d1efbbe8d39cb9f0e510a1f6aaee3ca7d4ffed2a194/DateTime-

5.4-py3-none-any.whl",

 "sha256":

"88caf4d2441fe479038f4740a1071953686f7c1ed6c9e8c7df9ebe84e592f0c6"

 },

 {

 "type": "file",

 "url": "https://files.pythonhosted.org/pack-

ages/32/4d/aaf7eff5deb402fd9a24a1449a8119f00d74ae9c2efa79f8ef9994261fc2/pytz-

2023.3.post1-py2.py3-none-any.whl",

 "sha256":

"ce42d816b81b68506614c11e8937d3aa9e41007ceb50bfdcb0749b921bf646c7"

 },

 {

 "type": "file",

 "url": "https://files.pythonhosted.org/pack-

ages/87/03/6b85c1df2dca1b9acca38b423d1e226d8ffdf30ebd78bcb398c511de8b54/zope.inter-

face-6.1.tar.gz",

 "sha256":

"2fdc7ccbd6eb6b7df5353012fbed6c3c5d04ceaca0038f75e601060e95345309"

 }

]

 },

 {

 "name": "python3-pillow",

 "buildsystem": "simple",

 "build-commands": [

 "pip3 install --verbose --exists-action=i --no-index --find-

links=\"file://${PWD}\" --prefix=${FLATPAK_DEST} \"pillow==10.0.1\" --no-build-iso-

lation"

],

 "sources": [

 {

 "type": "file",

Jack Leverett 7714 50639

524

 "url": "https://files.pythonhosted.org/pack-

ages/64/9e/7e638579cce7dc346632f020914141a164a872be813481f058883ee8d421/Pillow-

10.0.1.tar.gz",

 "sha256":

"d72967b06be9300fed5cfbc8b5bafceec48bf7cdc7dab66b1d2549035287191d"

 }

]

 },

 {

 "name": "python3-python-dotenv",

 "buildsystem": "simple",

 "build-commands": [

 "pip3 install --verbose --exists-action=i --no-index --find-

links=\"file://${PWD}\" --prefix=${FLATPAK_DEST} \"python-dotenv==1.0.0\" --no-

build-isolation"

],

 "sources": [

 {

 "type": "file",

 "url": "https://files.pythonhosted.org/pack-

ages/44/2f/62ea1c8b593f4e093cc1a7768f0d46112107e790c3e478532329e434f00b/py-

thon_dotenv-1.0.0-py3-none-any.whl",

 "sha256":

"f5971a9226b701070a4bf2c38c89e5a3f0d64de8debda981d1db98583009122a"

 }

]

 }

]

}

Jack Leverett 7714 50639

525

Appendix

SocketIO (python-socketio) – Networking and WebSocket library - documentation -
https://python-socketio.readthedocs.io/en/stable/
Eventlet – Socketio deployment method – Documentation - https://eventlet.net/doc/
ConfigParser – For parsing the server-side configuration file – Documentation -
https://docs.python.org/3/library/configparser.html/
Kivy - Client UI library - documentation – https://kivy.org/doc/stable/
KivyMD - Extension onto the Kivy UI library for material themed widgets -
https://kivymd.readthedocs.io/en/1.1.1/

Shamir Secret Sharing – Paypal - https://max.levch.in/post/724289457144070144/shamir-
secret-sharing-its-3am-paul-the-head-of
Shamir Secret Sharing – Basics - https://www.youtube.com/watch?v=K54ildEW9-Q

Federation – Mastodon a federated social media - https://joinmastodon.org/
Federation – Basics and dominant protocol - https://activitypub.rocks/

https://python-socketio.readthedocs.io/en/stable/
https://eventlet.net/doc/
https://docs.python.org/3/library/configparser.html
https://kivy.org/doc/stable/
https://kivymd.readthedocs.io/en/1.1.1/
https://max.levch.in/post/724289457144070144/shamir-secret-sharing-its-3am-paul-the-head-of
https://max.levch.in/post/724289457144070144/shamir-secret-sharing-its-3am-paul-the-head-of
https://www.youtube.com/watch?v=K54ildEW9-Q
https://joinmastodon.org/

Jack Leverett 7714 50639

526

Glossary

BeOpen – The name of the system

Instance – An instance of BeOpen is a single deployment of the server software. One

organisation should have one instance of BeOpen

Federation – The act of 2 social platform instances “federating” means that the 2

instances trust each other and work together to share/server each of their user’s data.

From the user’s point of view it would seem everyone is on the same instance even if it

technically 2 separate servers.

Occupation – A type of job or generalisation of roles in the organisation. An occupation is

made by an admin or management on BeOpen. Users can assign themselves an

occupation and this determines which team they are in.

Team – A group or department of members managed by a manager or head of

department. Users in the same team will be able to see each other’s posts

Levels – Different types of users and employees such as Admins, managers, and

members

Registration key – A secret phrase provided by an organisation to users to allow them to

register an account on the organisation’s BeOpen instance.

Shamir Secret Sharing – An method for sharing a secret in a set of “shares” only a

combination of a set number of these shares can be used to find out what the secret is

Encryption – The process of using a “key” to scramble some data, this data can only then

be unscrambled through use of that same key (in AES encryption).

